用户名: 密码: 验证码:
污泥堆肥过程中微生物种群结构演替变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用强制通风堆肥工艺,对城市污水处理厂的消化污泥进行了堆肥化处理,分析了污泥堆肥过程中物理、化学及生物学指标的变化规律,采用常规微生物培养与PCR-DGGE技术以及基因测序相结合的方法,来分析堆肥过程中微生物的多样性及其种群结构的演替变化,研究了污泥堆肥过程中微生物种群结构的演替变化规律,阐明了污泥堆肥过程中堆肥产品的物理化学特征变化与微生物种群结构演替变化的关系,并对优势菌种进行了基因测序,确定了堆肥过程中的部分处于优势地位的微生物种类。主要取得了以下结果:
     在不同的季节将污泥和木屑按不同的体积配比,分别为污泥/木屑2:1、污泥/木屑1.5:1、污泥/木屑/回流污泥2:1:1、污泥/木屑1:1、污泥/木屑1.5:1,进行的5组堆肥试验,均能达到设定温度(60℃)。在堆肥前5d内,分别达到了最高温度63℃、68℃、68℃、62℃和66℃;并在55℃以上,分别维持了6d、5d、6d、6d和10d。对堆肥过程中温度、含水率、有机质、pH、TN、NH4+-N等参数的监测表明堆肥过程能顺利进行。堆肥结束时,堆肥产品中的含水率、有机质、TN较堆肥原料明显减少;pH和NH4+-N在整个堆肥过程中呈先升高后降低的变化规律,而电导率和NO3--N则是先增高,后来呈基本稳定状态;堆肥进行到40天左右时,五组堆肥试验种子发芽指数分别达到了77.96%、90.12%、94.40%、93.74%、88.63%,堆肥产品已基本消除植物毒性,达到了完全腐熟。
     采用传统培养(菌种计数法)分析堆肥过程中微生物的研究表明,堆肥初期,细菌数量大约108~109个/g干泥,且在整个堆肥过程中细菌的数量最大,是整个堆肥过程的优势种群;真菌、放线菌数量相对较少,比细菌约低2~4个数量级。在堆肥升温期细菌、真菌和放线菌都大量繁殖,高温期过后数量都有所下降。其中,堆肥高温使大肠菌群数量降低了5~7个数量级,蛔虫卵的灭杀率为95%~100%,达到了国家高温堆肥标准。
     PCR-DGGE结合基因测序技术分析堆肥过程中微生物群落结构结果表明,在堆肥不同时期,居于优势地位的微生物种群是不一样的,随着堆肥温度的变化微生物种群结构不断发生变化,在堆肥结束时趋于稳定;对堆肥不同时期的优势菌种的测序,得到了uncultured compost bacterium clone 2B09 16S ribosomal RNA gene等12个微生物种群。
In this research, the forced aeration composting technique was used for composting of digested sludge from municipal sewage treatment plant, analyzed the changing rules of physical, chemical and biological indicators during the sludge composting process, Combined with the method of the conventional microbial culture, PCR-DGGE and gene sequencing technology to analyze the diversity of microbial population and the succession changes of the microbial population structure, studied the successional changing rules of microbial population, also discussed the relationship between the physical and chemical characteristic changes and the microbial population structure changes, and the Gene sequencing identified the part of microbial populations which were in a dominant position in the process of composting. The following results have been obtained:
     In different seasons, sludge was mixed with sawdust pro rata in different volume ratios, which were sludge to sawdust 2:1, sludge to sawdust 1.5:1, sludge to sawdust to regurgitant sludge 2:1:1, sludge to sawdust 1:1 and sludge to sawdust 1.5:1.These five groups of composting test could reach the set temperature (60℃). All of the initial five days of the test, the highest temperatures respectively attained 63℃, 68℃, 68℃, 62℃and 66℃, and maintained 6d, 5d, 6d, 6d and 10d separately. The records of temperature、moisture、organic matter、pH、total nitrogen and ammonia nitrogen with time that showed the composting could be successfully processed. At the end of the composting, moisture, organic matter and total nitrogen decreased obviously; pH and ammonia nitrogen first increased and then decreased during the composting process; conductivity and nitrate nitrogen increased first and were at the state of stability afterward; The cress seed germination index (GI), used as indicator of phytotoxicity and maturation of compost , exhibited that the sludge compost was almost stabilized and mature near the 40th day of composting , when 77.96%、 90.12%、94.40%、93.74% and 88.63% of GI were obtained respectively.
