用户名: 密码: 验证码:
宫内多环芳烃暴露对胎儿全基因组基因表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     研究母婴多环芳烃(PAHs)的负荷水平及各种多环芳烃的致癌风险贡献率;研究孕期宫内多环芳烃暴露对胎儿全基因组基因表达的影响;分析宫内PAHs暴露水平与癌症相关基因mRNA表达的关系,并分析各种PAHs对基因表达改变的贡献大小,为探讨PAHs的致癌机制提供参考依据,同时也为探讨孕期健康促进和疾病防治及优先控制环境污染物的筛选提供参考依据。
     方法:
     1.应用现场流行病学调查方法,对所选待产孕妇进行流行病学调查,并收集孕
     妇外周静脉血和新生儿脐带血;
     2.采用高效液相色谱-荧光检测法测定孕妇静脉血和新生儿脐带血血清Pyr、BaA、BbF、BkF、BaP、DBahA和BghiP 7种PAHs的浓度,并对各种PAHs的致癌风险的贡献率进行评价;
     3.采用Affymetrix和Illumina全基因组基因表达谱芯片检测不同PAHs水平下脐带血全基因组基因表达的改变,并采用Real-time PCR进行验证;
     4.采用单因素分析,分析Py、BaA、BbF、BkF、BaP、DBahA和BghiP 7种PAHs及其它可能的影响因素对基因表达改变的影响,采用多元逐步回归分析,筛选影响基因表达改变的主要影响因素;
     5采用典型相关分析,分析PAHs和基因表达两组指标间的相互关系及各种PAHs对基因表达影响的贡献大小。
     结果:
     第一部分母婴多环芳烃体内负荷水平及各种多环芳烃致癌风险贡献率评价
     1、母血和脐带血中Pyr的检出率最高,分别为97.62%和96.77%,其余6种PAHs的检出率均在70%以上。脐带血中Pyr、BaA、BaP和DBahA的浓度均高于母血浓度(P<0.05),而BbF的浓度低于母血浓度(P<0.05);
     2、在母血和脐血中,BaP、BbF和DBahA的致癌毒性贡献率较大,分别为36.6%和38.6%、28.0%和19.0%、21.1%和25.9%。
     第二部分宫内PAHs暴露引起胎儿全基因组基因表达的改变
     1、Illumina芯片得到两组间差异表达的探针共660个,表达上调的差异探针342个,表达下调的差异探针318个;
     2、Affymetrix芯片得到5组间的差异表达探针共1847个,表达上调的差异探针998个,表达下调的基因849个;
     3、差异表达基因所参与的主要的显著性功能,包括DNA损伤修复、细胞增殖、细胞分化、凋亡调控、信号转导调控、胚胎发育、胎盘发育、神经系统发育、四肢头骨等器官形成、免疫功能及对环状有机物的反应等;
     4、差异表达基因所参与的显著性信号转导通路主要包括嗅觉味觉转导通路(Olfactory transduction、Taste transduction)、MAPK信号转导通路(Mitogen-activated protein kinase signaling pathway)、代谢信号转导通路(Metabolic pathways)、黑色素瘤通路(Melanoma)、甲状腺癌通路(Thyroid cancer)、癌症信号通路(Pathways in cancer)、心肌收缩通路(Cardiac muscle contraction)、胰岛素信号通路(Insulin signaling pathway)、神经信号传递通路(Neuroactive ligand-receptor interaction)、细胞黏附分子通路(Cell adhesion molecules (CAMs))、叶酸合成(Folate biosynthesis)、不饱和脂肪酸合成(Biosynthesis of unsaturated fatty acids)等,说明宫内BaP暴露对胎儿的影响可能与肿瘤、糖尿病、心脏病、神经系统疾病及嗅味觉发育等相关;
     5、在整个相互作用网络中,pathway in cancer是主要的上游pathway,而MAPK信号通路(MAPK signaling pathway)是主要的最终效应pathway。
     第三部分宫内PAHs暴露与核心基因mRNA表达的关系
     1、经对性别、母亲年龄、新生儿出生孕周、孕期母亲被动吸烟、常吃煎炸食品、孕期补充叶酸、母亲文化程度对基因表达影响的单因素分析,未发现上述因素对基因表达的影响具有统计学意义;
     2、经对血清Pyr、BaA、BbF、BkF、BaP、DBahA、BghiP对基因表达影响的单因素分析,发现SNRPN基因的表达量随着血清Pyr、BaA、BbF、BkF、DBahA和BghiP浓度的增加而增加,表现为表达上调;RPL27A基因的表达量与血清Pyr、BaA、BbF、BkF、BaP和BghiP浓度呈显著正相关,BMP1基因的表达量与血清BbF浓度呈显著正相关,NUDT2基因的表达量与血清BaA、BbF、BaP和DBahA浓度呈显著正相关,RAD54B基因的表达量与血清BaP和BghiP浓度呈显著正相关,即随着血清PAHs水平的增加均表现为表达上调;而E2F1基因与血清BbF、BaP、DBahA和BghiP的浓度呈显著负相关,即随着血清PAHs水平的增加而表现为表达下调。
     3、多元逐步回归分析的结果发现,血清BbF是SNRPN mRNA表达的主要影响因素,对SNRPN mRNA的表达具有显著正向影响作用(p=0.033);血清BkF对RPL27A mRNA表达具有正向影响作用(p=0.001),母亲文化程度对之则呈负向影响作用(p=0.014),血清BkF的标准回归系数b’的绝对值(0.444)大于母亲文化程度(b’=-0.314),表明BkF较之母亲文化程度对RPL27A mRNA表达的影响更大;BMP1 mRNA表达受血清Pyr的正向影响(p=0.043); NUDT2 mRNA表达受血清BaP的正向影响较明显(p=0.035); E2F1 mRNA表达主要受血清BaP的负向影响(p=0.039); RAD54B mRNA表达主要受血清BaP的正向影响(p=0.004)和血清BkF的负向影响(p=0.029),血清BaP的标准回归系数的绝对值(0.428)大于血清BkF(-0.316),表明血清BaP对RAD54B mRNA表达的影响可能略大于BkF。
     第四部分各种PAHs对基因mRNA表达影响的作用大小
     1、综合代表6个基因表达水平的典型相关变量W1与BbF之间的相关系数最大(05352),其次是BkF(0.4456)和BaP(0.3867),说明BbF与本研究所选6个癌症相关基因的表达关系最密切,对6个基因mRNA表达的影响最大,其次是BkF和BaP;
     2、综合代表7种PAHs水平的典型相关变量V1与RPL27A的mRNA表达量之间的相关系数最大(0.4501),其次是SNRPN和NUDT2的表达量,说明受7种PAHs水平影响最大的是RPL27A的表达,其次是SNRPN和NUDT2的表达;
     结论:
     1、多种致癌性]PAHs可通过胎盘屏障进入胎儿体内,其中BaP、BbF和DBahA的致癌风险贡献最大;
     2、宫内PAHs暴露可引起胎儿多种癌症相关基因mRNA表达的改变,可能会增加癌症发生的风险;
     3、SNRPN、RPL27A、BMP1、NUDT2和E2F1可作为宫内PAHs暴露健康影响的候选基因;
     4、不同PAHs主要影响的基因不尽相同,说明各种PAHs的作用机制可能有所不同;
     5、BbF对6个癌症相关基因整体表达水平影响的贡献最大,其次是BkF和BaP;
     6、用基因表达的改变来区分各种PAHs致癌毒性的大小和贡献是可行的。
Objective:
     To investigate the body burdens of polycyclic aromatic hydrocarbons (PAHs) of pregnant women and fetus and the contribution of each polycyclic aromatic hydrocarbon to the total carcinogenesis of 7 PAHs, to research the genome-wide expression change of fetus caused by PAHs exposure during gestation period, analyze the correlation between PAHs levels and cancer-related gene expression, and evaluate the contribution of each kind of PAHs to gene expression, so that provide evidence for exploring the carcinogenesis mechanism of PAHs and provide reference for selection of environmental priority control pollutants and for maternal gestation healthcare and diseases prevention for the next generation.
