用户名: 密码: 验证码:
不同菌剂处理对猪粪堆肥效果的影响及PCR-DGGE研究堆肥微生物群落变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为研究接种菌剂对堆肥效果的影响及其在堆肥中的变化规律,以及对堆肥微生物群落变化的影响,并探讨动物微生态制剂用于堆肥的可行性,本研究从猪粪腐熟堆肥中筛选优势微生物并制作成复合菌剂,研究复合菌剂和微生态制剂对堆肥效果的影响,并采用PCR-DGGE技术研究堆肥微生物的群落变化,结果如下:
     1.复合菌剂和微生态制剂对堆肥效果的影响
     利用选择性平板培养和高温筛选从猪粪腐熟堆肥中分离微生物,从中筛选10株堆肥微生物,3株能够耐受80℃高温的芽孢杆菌,3株中温放线菌,3株霉菌和1株酵母菌,用以上菌株制备复合菌剂。将复合菌剂和微生态制剂分别按0.1%比例接种猪粪堆肥,共分成4组:T1是接种堆肥分离的复合菌剂组,T2是微生态菌剂组,T3是微生态菌剂组(接种菌剂浓度是T2的1倍),设不接种菌剂组为对照组。通过测定堆肥30d内温度、pH、水分、全碳、全氮和C/N,评价接种菌剂对堆肥效果的影响。结果表明:整个堆肥过程中,接种堆肥分离微生物和微生态菌剂组的温度显著高于对照组,最高温度也显著高于对照组,T1组最高温度达到73℃,T2为74℃,T3为72℃,对照组为71.5℃。接种菌剂组堆肥高温期持续时间显著比对照组长,堆肥温度在50℃以上维持的时间T2、T3最长,都是23天,T1为21天,而对照组C只有10天。各组水分变化趋势相似,随着堆肥的进行,堆肥水分逐渐下降。各组pH值变化趋势基本一致,堆肥初期呈逐渐上升趋势,堆肥后期则逐渐下降。堆肥结束时,接种菌剂组对碳素的利用率显著高于对照组,T1的全碳含量下降了11.88%,T2下降了5.75%,T3下降了12.96%,而对照组只下降了4.73%。堆肥结束时,T1组和T3组C/N下降最多。综合各项物理化学指标来看,接种堆肥分离微生物的处理组T1效果最好,接种动物微生态制剂的处理组T2和T3的效果也较好,表明动物微生态制剂用于堆肥是可行的。
     2.PCR-DGGE技术研究接种菌剂对堆肥微生物的群落变化的影响
     通过抽提不同时期堆肥细菌总DNA,PCR扩增细菌16S rDNA V3区和DGGE电泳,进行DGGE图谱聚类分析和条带多样性的分析,结果表明:堆肥过程中细菌种类数量随着堆肥的升温期、高温维持期和降温期的变化呈现出“升高-降低-升高”的变化趋势。各阶段出现不同的菌群组成,接种菌剂堆肥细菌群落变化较对照组慢。堆肥初始,菌群组成主要是土著微生物,各组相似性为93%-100%;与其他时期的堆肥
     DGGE条带组成相似度仅为50%。第0-3天,此阶段温度上升较快,细菌群落多样性开始下降,不耐受高温的菌群逐渐消失并伴随着优势菌群的出现。接种的堆肥分离微生物和动物微生态制剂在DGGE图谱中检测出来,其中芽孢杆菌与高温期的优势条带相对应。第9-21天,各组DGGE图谱的相似性为68%,对照组菌群多样性较接种菌剂组高,但接种菌剂组优势菌群明显,且维持时间较长,表明堆肥高温阶段菌群的变化与堆肥温度的变化有关,对照组温度低,更利于不耐受高温菌群的生长;接种菌剂增加了高温期优势菌群的数量。第21-30天为堆肥降温腐熟期,堆肥细菌组成逐渐趋于稳定,各组DGGE图谱相似性为93%-100%,细菌菌落多样性高于堆肥高温期。此阶段接种菌剂组菌群多样性高于对照组,表明在堆肥后期,接种菌剂对堆肥菌群变化有影响,主要是增加了菌群多样性,并且通过前期对堆肥基质的分解,有利于后期的菌群生长。
     本研究结果表明,接种菌剂能显著提高堆肥温度,延长高温持续期,加速堆肥基质的分解。通过接种菌剂改变了堆肥微生物的菌落变化,增加了优势菌群的数量和堆肥腐熟期微生物群落的多样性。
To research on effects of defferent inoculants used in pig manure,changes of bacterias in compost,and to approach the feasibility of animal microecological bacteria agents used in composting.In this experiment,ascendant microbials were screened from decomposed pig manure and were made into compound bacteria agents.Effects of inoculating different microorganism agents on composting of swine manure and research on microbial community changes by PCR-DGGE were done.