     Conventional culture microbial (bacteria count method) studies showed that, in the beginning of composting, bacteria is the largest number of microbial in the whole process, about 108-109 CFU/ g dry sludge, it is the dominant microbial population during the process of composting, and the number of fungi and actinomycetes were relatively small, about 2-4 orders of magnitude lower than the bacteria, bacteria、fungi and actinomycetes were large breeding in the warming period of composting, and begin decreasing after the high temperature period. In addition, E. Coli ,as a common indicator of pathogens in sludge , reduced greatly from the order of 107-108 to 10-102 in the final examination of the compost, and the kill rate of Belly worm nit reached 95 to 100 percent, which had been up to the national standard.
     The result of PCR-DGGE and gene sequencing research indicates that different microbial populations live in the dominant position in the different times of composting. With the changes of the composting temperature, the structure of microbial population changed at the same time, and stabilized at the end of the composting. Gene sequencing for the dominant microbial populations at different periods, obtained 12 kinds of microbial populations, such as uncultured compost bacterium clone 2B09 16S ribosomal RNA gene, and so on.
引文
[1]赵书勤,吴星五.城市污水污泥堆肥化技术的研究进展.四川环境.2003.9-12
    [2]何品晶等.上海城市污水厂污泥处理与利用系统分析[J] .长江流域资源与环境,2002 ,11 (3) :255-259.
    [3]赵鹏,吴星五.浅谈污水厂污泥堆肥化技术,四川环境,2005 ,41-43
    [4]张清敏,陈卫平,胡国臣等.污泥有效利用研究进展.农业环境保护,2000, 19 (1): 58-61
    [5] J in Y ,L i Y X , Chen T B , et al. The effects of sewage sludge compost and compound fertilizer on nutrition up take and sanitation quality of vegetable. Strategy of soil environmental protection f or new century ( in Chinese). Beijing: Chinese Agriculture Technology Press, 2001. 28~32.
    [6] Sacks R.,Akard.著,张金兰译.挥发性有机化合物的高速气相色谱.环境科技动态,1994,(6):30-39
    [7]赵庆祥.污泥资源化技术.北京:化学工业出版社,2002, 101-110.
    [8]张清敏,陈卫平,胡国臣,等.污泥有效利用研究进展.农业环境保护,2000. 19(1):58-61
    [9]周立祥,胡霭堂,戈乃扮,等.城市污泥土地利用研究.生态学报,1999, 19 (2): 185-193.
    [10]姜泳文.城市污水处理厂污泥的管道运输.冶金矿山设计与建设,2000. 32 (2 ): 32-36
    [11]曹秀芹,陈裙.污水处理厂污泥处理存在问题分析.北京建筑工程学院学报,2002.18 (1):1-4
    [12]张忠祥等.城市可持续发展与水污染防治对策.北京:中国建筑工业出版社,2000,237-241
    [13]魏永杰,左耀太.利用城市污水处理厂污泥生产微生物料肥料的研究.污染防治技术,1999,12 (4): 207-209
    [14]周立祥等.污泥农牧地应用中病原物的存活及其控制措施.农业环境保护,1995,14 (3 ): 128-131
    [15]张雪英,周立祥,沈其荣,等.城市污泥强制通风堆肥过程中的生物学和化学变化特征[J].应用生态学报,2002,(4): 467-470.