     Methods:
     1. Questionnaire investigation on randomly selected and voluntarily participating pregnant women was conducted by face to face and maternal venous blood and cord blood were collected.
     2. Total 7 kinds of PAHs, which were Pyr, BaA, BbF, BkF, BaP, DBahA and BghiP, were detected by high-performance liquid chromatography (HPLC) after maternal blood and cord blood were collected from March to July in 2010. The cord serum PAHs levels were compared with the maternal serum levels and the contribution rate of each PAH to the total carcinogenesis of 7 PAHs in both maternal and cord blood was analyzed.
     3. The whole genome mRNA expression of different PAHs exposure groups were tested through both Affymetrix and Illumina genome-wide mRNA expression array and Real-time PCR validation was carried.
     4. Simple correlation analysis was used to research the correlation of gene expression with levels of Pyr, BaA, BbF, BkF, BaP, DBahA, BghiP and some other factors such as newborn gender, gestation age, maternal passive smoking, foliate acid supplement, and multivariate linear stepwise regression was also conducted to select the key impact factors of each cancer-related gene expression change.
     5. Canonical correlation analysis was used to analyze not only the correlation of two groups of PAHs and six genes as a whole, also the relationship of each PAHs or gene expression with the whole group and the opposite group, so that the contribution of every PAHs to the whole six gene expression was estimated.
     Results:
     ⅠBody burden of PAHs and carcinogenesis contribution of each PAH of pregnant women and fetus
     1. The detection rate of Pyr was the highest which was 97.62% and 96.77% in maternal and cord blood, respectively. The detection rates of the other 6 PAHs were higher than 70% in both maternal and cord serum. The concentrations of Pyr, BaA, BaP and DBahA in cord serum were statistically higher than those in maternal serum (p<0.05), while the concentration of BbF was statistically lower than that in maternal serum (p<0.05).
     2. The contribution of BaP, BbF and DBahA were dominant in the total carcinogenesis of 7 PAHs, which were 36.6% and 38.6%,28.0% and 19.0%, 21.1% and 25.9% in maternal and cord serum, respectively.
     ⅡThe whole genome mRNA expression change of fetus induced by gestation PAHs exposure
     1. According to the results of Illumina array, there're 660 gene probes had different expression between two groups with high and low cord sreum PAHs levels, and 342 probes showed upregulated expression and 318 probes showed downregulated expression.
     2. According to the results of Affymetrix array, there're 1847 gene probes had different expression among five groups with different cord sreum PAHs levels, and 998 probes showed upregulated expression and 849 probes showed downregulated expression.
     3. The main GOs with statistic significance that different expression genes attend included DNA damage repair, cell proliferation and differentiation, apoptosis regulation, regulation of signaling transduction, embryonic developmental growth, embryonic placenta development, regulation of neurogenesis, eye and embryonic cranial skeleton morphogenesis, regulation of T cell receptor signaling pathway, response to organic cyclic substance, and so on.
     4. The main pathways with statistic significance that different expression genes attend included olfactory transduction, taste transduction, MAPK signaling pathway, metabolic pathways, melanoma, thyroid cancer, pathways in cancer, cardiac muscle contraction, Insulin signaling pathway, neuroactive ligand-receptor interaction, cell adhesion molecules (CAMs), folate biosynthesis, biosynthesis of unsaturated fatty acids, and so on. It indicated that the effects of gestation PAHs exposure on fetus may involved in cancer, diabetes, cardiovasculare diseases, neurogenic diseases and development of taste and olfaction, etc.
     5. In the whole pathway-net made according to the interaction of pathways noted by the KEGG, the pathway in cancer standed in the main upstream position with 6 downstream pathways, and MAPK signaling pathway were the key final-effects pathway.
     ⅢRelationship between gestation PAHs exposure and mRNA expression of key genes
     1. According to the results of simple correlation analysis between gene expression and infants gender, maternal passive smoking, fried food taken and foliate acid supplement during pregnant period, maternal education, mother age and gestation age, no significant correlation was found.
     2. The simple correlation analysis between six genes expression and cord serum concentrations of Pyr, BaA, BbF, BkF, BaP, DBahA, BghiP showed that the mRNA expression of SNRPN increased with the increasing of cord serum concentrations of Pyr, BaA, BbF, BkF, DBahA and BghiP, that meant it showed upregulated expression with the PAHs exposure increasing; the mRNA expression of RPL27A was positively correlated with the concentrations of Pyr, BaA, BbF, BkF, BaP and BghiP; the mRNA expression of BMP1 was positively correlated with the concentration of BbF; the mRNA expression of NUDT2 was positively correlated with the concentration of BaA, BbF, BaP and DBahA; the mRNA expression of RAD54B was positively correlated with the concentration of BaP and BghiP; while the mRNA expression of E2F1 was positively correlated with the concentration of BbF, BaP, DBahA and BghiP, that was meant it showed down-regulated expression with the increasing of gestation PAHs exposure.