     Screening from decomposed pig manure compost by using selective plate and high temperature,10 composting microbes were used to making inoculants,3 Bacillus strains which could endure 80℃high temperature and a bacilli,3 Actinomycosis,3 mould and 1 yeast fungus.Complex microorganism agents were made with these metioned above.
     The agents were inoculated in swine manure by 0.1%respectively,divided into 4 groups:T1 was group of isolated bacterias of compost,T2 was microecological bacteria group,T3 was microecological bacteria too(add a concentration of bacteria one times of the T2),a group without adding bacteria as the control group.The effects of compost was evaluated by determination of index in 30d of composting:temperature,pH,moisture,the entire carbon,nitrogen and C/N.The results showed that:The maximum temperature of T1、T2 and T3 were higher than control group,and sustained period of high-temperature were longer than control group.Time of compost temperature which was above 50℃,T2 and T3 were 23 days which were the longest,T1 for 21 days,while the control group C only 10 days.Water changes of this fout groups were similar trend,with the compost, compost moisture gradually decline,pH value trends were consistent with each group, early were gradually rising trend and later gradually decline.Carbon utilization of T1、T2 and T3 were higher than the control group,at the end of composting,T1 carbon content dropped by 11.88%,T2 dropped by 5.75%,T3 dropped by 12.96%,while the control group only dropped by 4.73%.At the end of composting,C/N of T1 and T3 Group declined the most.When the physical and chemical indicators were integrated considered,the treatment group(T1)which microbial from compost were added was the best,followed by the groups treated addition of animal microecological bacterias(T2 and T3).T2 was better than T3,it showed that how much the addition quantity affected composting effects,but taking into account the actual cost of production,0.1%of bacteria content was feasible.
     DNA of bacterias in different periods of compost was extracted,and 16 S rDNA V3 District of bacterias were got by PCR amplification.DGGE patterns showed that:the composting process in the quantities and types of bacteria change in the trend was "higher-lower-higher." Initial composting,the flora of composition of each groups were highly similar,93%-100%;compared to other periods of composting,the similarity was only 50%,the flora changes in the control group was faster than inoculated bacterias Groups.In 3-9 days,composition of flora of the control group and the other three groups were very different,the similarity of PCR-DGGE DNA profiles was 68%.The bacteria community of composting changed greatly,when composting was in a high temperature period,dominant flora and flora which tolerate high temperatures appeared in the stage, and some flora which can not tolerate the high temperature would disappear or weakened. In 21-30 days,it was cooling-maturity period of composting,composition of bacteria in compost gradually became stable and the similarity was 93%-100%,the diversity was higher than high-temperature period,the control group with the diversity of the group emerged early than inoculated bacterias groups.As composting experienced warming period,the maintenance of high temperature,cooling down period and the maturity period, the various stages of composting environment adapted to different microbial survival and growth.Initial composting the variety of bacterias were mainly indigenous bacterias which were larger quantities and types,and the presence of pathogens,such as Treponema brennaborense and Escherichia coli which could cause pig dysentery.In high temperature phase,the bands reduced and advantage zone emerged,which was mainly Bacillus sp.The pathogens bands which could detected in the early composting gradually weakened or disappeared.Bands increased in cooling down period also.Microorganisms and bacterias from compost and animal microecological agents were detected in DGGE profiles. Bacillus was correspondence with the predominant band appeared in high-temperature phase,and the existence of the band was longer than the control goup.