    [16]谭启玲等.城市污泥的特性及其农业利用现状[J].华中农业大学学报,2002.12, 21(6):587-592
    [17]莫测辉,吴启堂.论城市污泥农用资源化与可持续发展[J].应用生态学报,2000. 2 ,11 (1):157-160
    [18] Jorgen Vikelsoe, Marianne Thomsen, Lays Carlsen. Phthalates and nonylphenols. In profiles of differently dressed soils [J].The Science of the Total Environment. 296 (2002): 105~116
    [19] Lars Carlsen, Mai-Britt Metzon, Jeanette Kjelsmark. Linear alkylbenzene sulfonates (LAS) in the terrestrial Environment [J].The Science of the Total Environment 290 (2002):225~230
    [20] Charlotte Klinge, et al.. Effect of sludge-amendment on mineralization of pyrene and microorganisms in sludge and soil (J). Chemosphere 45 (2001):625~634
    [21] Petra Bergkvist, Nicholas Jarvis, Dan Berggren, Kall Carlgren.Long-term effects of sewage sludge applications on soil properties, cadmium availability and distribution in arable soil [J].Agriculture, Ecosystems and Environment 97 (2003):167~179
    [22] Yongjie Wei, Yangsheng Liu. Effects of sewage sludge compost application on crops and cropland in a 3-year field study [J]. Chemosphere 59 (2005):1257~1265
    [23] Zubillaga, M.S., Lavado, R.S.. Heavy metal content in lettuce plants grown in biosolids compost [J]. Compost Sci. Util. 10 (2002):363~367
    [24] Zhang, M., Heaney, D., Solberg, E., Heriquez, B. The effect of MSW compost on metal uptake and yield of wheat, barley and conola in less productive faming soils of Alberta[J].Compost Sci. Util. 8 (2000): 224~235
    [25] Shraddha Singh, Sarita Sinha. Scanning electron microscopic studies and growth response of the plants of Helianthus annuals grown on tannery sludge amended soil [J]. Environment International 30 (2004):389~395
    [26]张桥等.施用污泥堆肥对作物和土壤的影响[J].土壤与环境,2000, 9(4):277-280
    [27] Katia Lasaridi et al. Quality assessment of composts in the Greek market: The need for standards and quality assurance [J]. Environmental Management 80 (2006): 58~65
    [28]乔显亮等.污泥的土地利用及其环境影响.土壤,2000, 2: 79-85
    [29]赵丽君,张大群等.污泥处理与处置技术的进展[J]中国给水排水,2001,17(6):23-25
    [30]邓晓林,王国华,任鹤云.上海城市污水处理厂污泥处置途径探讨.中国给水排水,2000,16 (5): 19-22
    [31]牛樱.陈季华.剩余污泥处理技术进展[J].工业用水与废水,2000 31(5): 4-6
    [32]徐强.污泥处理处置技术及装置.化学工业出版社.2003.8
    [33]史昕龙,陈绍伟.城市污水污泥的处置与利用.环境保护,2001,3: 45-46
    [34]田宁宁,王凯军,杨丽平等.污水处理厂污泥处置及利用途径研究.环境保护,2000,(2):18-20.
    [35]韦朝海,陈传好.污泥处理处置与利用的研究现状分析.城市环境与城市生态,1998,11(4):10-13.
    [36]章非娟.城市污水厂污泥的堆肥处理[J].中国给水排水.1991,7 (3):36-39
    [37]陈林根,姜雪芳.固体有机废物好氧堆肥发酵工艺概述与展望[J].环境污染与防治,1997,19 (2):20-24
    [38] Garcia. Study on Ovate extract of sewage sludge composts[J]. Plant Nutr,1991,37 (3):399~408
    [39] Lasaridi K E and Stentiford E I.Respiromertric techniques in the content of compost stability assessment: Principles and Practice. In: The Science of composting, ed, by deBertoldi M, Sequi P,Lemmes,et al. Blackie Academic & Professional,1996, 275~284
    [40]蔡全英,莫测辉,吴启堂等.城市污泥堆肥处理过程中有机污染物的变化.农业环境保护,2001,20 ( 3):186-189
    [41]中华人民共和国标准.粪便无害化卫生标准.GB7959-87.