     3. The result of multivariate linear stepwise regression showed that cord serum BbF was the key factor that affected the mRNA expression of SNRPN and it significantly positively affected the mRNA expression of SNRPN (p=0.033); the mRNA expression of RPL27A was mainly positively affected by the level of cord serum BkF (p=0.001) and negatively affected by maternal education level (p=0.014), the effect of BkF was stronger than that of maternal education because of the absolute value of standard regression coefficient from BkF (b'=0.444) was bigger than that from maternal education (b'=-0.314); the mRNA expression of BMP1 was mainly positively affected by the level of cord serum Pyr (p=0.043); the mRNA expression of NUDT2 was mainly positively affected by the level of cord serum BaP (p=0.035); the mRNA expression of E2F1 was mainly negtively affected by the level of cord serum BaP (p=0.039); the mRNA expression of RAD54B was mainly positively affected by the level of cord serum BaP (p=0.004) and negtively affected by the level of cord serum BkF (p=0.029), the absolute value of regression coefficient from BaP (0.428) was bigger than that from BkF (-0.316), which meant that the effects of BaP on RAD54B mRNA expression was likely stronger than that of BkF.
     IV Comparison of the impacts on mRNA expression of every kinds of PAHs
     1 The correlation coefficient of the Canonical correlation variant W1 (which reflected the status of 6 genes expression) with BbF (0.5352) was the biggest one and the second and third was BkF (0.4456) and BaP (0.3867), respectively, which meant that the impact of BbF on the mRNA expression of six cancer-related genes ranked the first, then was that of BkF and BaP.
     2 The correlation coefficient of the Canonical correlation variant V1 (which reflected the level of 7 kinds of PAHs) with the mRNA expression of RPL27A was the biggest one, and the second and third was SNRPN and NUDT2, which indicated that the impacts of BbF on the mRNA expression of six cancer-related genes ranked the first, then was that of SNRPN and NUDT2.
     Conclusions:
     1. Several kinds of carcinogenic PAHs can penetrate the placenta and get into the body of fetus. The contributions to carcinogenesis risk of BaP, BbF and DBahA are bigger than the other kinds of PAHs detected.
     2. Gestation PAHs exposure can be involved in the mRNA expression change of many cancer-related genes, and increase the risk of tumor formation.
     3. SNRPN, RPL27A, BMP1, NUDT2 and E2F1 can be regarded as the candidate genes of the PAHs'target gene.
     4. Different kind of PAHs has effects on mRNA expression of different genes, which means they may have different mechanisms of adverse effects.
     5. BbF showed the most contribution on the mRNA expression change of the six cancer-related genes, and then BkF and BaP.
     6. It's feasible that discriminating the strengthen and contribution of carcinogenesis of every PAHs by the change of gene expression caused by each kinds of PAHs.
引文
1. Huxley RR, Shiell AW, Law CM. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure:a systematic review of the literature[J]. J Hypertension,2000,18:815-831.
    2. Newsome CA, Sheill AW, Fall CHD, et al. Is birth weight related to later glucose and insulin metabolism?-a systematic review [J]. Diabet Med,2003,20:339-348.
    3. Desai M, Crowther NJ, Lucas A, et al. Organ selective growth in the offspring of protein restricted mothers [J]. Br J Nutr,1996,76:591-603.
    4. Desai M, Crowther NJ, Lucas A, et al. Organ selective growth in the offspring of protein restricted mothers [J]. Br J Nutr,1996,76:591-603
    5. Lane RH, Kelley DE, Gruetzmacher EM, et al. Uteroplacental insufficiency alters hepatic fatty acid-metabolizting enzymes in juvenile and adult rats [J]. Am J Physiol Regulatory Integrative Comp Physiol,2001,280:R183-R190.
    6.董少霞,丁昌明,张美云,等.胎儿宫内多环芳烃暴露水平及其母婴暴露关系研究[J].卫生研究,2009,38(3):339-342.
    7. Tsang HL, Wu SC, Clement K.M. Leung, et al. Body burden of POPs of Hong Kong residents, based on human milk, maternal and cord serum [J]. Environ Int, 2010, doi:10.1016/j.envint.2010.08.010
    8. Madhavan ND, Naidu K A. Polycyclic aromatic hydrocarbons in placenta, maternal blood, umbilical cord blood and milk of Indian women [J]. Hum Exp Toxicol,1995,14:503-506.
    9. Hatch MC, Warburton D, Santalla RM. Polycyclic aromatic hydrocarbon-DNA adducts in spontaneously aborted fetal tissue [J]. Carcinogenesis,1990, 11:1673-1675.
    10. Perera FP, Tang D, Whyatt RM, ET AL. DNA damage from polycyclic aromatic hydrocarbons measured by benzo[a]pyrene DNA adducts in mothers and newborns from Northern Manhattan, The world Trade Center Area, Poland, and China [J]. Cancer Epidemiol Biomarkers Prev,2005,14:709-714.
    11. Perera F P, Rauh V, Tsai W Y, et al. Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic pollution [J]. Environ Health Perspect,2003,111:201-205.
    12. Choi H, Rauh V, Garfinkel R, et al. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and risk of intrauterine growth restriction [J]. Environ Health Perspect,2008,116:658-665.
    13. Dejmek J, Solansky I, Benes I, et al. The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome [J]. Environ Health Perspect,2000,108:1159-1164.
    14. Hin L. Tsang, Shenchun Wu, Clement K.M. Leung, et al. Body burden of POPs of Hong Kong residents, based on human milk, maternal and cord serum [J]. Environ Int.2010, doi:10.1016/j.envint,2010.08.010.
    15. Shuang Wang, Stephen Chanock, Deliang Tang, et al. Assessment of interactions between PAH exposure and genetic polymorphisms on PAH-DNA adducts in African American, Dominican and Caucasian mothers and newborns [J]. Cancer Epidemiol Biomarkers Prev,2008,17:405-413.
    16. Bocskay KA, Tang DL, Orjuela, et al. Chromosomal aberrations in cord blood are associated with prenatal exposure to carcinogenic polycyclic aromatic hydrocarbons [J]. Cancer Epidemiology,2005,14:506-511.
    17. Wen SW, Feng KF, Huang L, et al. Fetal and neonatal mortality among twin gestations in a Canadian population:the effect of intrapair birthweight discordance [J]. Am J Perinatol,2005,22(5):279-286.