     The results showed that inculated bacterias could adapt to composting environment, and became the predominant flora.They could made composting temperature increased significantly and prolonged the duration of high temperature and reduce the smelly odor of compost,and accelerated the decomposition.Animal microecological agents used in composting were feasible.
引文
[1]金淮,常志州,朱述钧.畜禽粪便中人畜共患病原菌传播的公众健康风险[J].江苏农业科学,2005,3:103-105.
    [2]Strauch D,Ballarini G.Hygienic aspects of the production and agricultural use of animal wastes[J].Journal of Veterinary Medical Association,1994,41:176-182.
    [3]路冶.化畜禽养殖业粪污处理技术措施[J].辽宁畜牧兽医.2004,4:15-16.
    [4]冯宏,李华兴.菌剂对堆肥的作用及其应用[J].生态环境.2004,13(3):439-441.
    [5]Hassen A,Belguith K,Jedidi N.Microbial characterization during compost of municipal solid waste[J].Bioresouce Technology.2001,80:217-225.
    [6]Ichida J M,Krizova L,Lefevre C A,et al.Bacterial inoculum enhances keratin degradation and biofilm formation in poultry compost[J].Journal of Microbiological Methods,2001,47(2):199-208.
    [7]Straatsma G,Olijnsma T,Gerrits J,et al.Inoculation of Scytalidium thermophilum in Button Mushroom Compost and Its Effect on Yield[J].Applied and Environmental Microbiology,1994,60:3049-3054.
    [8]Sung M H,Kim H,Bae J W,et al.Geobacillus toebii sp.nov.,a novel thermophilic bacterium isolated from hay compost[J].International Journal of Systematic and Evolutionary Microbiology,2002,52:2251-2255.
    [9]崔宗均,宫小燕,李国学.变性梯度凝胶电泳在堆肥微生物研究中的应用[J].微生物学通报,2004,31(5):116-120.
    [10]丁文川,李宏,郝以琼,等.污泥好氧堆肥主要微生物类群及其生态规律[J].重庆大学学报(自然科学版),2002,25(6):113-116.
    [11]冯明谦,刘德明.滚筒式高温堆肥中微生物种类数量的研究[J].中国环境科学,1999,19(6):490-492.
    [12]耿冬梅,宣世伟,王鹏.高温好氧菌群用于接种垃圾堆肥的实验研究[J].上海环境科学.2003,22(10):45-51.
    [13]李秀艳,吴星五,高廷耀,等.接种高温菌剂的生活垃圾好氧堆肥处理[J].同济大学学报(自然科学版),2004,32(3):65-68.
    [14]刘克锋,刘悦秋,雷增普,等.几种微生物应用于猪粪堆肥中的研究[J].北京农学院学报,2001,16(2):37-41.
    [15]刘婷,陈朱蕾,周敬宣.外源接种粪便好氧堆肥的微生物相变化研究[J].华中科技大学学报,2002,19(2):57-59.
    [16]刘玉珠,陈朱蕾,江娟,等.粪便堆肥化优势菌株初步筛选[J].江苏环境科技,2003,16:3-8.
    [17]倪永珍,李维炯.EM技术应用研究[M].北京:中国农业大学出版社,1998,24-32.
    [18]牛俊玲,崔宗均,李国学,等.高温堆肥中复合菌系对木质纤维素和林丹降解效果的研究[J].农业环境科学学报,2005,24(2):375-379.
    [19]朴仁哲,姜成,金玉姬.微生物菌群对鸡粪堆肥微生物相变化的影响[J].微生物学杂志,2004,24(6):643-646.