    [42] Angestein D,Wise DL,Dat N X,et al.Composting of Municipal Solid Waste and Sewage Sludge:Potientalfor Fuel Gas Production in A DevelopingCountry[J].Resources,Conservation and Recycling,1996,16:265-279
    [43]章非娟.城市污水厂污泥的堆肥处理[J].中国给水排水.1991,7 (3):36-39
    [44] Golueke C G,Diaz L F. Low tech composting for small communities[J]. Biocycle November,1990, 62-64
    [45] Suler D J et al. Effect of temperature, aeration, and moisture on CO2formation in bench-scale, continuously thermophilic composting of solid waste. App l. Environ. Microbiol. 1977, 33 (2):340~350.
    [46] Lau A K, Lo K V, Liao P H, et al. Aeration experiments for swine waste composting[J]. Biores Technol, 1992, 41:145~152
    [47] Ishii H, Tanaka K, Aoki M, et al. Sewage sludge composting process by static pile method[J].Water Science Technology. Kyoto, 1991,23: 1979~1989
    [48]李承强,魏源送,樊耀波,等.不同填充料污泥好氧堆肥的性质变化及腐熟度.环境科学,2001,22(3):60-65
    [49]李艳霞,王敏健,王菊思等.城市固体废弃物堆肥化处理的影响因素[J].土壤与环境,1999,8(1):61-65
    [50]魏自民等.城市生活垃圾外源微生物堆肥对有机酸变化及堆肥腐熟度的影响[J].环境科学.2006,27(2):376-380
    [51]刘益仁,刘光荣等.微生物发酵菌剂对猪粪堆肥腐熟的影响[J].江西农业学报.2006.18(5)
    [52]李艳霞,王敏健,王菊思.有机固体废弃物的腐熟度参数及指标〔J〕.环境科学. 1999 ,20(2) :98-103.
    [53]李国学.用化学和生物学参数评价堆肥腐熟度[J ] .中国农业大学学报,1999, (4):103-108.
    [54]袁荣焕,彭绪亚,吴振松,城市生活垃圾堆肥腐熟度综合指标的确定,重庆建筑大学学报,2003.54-58.
    [55]李承强,魏源送,樊耀波等.堆肥腐熟度的研究进展〔J〕.环境科学进展,1999 ,7(6) :1-12.
    [56]李国学,张福锁.固体废物资源化与有机复混肥生产.北京:化学工业出版社,2000.81, 87-88
    [57]丁文川,李宏,郝以琼等.污泥好氧堆肥主要微生物类群及其生态规律.重庆大学学报(自然科学版),2002. 25 ( 6 )113-116
    [58]吴正松,彭绪亚,蔡华帅等.微生物在堆肥化中的应用研究.重庆建筑大学学报.2005.92-96
    [59] Bolta SV,Mihelic R,Lobnik F,et a1.Microbial community structure during composting with and without massinocula[J].Compost Science and Utilization,2003,l1(1):6~15.
    [60]冯明谦,刘德明.滚筒式高温堆肥中微生物种类数量的研究口.中国环境科学,1999,19(6):490-492.
    [61] Khalil A I.Beheary M S,Salem E M.Monitoring of microbial population and their cellulolytic activities during the composting of municipal solid waste[J].World Journal of Microbiology and Biotechnology,2001,l 7:155~161.
    [62] Abdennaceur Hassen ,Kaouala Belguith ,Naceur Jedidi. Microbial characterization during composting of municipal solid waste〔J〕.Bioresource Technology ,2001 .,80 :217 ~225.