    18. Barker DJ. Fetal programming of coronary heart disease [J]. Trends Endocrinol Metab,2002,13(9):364-368.
    19. Ahlgren M, Melbye M, Wohlfahrt J, et al. Growth patters and the risk of breast cancer in women [J]. N Engl J Med,2004,351:1619-1626.
    20. Hertz-picciotto, Herr CE, Yap PS, et al. Air pollution and lymphocyte phenotype proportions in cord blood [J]. Environmental Health Perspectives,2005,13: 1391-1398.
    21. Jedrychowaki W, Galas A, Pac A, et al. Prenatal ambient air exposure to polycyclic aromatic hydrocarbons and the occurrence of respiratory symptoms over the first year of life [J]. Eur J Epidemiol,2005,20(9):775-782.
    22. Perera FP, Hemminki K, Grzybowska EG, et al. Molecular and genetic damage in humans from environmental pollution in Poland [J]. Nature,1992,360:256-258.
    23. Perera FP, Jedrychowski W, Rauh V. Molecular epidemiological research on the effects of environmental pollutants on the fetus[J]. Envion Health Perspect,1999, 107:451-460.
    24. Sofia Pavanello, Valentina Bollati, Angela Cecilia Pesatori, et al. Global and gene-specific promoter methylation changes are related to anti-B[a]PDE-DNA adduct levels and influence micronuclei levels in polycyclic aromatic hydrocarbon-exposed individuals [J]. Int. J. Cancer,2009,125:1692-1697.
    25.周兰兰,谭爱军,蒋义国,等.Ras基因家族在二羟环氧苯并芘恶性转化细胞中的表达研究[C].全国环境卫生学术研讨会.
    26.傅娟,蒋义国,邹云峰,等.反式二羟环氧苯并芘对人支气管上皮细胞中HER2/neu基因表达的影响[J].卫生研究,2007,36(6):657-659.
    27.冯苏妹,邹晓妮,魏莲,等BPDE诱发16HBE恶性转化过程中eIF3 p36的表达变化[J].中国热带医学,2008,8(9):1492-1494.
    28.卢翔云,李红娟,余应年.高通量实时荧光定量RT-PCR方法验证FL细胞对苯并(a)芘7,8-二氢二醇9,10-环氧化物处理的差异表达基因[J].中国药理学与毒理学杂志,2007,21(1):64-71.
    1. Bostrom C E, Gerdep, Hanberg A, et al. Cancer risk assessment, indicators and guidelines for polycyclic aromatic hydrocarbons in the ambient air [J]. Environ Health Perspect,2002,110:451-488.
    2. Menzie C A, Potocki B B, Santodonato J. Exposure to carcinogenic PAHs in the environment [J]. Environ Sci Technol,1992,7:1278-1284.
    3.李新荣,赵同科,于艳新,等.北京地区人群对多环芳烃的暴露及健康风险评价[J].农业环境科学学报,2009,28(8):1758-1765.
    4. Perera F P, Rauh V, Tsai W Y, et al. Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic pollution [J]. Environ Health Perspect,2003,111:201-205.
    5. Choi H, Rauh V, Garfinkel R, et al. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and risk of intrauterine growth restriction [J]. Environ Health Perspect,2008,116:658-665.
    6. Dejmek J, Solansky I, Benes I, et al. The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome [J]. Environ Health Perspect,2000,108:1159-1164.
    7. Hin L. Tsang, Shenchun Wu, Clement K.M. Leung, et al. Body burden of POPs of Hong Kong residents, based on human milk, maternal and cord serum [J]. Environ Int.2010, doi:10.1016/j.envint,2010.08.010.
    8. Shuang Wang, Stephen Chanock, Deliang Tang, et al. Assessment of interactions between PAH exposure and genetic polymorphisms on PAH-DNA adducts in African American, Dominican and Caucasian mothers and newborns [J]. Cancer Epidemiol Biomarkers Prev,2008,17:405-413.
    9.董少霞,丁昌明,张美云,等.胎儿宫内多环芳烃暴露水平及其母婴暴露关系研究过[J].卫生研究,2009,38(3):339-342.
    10.董少霞,刘娅,程义斌,等.太原市大气多环芳烃水平及孕妇体内多环芳烃负荷关系研究[J].环境与健康杂志,2009,26(5):380-382.
    11.董少霞,刘娅,程义斌,等.太原市新生儿多环芳烃暴露水平及其与代谢酶基因多态性的关系[J].环境与健康杂志,2008,25(6):475-479.
    12. Nisbet, C. and LaGoy, P. Toxic Equivalency Factors (TEFs) for Polycyclic Aromatic Hydrocarbons (PAHs) [J]. Regulatory Toxicology and Pharmacology, 1992,16:290-300.
    13. Kalberlah, F., Frijus-Plessen, N., Hassauer, M. Toxicological Criteria for the Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Existing Cjemical. Part 1:the Use of Equivalent Factors [J]. Altlasten-Spektum,1995,5:231-237.
    14. Tsang HL, Wu SC, Clement K.M. Leung, et al. Body burden of POPs of Hong Kong residents, based on human milk, maternal and cord serum [J]. Environ Int, 2010, doi:10.1016/j.envint.2010.08.010
    15. Madhavan ND, Naidu K A. Polycyclic aromatic hydrocarbons in placenta, maternal blood, umbilical cord blood and milk of Indian women [J]. Hum Exp Toxicol,1995,14:503-506.
    16. Neal M S, Zhu JP, Foster WG, et al. Quantification of benzo[a]pyrene and other PAHs in the serum and follicular fluid of smokers versus non-smokers [J]. Reprod Toxicol,2008,25:100-106.
    17. Aarstad K., Toftgard R., Nilsen OG. A comparison of the binding and distribution of benzo(a)pyrene in human and rat serum[J]. Toxicology,1987,47:235-245.
    18. Minh TB, Watanabe M, Kajiwara N, et al. Human blood monitoring program in Japan:contamination and bioaccumulation of persistent organochlorines in Japanese residents. Arch Environ Contam Toxicol 2005,51:296-313.
    19. Anderson LM, Jones AB, Miller MS, et al. Metabolism of transplacental carcinogens [J]. IARC Sci Publ,1989:155-188.
    20. Perera F P, Whyatt R M, Jedrychowski, et al. Recent developments in molecular epidemiology:a study of the effects of environmental polycyclic aromatic hydrocarbons on birth outcomes in Poland [J]. Am J Epidemiol,1998,147: 309-314.