    [20]史玉英,沈其荣,娄无忌,等.纤维素分解菌群的分离和筛选[J]_南京农业大学学报,1996,19(3):59-62.
    [21]席北斗,刘鸿亮,黄国,等.复合微生物菌剂强化堆肥技术研究[J].环境污染与防治,2003,25(5):260-264.
    [22]席北斗,刘鸿亮,孟伟,等.高效复合微生物菌群在垃圾堆肥中的应用[J].环境科学,2001,22(5):122-125.
    [23]席北斗,刘鸿亮,孟伟,等.垃圾堆肥高效复合微生物菌剂的制备[J].环境科学研究,2004,16(2):59-64
    [24]席北斗,孟伟,刘鸿亮,等.三阶段控温堆肥过程中接种复合微生物菌群的变化规律研究[J].环境科学,2003,24(2):153-157.
    [25]殷培杰,孙军德,石星群,等.微生物菌剂在鸡粪有机肥料堆制发酵中的应用[J].微生物学杂志,2004,24(6):43-49.
    [26]赵京音,姚政.微生物制剂促进鸡粪堆肥腐熟和臭味控制的研究[J].上海农学院学报,1995,13(3):193-197.
    [27]周辉宇,陆文静,王洪涛,等.高效纤维素分解菌生物强化技术在工厂化好氧堆肥中的应用初探[J].农业环境科学学报,2005,24(1):182-186.
    [28]顾希贤,许月蓉.垃圾堆肥微生物接种实验[J].应用与环境生物学报,1995,1(3):274-278.
    [29]沈根祥,袁大伟,凌破芬,等.Hsp菌剂在牛粪堆肥中的试验应用[J].农业环境保护,1999,18(2):62-64.
    [30]杨虹,李道棠,朱章玉.高温嗜粪菌的选育和猪粪发酵研究[J].上海环境科学,1999,18(4):170-172.
    [31]柴丽红,彭谦,徐丽华,等.DGGE技术在微生物生态学研究中的应用[J].发酵工业,2002,28(3):20-24.
    [32]宫曼丽,任南琪,邢德峰.DGGE/TGGE技术及其在微生物分子生态学中的应用[J].微生物学报,2004,44(6):845-848.
    [33]Ishii K,Fukui M,Takii S.Microbial succession during a composting process evaluated by denaturing gradient gel electrophoresis analysis[J].Journal of Applied Microbiology,2000,89:768-777.
    [34]Takaku H,Kodaira S,Kimoto A,et al.Microbial Communities in the Garbage Composting with Rice Hull as an Amendment Revealed by Culture-Dependent and -Independent Approaches[J].Journal of Bioscience and Bioengineering,2006,101(1):42-50.
    [35]Wakase S,Sasaki H,Itoh K,et al.Investigation of the microbial community in a microbiological additive used in a manure composting process[J].Bioresour Technol.2007:doi:10.1016/j.biortech.2007.04.040
    [36]Ying D,Weixiang W,Zhiying H,et al.Correlation of reactor performance and bacterial community composition during the removal of trimethylamine in three-stage biofilters[J].Biochemical Engineering Journal,2008;38(2):248-258.
    [37]Chung Y-C.Evaluation of gas removal and bacterial community diversity in a biofilter developed to treat composting exhaust gases[J].Journal of Hazardous Materials,2007,144:377-385.
    [38]李影林.培养基手册[M].北京(第一版):吉林科学技术出版社,1991:53-56.
    [39]南京农业大学.士壤农化分析[M].北京:农业出版社,1996:53-56.
    [40]Walter J,Hertel C,Tannock G W,et al.Detection of Lactobacillus,Pediococcus,Leuconostoc,and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis[J].Appl Environ Microbiol.2001,67:2578-2585.