    [63] Beffa T, Blanc M. Lyon P F. et al. Isolation of thermus strains from hot composts 60-80℃Appl Environ Microbiol,1996, 62: 1723~1727
    [64] Michel Blanc. Laurent M arilley, Trello Beffa, et a1.Thermophilic bacterial communities in hot composts as rexealed by most probable number counts and molecular (16S rDNA)methods[J].FEMS Microbiology Ecology,1999,28:141~149
    [65] Peter M Dees,W illiam C Ghiorse.Microbial diversity in hot synthetic compost as revealed by PCR-ampliced rRNA sequences from cultivated isolates and extracted DNA[J].FEMS Microbiology Ecology,2001,35:207~216.
    [66] Sabine Peters,Stefanie Koschinsky,Frank Schwieger,et a1. Succession of microbial communities during hot composting as detected by PCR-Single-Strand-Conformation polymorphism--based genetic profiles of small-sub-unit rRNA Genes[J].Applied andEnvironmental Microbiology,2000,66:930~ 936.
    [67]朴哲.高温堆肥体系的物质降解机理及微生物学特性研究[D].北京:中国农业大学,2002.
    [68]李国学,张祖锡,白瑛.高温堆肥和沤肥碳、氮转化和杀灭病原菌的比较研究[J].北京农业大学学报,1995,21(3):286-290.
    [69] Klamer M ,Baath E.M icrobial community dynamics during composting of straw material studied using phospholipid fatty acid analysis[J].FEMS Microbiology Ecology,1998,27:9~20.
    [70]刘婷,陈朱蕾,周敬宣.外源接种粪便好氧堆肥的微生物相变化研究[J].华中科技大学学报(城市科学版),2002,19(2):57-59.
    [71] Waksman S. A. ,Cordon T. C. ,Hulpoi N. Influence of temperature upon the microbiological population and ecomposition processes in composts of stable manure〔J〕. Soil Sci. ,1939b ,47 :83~114.
    [72] A.K.AIva, Leaching of Nitrogen Forms, Cations,and Metals as Influenced by Compost Amendment to A Candler Sand.1999,A34(7):1473~1484
    [73]金儒霖,刘永龄.污泥处置.中国建筑工业出版社,1988
    [74]张学洪.利用城市固体废弃物生产有机复合肥技术的研究.哈尔滨工业大学博士学位论文.2001: 8-9
    [75] Muyzer G,and Smalla K.Application of denaturing gradient gel electrophoresis(DGGE) and temperature gradient gel electrophoresis(TGGE)in microbial ecology. Van LeeuwenhoekInt.J.Gen.Mo1.Microbio1.1998,73:127~141.
    [76] Bernard L,Courties C,Duperray C,et a1. A new approach to determine the genetic diversity of viable and active bacteria in aquatic ecosystem s.Cytometry,2001,43,314~321.
    [77] Casamayor E O,Schafer H,Baneras L,et a1.Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes:comparison by microscopy and denaturing gradient gel electrophoresis . App1 . Environ.M icroMo1.2000.66,499~508.
    [78] Ferris M J,M uyzer G,and W ard D M.Denaturing gradient gel electrophoresis of 1 6SrRNA-defined populations inhabiting fl hot spring microbial mat community.App1.Environ .M icro&'o1.1996,62,340~ 346.
    [79] Iwamoto T,Nakamura K ,Suzuki Y,et a1.Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE.FEMS M icrobiol Co1.2000,32.127~ 141.
    [80] Nielsen A T,W Liu T,Filipe C,et a1.Identification of fl novel group of bacterial in sludge from fl deteriorated biological phosphorus removal reactor . App1 . Environ . M icroMo1.1999,65,1251~1258.
    [81] Van Elsas J D,Duarte G F,Rosado A S,et a1.Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the sea environment.d.M icrobio1.Method.1998,32, 133~154.
    [82] Curtis T P,and Craine N G.The comparison of the diversity of activated sludge plants. Water Sci. Techol.1998.37.71~78.
    [83] Eichner C A ,Erb R W ,Timmis K N,Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbialcommunity.App1.Environ.Microbio1.1999,65,102~109.