    21. Perera F P, Tang D, Whyatt R M, et al. DNA damage from polycyclic aromatic hydrocarbons measured by benzo [a] pyrene-DNA adducts in mothers and newborns from Northern Manhattan, the World Trade Center Area, Poland, and China [J]. Cancer Epidemiol Biomarkers Prev,2005,14:709-714.
    22.蒋文跃,韩巍,李志新.成人疾病胎源说的证据及机制[J]北京大学学报医学版,2007,39(1):96-100.
    23. Newsome CA, Sheill AW, Fall CHD, et al. Is birth weight related to later glucose and insulin metabolism-a systematic review [J]. Diabet Med,2003,20:339-348.
    24. Dabelea D, Pettitt DJ, Hanson RL, et al. Birth weight, type 2 diabetes, and insulin resistance in Pima Indian children and young adults [J]. Diabetes Care,1999, 22:944-950.
    25. Ahlgren M, Melbye M, Wohlfahrt J, et al. Growth patterns and the risk of breast cancer in women [J]. N Engl J Med,2004,351:1619-1626.
    1. Perera F P, Rauh V, Tsai W Y, et al. Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic pollution [J]. Environ Health Perspect,2003,111:201-205.
    2. Perera FR, Rauh V, Whyatt RM, et al. Molecular evidence of an interaction between prenatal environmental exposures and birth outcomes in a multiethnic population [J]. Environ Health Perspect,2004,112(5):626-630.
    3. Choi H, Rauh V, Garfinkel R, et al. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and risk of intrauterine growth restriction [J]. Environ Health Perspect,2008,116:658-665.
    4. Choi H, Jedrychowaki W, Spengler J, et al. International studies of prenatal exposure to polycyclic aromatic hydrocarbons and fetal growth [J]. Environ Health Perspect,2006,114(11):1744-1750.
    5. Dejmek J, Solansky I, Benes I, et al. The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome [J]. Environ Health Perspect,2000,108:1159-1164.
    6. Tang D, Li TY, Liu JJ, et al. PAH-DNA adducts in cord blood and fetal and child development in a Chinese cohort [J]. Environ Health Perspect,2006,114(8): 1297-1300.
    7. Youndai EV, Holloway AC, Fobter WG. Environmentaland occupational factors affecting fertility and IVF success[J]. Hum Reprod Update,2005,11(1):43-57.
    8.侯海燕,王丹.多环芳烃对胎儿和出生结局的影响[J]国际妇产科学杂志,2008,35(3):171-174.
    9. The cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J]. Nature, 2008,455:1061-1068.
    10. Davies H, Bignell GR, Cox C, et al. Mutations of BRAF gene in human cancer [J]. Nature,2002,417(6892):949-954.
    11.徐伟丽,孙文广,马莺.MAPK信号通路与结直肠癌[J].现代肿瘤医学,2010,18(2):389-392
    12. Fecher LA, Amaravadi RK, Flaherty KT. The MAPK pathway in melanoma [J]. Curr Opin Oncol,2008,20(2):183-189.
    13.黄春香.MAPK信号通路与乳腺癌的研究进展[J].中医学报,2010,25(146): 36-38
    14. Mercer KE, Pritchard CA. Raf proteins and cancer:B-Raf is identified as a mutational target [J]. Biochinicase Biophysica Acta,2003,1653(1):25-40.
    15. Kohno M, Poussegur J. Targeting the ERK signaling pathway in cancer therapy [J]. Ann Med,2006,38(3):200-211.
    16.张莹,曹翠萍,崔泽实,等.乳腺癌中TSG101与MAPK/ERK信号通路的关系[J].山东医药,2011,51(1):18-20.
    1. Runte M, Kroisel PM, Gillessen-Kaesbach G, et al. SNURF-SNRPN and UBE3A transcript levels in patients with Angelman syndrome [J]. Hum Genet,2004, 114(6)553-561.
    2.印木泉.遗传毒理学[M].北京:科学出版社,2002,331.
    3. Sofia Pavanello, Valentina Bollati, Angela Cecilia Pesatori, et al. Global and gene-specific promoter methylation changes are related to anti-B[a]PDE-DNA adduct levels and influence micronuclei levels in polycyclic aromatic hydrocarbon-exposed individuals [J]. Int. J. Cancer,2009,125:1692-1697.
    4.Wajed SA, Laird PW, DeMeester TR. DNA methylation:an alternative pathway to cancer [J]. Ann Surq,2001,234(1):10-20.
    5. Benetatos L, Hatzimichael E, Dasoula A, et al. CpG methylation analysis of the MEG3 and SNRPN imprinted genes in acute myeloid leukemia and myelodysplastic syndromes [J]. Leuk Res.2010,34(2):148-53.
    6. Rajender S, Avery K, Agarwal A. Epigenetics, spermatogenesis and male infertility [J]. Mutat Res.2011 Apr 16.
    7.Megan P. Hitchins, Justin J.L.Wong, Graeme Suthers, et al. Inheritance of a cancer-associated MLH1 germ-line Epimutation [J]. The new England Journal of Medicine,2007,356:697-705.
    8. Wong DJ, Barrett MT, Stoger R, et al.P16INK4a promoter is hypermethylated at a high frequency in esophageal adenocarcinomas[J]. Cancer Res,1997,57:2619-2622.
    9. Toyota M, Ahuja N, Suzuki H, et al. Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype[J]. Cancer Res,1999, 59:5438-5442.
    10. Herman JG, Merlo A, Mao L, et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers[J]. Cancer Res,1995,55:4525-4530.
    11. Ahuja N, Li Q, Mohan AL, et al. Aging and DNA methylation in colorectal mucosa and cancer[J]. Cancer Res,1998,58:5489-5494.
    12. Schutte M, Hruban RH, Geradts J, et al. Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas[J]. Cancer Res, 1997,57:3126-3130.
    13. Esteller M, Levine R, Baylin SB, et al. MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomasAberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis[J]. Oncogene,1998,17:2413-2417.
    14. Rainier S, Johnson LA, Dobry CJ, et al. Relaxation of imprinted genes in human cancer[J]. Nature,1993,362:747-749.
    15. McCluskey LL, Chen C, Delgadillo E, et al. Differences in p16 gene methylation and expression in benign and malignant ovarian tumors[J]. Gynecol Oncol,1999, 72:87-92.
    16. Gonzalgo ML, Bender CM, You EH, et al. Low frequency of p16/CDKN2A methylation in sporadic melanoma:comparative approaches for methylation analysis of primary tumors[J]. Cancer Res,1997,57:5336-5347.