    [41]Van O N,Li D,Jan V.Denaturing gradient gel electrophoresis(DGGE)increases resolution and information of Alu-directed inter-repeat PCR[J].Molecular Cellular Probes,1997,11:95-101.
    [42]J.萨姆布鲁克,拉塞尔D W.分子克隆实验指南[M].北京:科学出版社,2002:87-92.
    [43]刘益仁,刘光荣,李祖章,等.微生物发酵菌剂对猪粪堆肥腐熟的影响[J].江西农业学报.2006,18(5):36-38.
    [44]黄国锋,钟流举,张振钿,等.猪粪堆肥化处理过程中的氮素转变及腐熟度研究[J].应用生态学报,2002,13(11):1459-1462.
    [45]李清伟,吕炳南,李慧莉,等.猪粪好氧堆肥研究的进展[J].农机化研究.2007,1(1):63-67.
    [46]刘婷.粪便堆肥菌的分离筛选及接种处理效果研究[J].华中科技大学学报,2003,8(7):75-78.
    [47]刘克锋,刘悦秋,雷增谱,等.提高猪粪和城市垃圾堆肥质量的菌种选择[J].农村生态环境,2003,19(2):47-50.
    [48]Fang M,Wong J W C.Changes in thermophilic bacteria population and diversity during composting of coal fly ash and sewage sludge[J].Water,Air and Soil Pollution.2000124(3/4):333-343.
    [49]Carpenter B L,Kennedy A C,Reganold J P.Use of phospholipid fatty acids and carbon source utilization patterns to track microbial community succession in developing compost[J].Applied and Environmental Microbiology,1998,64(10):4062-4064.
    [50]王卫平,薛智勇,朱凤香,等.不同微生物菌剂处理对鸡粪堆肥发酵的影响[J].浙江农业学报,2005,17(5):292-295.
    [51]石铁,盛力伟,闫景凤.低温下菌剂对堆肥温度与微生物的影响[J].农机化研究,2008,1:120-122.
    [52]孙晓华,罗安程,仇丹.微生物接种对猪粪堆肥发酵过程的影响[J].植物营养与肥料学报,2004,10(5):557-559.
    [53]Hirai M F,Chanyasak V,Kubota H.A standard measurement for Maturity[J].Biocycle,1983:54-56.
    [54]胡菊,莉秦,吕振宇,等.VT菌剂接种堆肥的作用效果及生物效应[J].农业环境科学学报.2006,25:604-607.
    [55]Bolta S V,Mihelic R,Lobnik F,et al.Microbial community,structure during composting with and without mass inocula[J].Compost Science and Utilization,2003,11(1):6-15.
    [56]Klamer M,Baath E.Microbial community dynamics during composting of straw material studied using phospho-lipid fatty acid analysis[J].FEMS Microbiology Ecology,1998,27:9-20.
    [57]Tiquia S,Wan J H C,Tam N F Y.Microbial population dynamics and enzyme activities during composting[J].Compost Science and Utilization.2002,10(2):150-161.
    [58]徐大勇,黄为一.人工接种堆肥和自然堆肥微生物区系与分子多态性的变化[J].生态与农村环境学报,2006,22(1):29-33.
    [59]王伟东,王小芬,朴哲,等.堆肥化过程中微生物群落的动态[J].环境科学,2007,28(11):2591-2597.
    [60]何明清,程安春.四川科学技术出版社.2004:85-87
    [61]李健雄,邝哲师,田兴山.动物微生态制剂的研究与应用进展[J].广东畜牧兽医科技,2004,4(29):15-17.
    [62]唐晓丽,倪学勤,邝声耀,等.动物微生态营养的特性及应用[J].四川畜牧兽医,2007,4:29-30.
    [63]易力,倪学勤,潘康成,等.益生菌在养猪生产中的应用[J].畜禽业,2004,10:58-59.
    [64]易力,倪学勤,潘康成,等.不同微生态制剂对肉仔鸡生产性能的影晌[J].中国兽医杂志,2004.40(10):13-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700