    [84] Murray A E, Hollibaugh J T,Orrego C. Phylogenetic composition of bacterioplankton from two California estuaries compared by denaturing gradient gel electrophoresis of 16S rDNA .Microbio1.1996.62.2676~2680.
    [85] Muyzer G, Waal E C , Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes encoding for 16S rRNA. Appl Environ Microbiol , 1993 , 59 : 695~700
    [86]宫曼丽,任南琪,邢德峰.DGGE/TGGE技术及其在微生物分子生态学中的应用.微生物学报,2004, 44 (6):845-848.
    [87] Riesner D , Henco K, Steger G. Temperature gradient gel electrophoresis : amethod for the analysis of confo rmational transitions and mutations in nucleic acids and proteins. Advances in Electrophoresis ,1991 , 4 : 169 ~250
    [88]柴丽红,彭谦,徐丽华等.DGGE技术在微生物生态学研究中的应用,生物技术,2003, 13 (4):51.
    [89]付琳琳,应用PCR-DGGE技术分析泡菜中乳酸菌的多样性.南昌大学硕士论文,2005.
    [90] Wagner D.I., Bennasar A, Vancanncyt M, Strompl C, Burmmer I, Eichner C. Microcosm enrichment of biphenyl-degrading microbial communities from soils and sediments. Appl Environ Microbiol, 1998, 64: 3014~3022.
    [91] Smit E, Leefling P, Gommans S, Van de Broek J, Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl Environ Microbiol, 2001, 67: 2284~2291.
    [92] Rowan A. K., Snape J. R., Fearnside D., Barer M. R., Curtis T. P. and Head M., Compositon and diversity of ammonia-oxidising bacterial comities in wastewater treatment reactors of different design treating identical wastewater, FEMS Microbiol Ecol, 2003, 43 (2): 195~206.
    [93] W ard DM, Santegoeds CM, Nord SC, et a1.Biodiversity within hot spring microbial mat communities molecular monitoring of enrichment cultures.Antonie Van Leeuwenhoek, 1998, 71:143~50.
    [94] Ferris M. J., Muyaer G, Ward D. M., Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined population inhabiting a host spring microbial mat community. Appl Environ Microbiol, 1996, 62: 340~346.
    [95]刘新春,吴成强,张昱等,PCR-DGGE法用于活性污泥系统中微生物群落结构变化的解析,生态学报.2005
    [96]裘湛等,PCR-DGGE技术在水解酸化一缺氯法处理采油废水的微生物研究中的应用,环境污染与防治.2006
    [97]傅以钢,王峰,何培松,夏四清,赵建夫, DGGE污泥堆肥工艺微生物种群结构分析,中国环境科学, 2005, 25 (suppl): 98-101.
    [98]魏源送,樊耀波,王敏健,王菊思.堆肥系统的通风系统控制方式.环境科学,2000 ,21(2) :101-104.
    [99] Design Manual Number 44 :Composting of municipal wastewater sludge. WBLDM44 ,US EPA 625P4 - 85P014 ,August 1985.
    [100]鲁如坤等.土壤-植物营养学原理和施肥,北京,化学工业出版社,1998
    [101] Wong M H. Phytotoxicity of refuses compost during the process of maturation[J] . Environmental Pollution ( Series A) , 1985 , (40) :127-144.
    [102] Jimenez E I , Garcia V P. Evaluation of city refuses compost maturity[J ] . Biological Wastes , 1989 , (27) :115-142.
    [103] Hiraishi A, Masamune, Kitamura H, Characterization of the bacterial population structure in an anaerobic-aerobic activated sludge system on the basis of respiratory quinone profiles, Appl Environ Microb, 1989, 55 (4): 897-901.
    [104]郁红艳,曾光明,胡天觉等.真菌降解木质素研究进展及其在好氧堆肥中的研究进展.中国生物工程杂志,23(10):57-61
    [105]黄红丽,曾光明,黄国和等堆肥中木质素降解微生物对腐殖质形成的作用中国生物工程杂志,24(8):29-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700