    17. Cameron EE, Baylin SB, Herman JG.p15(INK4B) CpG island methylation in primary acute leukemia is heterogeneous and suggests density as a critical factor for transcriptional silencing[J]. Blood,1999,94:2445-2451.
    18. Herman JG, Civin CI, Issa JP, et al. Distinct patterns of inactivation ofp15INK4B and p16INK4A characterize the major types of hematological malignancies[J]. Cancer Res,1997,57:837-841.
    19. Fleisher AS, Esteller M, Wang S, et al. Hypermethylation of the hMLH1 gene promoter in human gastric cancers with microsatellite instability[J]. Cancer Res, 1999,59:1090-1095.
    20. Herman JG, Umar A, Polyak K, et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma[J]. Proc Natl Acad Sci USA,1998,95:6870-6875.
    21. Strathdee G, MacKean MJ, Illand M, Brown R. A role for methylation of the hMLH 1 promoter in loss of hMLH 1 expression and drug resistance in ovarian cancer[J]. Oncogene,1999,18:2335-2341.
    22. Ahuja N, Mohan AL, Li Q, et al. Association between CpG island methylation and microsatellite instability in colorectal cancer[J]. Cancer Res,1997,57:3370-3374.
    23. Hiraguri S, Godfrey T, Nakamura H, et al. Mechanisms of inactivation of E-cadherin in breast cancer cell lines[J]. Cancer Res,1998,58:1972-1977.
    24. Graff JR, Herman JG, Lapidus RG, et al. E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas[J]. Cancer Res, 1995,55:5195-5199.
    25. Graff JR, Greenberg VE, Herman JG, et al. Distinct patterns of E-cadherin CpG island methylation in papillary, follicular, Hurthle's cell, and poorly differentiated human thyroid carcinoma[J]. Cancer Res,1998,58:2063-2066.
    26. Bachman KE, Herman JG, Corn PG, et al. Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggests a suppressor role in kidney, brain, and other human cancers[J]. Cancer Res,1999,59:798-802.
    27. Issa JP, Ottaviano YL, Celano P, et al. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon[J]. Nat Genet,1994,7:536-540.
    28. Ottaviano YL, Issa JP, Parl FF, et al. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells[J]. Cancer Res,1994,54:2552-2555.
    29. Issa JP, Baylin SB, Belinsky SA. Methylation of the estrogen receptor CpG island in lung tumors is related to the specific type of carcinogen exposure[J]. Cancer Res,1997,56:3655-3658.
    30. Issa JP, Zehnbauer BA, Civin CI, et al. The estrogen receptor CpG island is methylated in most hematopoietic neoplasms[J]. Cancer Res,1996,56:973-977.
    31. Li LC, Chui R, Nakajima K, Oh BR, et al. Frequent methylation of estrogen receptor in prostate cancer:correlation with tumor progression[J]. Cancer Res, 2000,60:702-706.
    32. Jarrard DF, Kinoshita H, Shi Y, et al. Methylation of the androgen receptor promoter CpG island is associated with loss of androgen receptor expression in prostate cancer cells[J]. Cancer Res,1998,58:5310-5314.
    33. Gurtner A, Fuschi P, Martelli F, et al. Transcription factor NF-Y induces apoptosis in cells expressing wild-type p53 through E2F1 upregulation and p53 activation [J]. Cancer Res,2010,70(23):9711-9720.
    34. Roqoff HA, Pickering MT, Debatis ME, et al. E2F1 induces phosphorylation of p53 that is coincident with p53 accumulation and apoptosis [J]. Mol Cell Biol, 2002,22(15):5308-5318.
    35. Powers JT, Hong S, Mayhew CN, et al. E2F1 uses the ATM signaling pathway to induce p53 and Chk2 phosphorylation and apoptosis [J]. Mol Cancer Res,2004, 2(4):203-214.
    36. Shieh SY, Ahn J, Tamai K, et al. The human homologs of checkpoint kinases Chk1 and Cds1(Chk2) phophorylate p53 at multiple DNA damage-inducible sites [J]. Genes Dev,2000,14:289-300.
    37. Vousden KH. P53:death star [J]. Cell,2000,103:691-694.5. Zhou BB and Elledge SJ. The DNA damage response:putting checkpoints in perspective [J]. Nature,2000,408:433-439.
    38. Irwin M, Marin MC, Phillips AC, et al. Role for the p53 homologue p73 in E2F1-induced apoptosis [J]. Nature,2000,497:645-648.
    39. Stiewe T and Puzer BM. Role of the p53-homologue p73 in E2F1-induced apoptosis [J]. Nat. Genet,2000,26:464-469.
    40. Matsumura L, Tanaka H, Kanakura Y. E2F1 and c-myc in cell growth and death [J]. Cell Cycle,2003,2(4):333-338.
    41. Ginsberg D. E2F1 pathways to apoptosis [J]. FEBS Lett,2002,529:122-125.2. Phillips AC, Vousden KH. E2F1 induced apoptosis [J]. Apoptosis,2001, 6:173-182.3. Johnson DG. The paradox of E2F1:oncogene and tumor suppressor gene [J]. Mol Carcinog,2000,27:151-157.
    42. Abdulkadir SA, Qu Z, Garabedian E, et al. Impaired prostate tumorigenesis in Egrl-deficient mice [J]. Nat Med,2001,7:101-107.
    43. Baron V, De Gregorio G, Krones-Herzig A, et al. Inhibition of Egr-1 expression reverses transformation of prostate cancer cells in vitro and in vivo [J]. Oncogene, 2003,22:4194-4204.
    44. Virolle T, Krones-Herzig A, Barron V, et al. Egrl promotes growth and survival of prostate cancer cells [J]. Identification of novel Egrl target genes [J]. J Biol Chem, 2003,278:11802-11810.
    45. Agus DB, Cordon-Cardo C, Fox W, et al. Prostate cancer cell cycle regulators: response to androgen withdrawal and development of androgen independence [J]. J Natl Cancer Inst,1999,91:1869-1876.
    46. Suh J, Payvandi F, Edelstein LC, et al. Mechanisms of constitutive NF-Kb activation in human prostate cancer cells [J]. Prostate,2002,52:183-200.
    47. Davis JN, Wojno KJ, Daignault S, et al. Elevated E2F1 inhibits transcription of the androgen receptor in metastatic hormone-resistant prostate cancer [J]. Cancer Res,2006,66:11897-11906.
    48. Chaogu Zheng, Zijia Ren, Hetian Wang, et al. E2F1 induces tumor cell survival via nuclear factor-κB dependent induction of EGR1 transcription in prostate cancer cells [J]. Cancer Res,2009,69(6):2324-2331.
    49.林军,胡沂淮,田兵,等.双MutT/Nudix结构域蛋白的进化:相互独立的基因重复-融合事件形成类似的结构域组成[J].遗传学报,2009,36(10):603-610.
    50. Mildvan AS, Weber DJ, Abeygunawardana C. Solution structure and mechanism of the MutT pyrophosphohydrolase[J]. Adv Enzymol Relat Areas Mol Biol, 1999;73:183-207.
    51.Vasilenko N, Moshynskyy I, Zakhartchouk A.SARS coronavirus protein 7a interacts with human Ap4A-hydrolase[J]. Virol J.2010,7:31.
    52. Kisselev LL, Justesen J, Wolfson AD, et al. Diadenosine oligophosphates (Ap(n)A), a novel class of signaling molecules [J]. FEBS Lett,1998,427:157-163.
    53. Oka K, Suzuki T, Onodera Y, et al. Nudix-type motif 2 in human breast carcinoma:a potent prognostic factor associated with cell proliferation [J]. Int J Cancer,2011,128(8):1770-82. doi:10.1002/ijc.25505.
    54. Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression [J]. Nat. Genet,2001,29:117-129.
    55. Maertens B, Hopkins D, Franzke CW, et al. Cleavage and oligomerization of gliomedin, a transmembrane collagen required for node of Ranvier formation [J]. J Biol Chem,2007,282:10647-10659.
    56. Ge G, Greenspan DS. BMP1 controls TGFbetal activation via cleavage of latent TGFbeta-binding protein [J]. J. Cell Biol,2006b,175:111-120.
    57. St Croix B, Rago C, Velculescu V, et al. Genes expression in human tumor endothelium [J]. Science,2000,289:1197-1202.
    58. Kusuda J, Hirai M, Tanuma R, et al. Genomic structure and chromosome location of RPL27A/Rpl27a, the genes encoding human and mouse ribosomal protein L27A [J]. Cytogenet Cell Genet,1999,85(3-4):248-251.
    59. De Felice B, Ciarmiello LF, Wilson RR. Identification of a cDNA clone encoding DIP1-binding protein in Drosophila melanogaster [J]. Mol Biol Rep,2004,31(3): 165-169.
    60. Park EJ, Hur SK, Kwon J. Human INO80 chromatin-remodelling complex contributes to DNA double-strand break repair via the expression of Rad54B and XRCC3 genes [J]. Biochem J,2010,431(2):179-187.
    1.孙振球.医学统计学[M].北京:人民卫生出版社,2006,440.
    1. Xue WL, Warshawsky D. Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage:A review [J].Toxicol Applied Pharmacol,2005,206(1):73-93.
    2. Roque Diaz, Paul A Nguewa, Ricardo Parrondo, et al. Aesneatrciht uartm or and antiangiogenic effect of the dual EGFR and HER-2 tyrosine kinase inhibitor lapatinib in a lung cancer model [J]. BMC Cancer,2010,10:188.
    3. Agarwal S, Zerillo C, Kolmakova J, et al. Association of constitutively activated hepatocyte growth factor receptor (Met) with resistance to a dual EGFR/Her2 inhibitor in non-small-cell lung cancer cells [J]. British Journal of Cancer,2009, 100:941-949.
    4. DiGiovanna MP, Stern DF. Edgerton SM, et al. Relationship of epidermal growth factor receptor expression to ErbB-2 signaling activity and prognosis in breast cancer patients. J Clin Oncol,2005,23:1152-1160.
    5. Hirsch FR, Scagliotti GV, Langer CJ, Varella-Garcia M, Franklin WA:Epidermal growth factor family of receptors in preneoplasia and lung cancer:perspectives for targeted therapies. Lung Cancer 2003,41(Suppl 1):S29-S42.
    6. Marmor M D, Skaria K B, Yarden Y. Singal transduction and oncogenesis by ErbB/HER receptors[J]. Int J Radiat Oncol Biol Phys,2004,58(3):903-913.
    7傅娟,蒋义国,陈学敏,等.反式二羟环氧苯并芘对人支气管上皮细胞中HER2/neu基因表达的影响[J].卫生研究,2007,36:657-659.
    8. Victoria AL Tomlinson, Helen J Newbery, Naomi R Wray, et al. Translation elongation factor eEF1A2 is a potential oncoprotein that is overexpressed in two-thirds of breast tumours J]. BMC Cancer,2005,5:112-118.
    9. Thornton S, Anand N, Purcell D, et al. Not just for housekeeping:protein initiation and elongation factors in cell growth and tumorigenesis [J]. J Mol Med, 2003,81:536-548.
    10.安社娟,陈家墼,常薇.二羟环氧苯并芘诱导转化与翻译延长因子的关系[J].中国职业医学,2006,33(1):4-6.
    11. Joseph P, O'Kernick CM, Othumpangat S, et al. Expression profile of eukaryotic translation factors in human cancer tissues and cell lines. Mol Carcinog,2004, 40(3):171-179.
    12. Joseph P, Lei YX, Whong WZ, Ong TM. Oncogenic potential of mouse translation elongation factor-1 delta, a novel cadmium-responsive proto-oncogene [J]. J Biol Chem,2002,277(8):6131-6136.
    13. Lucinei Roberto Oliveira, Alfredo Ribeiro-Silva, Se'rgio Zucoloto. Prognostic significance of p53 and p63 immunolocalisation in primary and matched lymph node metastasis in oral squamous cell carcinoma [J]. Acta histochemica,2007, 109:388-396.
    14. Ribeiro-Silva A, Ramalho LNZ, Garcia SB, et al. p63 correlates with both BRCA1 and cytokeratin 5 in invasive breast carcinomas:further evidence for the pathogenesis of the basal phenotype of breast cance r[J]. Histopathology,2005,47: 458-66.
    15. Lo Muzio L, Santarelli A, Caltabiano R, et al. p63 overexpression associates with poor prognosis in head and neck squamous cell carcinoma [J]. Hum Pathol,2005, 36:187-94..
    16.姜英,饶凯敏,陈曦,等.p63和p73的表达与苯并[a]芘致H1299和16HBE细胞DNA损伤的关系[J].癌变.畸变.突变,2009,21(4):271-275,279.
    17. Jing Zhou, Luis F. Parada. A motor driving PTEN [J]. Nature cell biology,2009, 11(10):1177-1179.
    18. Dacic S, Finkelstein SD, Baksh FK, et al. Small-cell neuroendocrine carcinoma displays unique profiles of tumor-suppressor gene loss in relationship to the primary site of formation. Hum Pathol,2002,33(9):927-32.
    19.廖晓波,胡冬煦,周新民等.利用组织微阵列结合免疫组法研究PTEN、P16、 P21、P53在肺癌组织中的表达及其临床意义[J].癌症,2004,23(3):334-338.
    20. Shcherbakova P V, Bebenek K, Kunkel T A. Functions of eukaryotic DNA polymerases [J]. SAGE KE,2003,8(3):1-11.
    21. Ogi T, Mimura J, Hikida M, et al. Expression of human and mouse genes encoding Polkappa:testis-specific development regulation and AhR-dependent inducible transcription[J]. Genes Cells,2001,6(11):943-953.
    22. Ogi T, Shinkai Y, Tanaka K, et al. Polkappa protects mammalian cells against the lethal and mutagenic effects of benzo[a]pyrene[J]. Proc Natl Acad Sci USA,2002, 99(24):15548-15553.
    23.庾蕾,纪卫东,庄志雄,等.反式二羟环氧苯并[a]芘所致人支气管上皮细胞POLK基因高表达[J].中国职业医学,2007,34(4):268-270.
    [1]Bostrom C E, Gerdep, Hanberg A, et al. Cancer risk assessment, indicators and guidelines for polycyclic aromatic hydrocarbons in the ambient air [J]. Environ Health Perspect,2002,110:451-488.
    [2]Menzie C A, Potocki B B, Santodonato J. Exposure to carcinogenic PAHs in the environment [J]. Environ Sci Technol,1992,7:1278-1284.
    [3]李新荣,赵同科,于艳新,等.北京地区人群对多环芳烃的暴露及健康风险评价[J].农业环境科学学报,2009,28(8):1758-1765.
    [4]Perera F P, Rauh V, Tsai W Y, et al. Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic pollution [J]. Environ Health Perspect,2003,111:201-205.
    [5]Choi H, Rauh V, Garfinkel R, et al. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and risk of intrauterine growth restriction [J]. Environ Health Perspect,2008,116:658-665.
    [6]Dejmek J, Solansky I, Benes I, et al. The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome [J]. Environ Health Perspect,2000,108:1159-1164.
    [7]Hin L. Tsang, Shenchun Wu, Clement K.M. Leung, et al. Body burden of POPs of Hong Kong residents, based on human milk, maternal and cord serum [J]. Environ Int.2010, doi:10.1016/j.envint,2010.08.010.
    [8]Shuang Wang, Stephen Chanock, Deliang Tang, et al. Assessment of interactions between PAH exposure and genetic polymorphisms on PAH-DNA adducts in African American, Dominican and Caucasian mothers and newborns [J]. Cancer Epidemiol Biomarkers Prev,2008,17:405-413.
    [9]董少霞,丁昌明,张美云,等.胎儿宫内多环芳烃暴露水平及其母婴暴露关系研究过[J].卫生研究,2009,38(3):339-342.
    [10]董少霞,刘娅,程义斌,等.太原市大气多环芳烃水平及孕妇体内多环芳烃负荷关系研究[J].环境与健康杂志,2009,26(5):380-382.
    [11]董少霞,刘娅,程义斌,等.太原市新生儿多环芳烃暴露水平及其与代谢酶基因多态性的关系[J].环境与健康杂志,2008,25(6):475-479.
    [12]Nisbet, C. and LaGoy, P. Toxic Equivalency Factors (TEFs) for Polycyclic Aromatic Hydrocarbons (PAHs) [J]. Regulatory Toxicology and Pharmacology, 1992,16:290-300.
    [13]Kalberlah, F., Frijus-Plessen, N., Hassauer, M. Toxicological Criteria for the Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Existing Cjemical. Part 1:the Use of Equivalent Factors [J]. Altlasten-Spektum,1995,5:231-237.
    [14]Tsang HL, Wu SC, Clement K.M. Leung, et al. Body burden of POPs of Hong Kong residents, based on human milk, maternal and cord serum [J]. Environ Int, 2010, doi:10.1016/j.envint.2010.08.010
    [15]Madhavan ND, Naidu K A. Polycyclic aromatic hydrocarbons in placenta, maternal blood, umbilical cord blood and milk of Indian women [J]. Hum Exp Toxicol,1995,14:503-506.
    [16]Neal M S, Zhu JP, Foster WG, et al. Quantification of benzo[a]pyrene and other PAHs in the serum and follicular fluid of smokers versus non-smokers [J]. Reprod Toxicol,2008,25:100-106.
    [17]Aarstad K., Toftgard R., Nilsen OG. A comparison of the binding and distribution of benzo(a)pyrene in human and rat serum[J]. Toxicology,1987,47:235-245.
    [18]Minh TB, Watanabe M, Kajiwara N, et al. Human blood monitoring program in Japan:contamination and bioaccumulation of persistent organochlorines in Japanese residents. Arch Environ Contam Toxicol 2005,51:296-313.
    [19]Anderson LM, Jones AB, Miller MS, et al. Metabolism of transplacental carcinogens [J]. IARC Sci Publ,1989:155-188.
    [20]Perera F P, Whyatt R M, Jedrychowski, et al. Recent developments in molecular epidemiology:a study of the effects of environmental polycyclic aromatic hydrocarbons on birth outcomes in Poland [J]. Am J Epidemiol,1998,147: 309-314.
    [21]Perera F P, Tang D, Whyatt R M, et al. DNA damage from polycyclic aromatic hydrocarbons measured by benzo [a] pyrene-DNA adducts in mothers and newborns from Northern Manhattan, the World Trade Center Area, Poland, and China [J]. Cancer Epidemiol Biomarkers Prev,2005,14:709-714.
    [22]蒋文跃,韩巍,李志新.成人疾病胎源说的证据及机制[J].北京大学学报医学版,2007,39(1):96-100.
    [23]Newsome CA, Sheill AW, Fall CHD, et al. Is birth weight related to later glucose and insulin metabolism-a systematic review [J]. Diabet Med,2003,20:339-348.
    [24]Dabelea D, Pettitt DJ, Hanson RL, et al. Birth weight, type 2 diabetes, and insulin resistance in Pima Indian children and young adults [J]. Diabetes Care,1999, 22:944-950.
    [25]Ahlgren M, Melbye M, Wohlfahrt J, et al. Growth patterns and the risk of breast cancer in women [J]. N Engl J Med,2004,351:1619-1626.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700