用户名: 密码: 验证码:
Notch1信号蛋白在卵巢癌发生中的作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     卵巢癌是发生于卵巢组织的恶性肿瘤,占所有妇科恶性肿瘤的15%左右,仅次于宫颈癌,而死亡率却位居第一。卵巢癌由于起病隐匿、早期不易发现,75%卵巢癌患者确诊时已发生转移[1, 2]。因此,更好的了解卵巢癌发生发展的分子机制对其早期诊断、早期治疗有着重要意义。
     Notch信号通路是一条高度保守的决定细胞命运的信号通路[3],其受体和配体是通过细胞间的相互作用调节细胞功能的I型跨膜蛋白[3, 4]。在哺乳动物中,Notch信号通路包括四个受体(Notch1-Notch4)和5个配体(Jagged-1, Jagged-2, Delta-like-1, Delta-like-3 and Delta-like-4 and)[5],相邻细胞受体及配体之间相互作用诱导γ分泌酶介导的蛋白水解酶的释放导致Notch胞内段(NICD)的断裂[6],活化的NICD可进入细胞核与转录抑制因子CBF1结合,最终导致Hes、Hey等靶基因的释放[7, 8],Notch信号通路及其下游目的基因在细胞增值、分化、凋亡过程中有着重要作用[3]。
     异常表达的Notch信号蛋白与多种恶性肿瘤的发生有关[9, 10]。Notch1表现为癌基因或抑癌基因取决于细胞的类型,它在鼠类皮肤肿瘤及非小细胞性肺癌中表现为抑癌基因作用[11, 12];而在许多其他肿瘤,如肾癌、胰腺癌、乳腺癌、前列腺癌中表现为癌基因作用[13]。最新文献报道,Notch3及其目的基因Pbx1在卵巢癌中起癌基因作用[14, 15];Notch1在卵巢癌患者腹水中有表达,并有促癌作用[16, 17]。这些表明,Notch信号通路在卵巢癌的发生过程中可能起癌基因作用。Notch信号蛋白与卵巢癌的关系是一个新的研究领域,也为卵巢癌的基因治疗提供了新的思路。
     目的
     (1)探讨Notch1在卵巢癌形成和转化过程中的表达特点及其与卵巢癌的临床病理学参数的关系;
     (2)检测卵巢癌细胞系A2780, SKOV3, HO-8910, HO-8910PM和卵巢上皮细胞IOSE 144中Notch1及下游基因hes1的表达,筛选Notch1信号蛋白高表达的细胞系,为进一步实验研究提供实验依据;
     (3)检测γ-分泌酶抑制剂DAPT阻断Notch信号通路后Notch1及hes1基因的变化情况及对卵巢癌细胞A2780生长、凋亡等生物学行为的影响,为进一步实验研究提供实验依据;
     (4)检测γ-分泌酶抑制剂DAPT下调Notch信号通路对卵巢癌铂类耐药的影响。
     方法
     (1)采用免疫组织化学SP染色法、逆转录聚合酶链反应(RT-PCR)及Western blotting检测109例卵巢癌(其中65例为单侧卵巢癌)、65例单侧卵巢癌患者健侧卵巢(配对对照)及48例正常卵巢组织(正常对照)中Notch1的表达,采用SPSS14.0软件的卡方检验统计方法进行分析。
     (2)采用逆转录聚合酶链反应(RT-PCR)及Western blotting检测四株卵巢癌细胞(A2780, SKOV3, HO-8910, HO-8910PM)及一株卵巢上皮细胞(IOSE 144)中Notch1及其下游基因hes1的表达情况;采用MTT、流式细胞术、ELISA及克隆形成实验检测γ-分泌酶抑制剂DAPT下调Notch信号通路对卵巢癌细胞生物学行为的影响。
     (3)采用逆转录聚合酶链反应(RT-PCR)及Western blotting检测γ-分泌酶抑制剂DAPT处理卵巢癌铂类耐药细胞A2780/CP70后Notch信号通路下游基因hes1的变化情况,采用MTT、流式细胞术、ELISA及克隆形成实验检测DAPT联合顺铂(Cis-DDP)对卵巢癌铂类耐药细胞A2780/CP70生物学行为的影响。结果
     (1)Notch1在卵巢癌中的表达与卵巢癌的组织分化程度及FIGO分期相关(P﹤0.05),而与年龄、家族史、肿瘤位置、有无腹水、有无周围组织浸润、有无淋巴结转移、病理类型差异无显著性(P>0.05);
     (2)Notch1及其下游hes1基因在卵巢癌细胞A2780中高表达;
     (3)DAPT能抑制卵巢癌细胞A2780 Notch1及hes1的表达,并呈时间、剂量依赖性;
     (4)DAPT下调Notch1表达可抑制A2780细胞生长并诱导细胞G1期阻滞;
     (5)DAPT下调Notch1表达可诱导A2780细胞凋亡;
     (6)DAPT能下调卵巢癌铂类耐药细胞A2780/CP70 Notch信号通路下游hes1基因的表达;
     (7)DAPT能促进Cis-DDP诱导细胞生长抑制;
     (8)DAPT联合Cis-DDP用药能诱导卵巢癌铂类耐药细胞A2780/CP70细胞G2期阻滞;
     (9)DAPT能促进Cis-DDP诱导卵巢癌铂类耐药细胞A2780/CP70凋亡。
     结论
     (1)Notch1在卵巢癌组织中的表达与卵巢癌组织分化程度及FIGO分期相关,临床分期越高、分化程度越低,Notch1的表达越低;反之,Notch1的表达越高,可能与其恶性程度有关。
     (2)Notch1及其下游hes1基因在多种卵巢癌细胞系中均有表达,且在A2780细胞系中表达较高,可选A2780细胞作为靶细胞进行更深入的研究。
     (3)DAPT可下调A2780细胞Notch1及其下游hes1的表达,并呈现时间和剂量依赖性;同时可引起A2780细胞生长抑制、细胞克隆数减少,并引起细胞G1期阻滞;还能引起A2780细胞凋亡,并呈时间依赖性,γ-分泌酶抑制剂DAPT可能成为卵巢癌治疗的一个新靶点。
     (4)DAPT阻断Notch信号通路可增强卵巢癌铂类耐药细胞A2780/CP70对Cis-DDP的敏感性,协同低剂量Cis-DDP诱导A2780/CP70细胞生长抑制及凋亡,DAPT-顺铂联合用药可能成为卵巢癌治疗的一个新靶点。
     本实验结果显示, Notch1及其下游hes1基因在卵巢癌组织及细胞系中均有表达,提示Notch信号通路可能是卵巢癌发生、发展的机制之一;γ-分泌酶抑制剂DAPT下调Notch信号通路可抑制卵巢癌A2780细胞生长、诱导细胞凋亡,与Cis-DDP联合用药可协同低剂量Cis-DDP诱导卵巢癌铂类耐药细胞A2780/CP70生长抑制及凋亡。因此,为卵巢癌的基因治疗提供了新的思路。
Background Ovarian cancer is the second most common gynecologic cancer among women and the first leading cause of death from gynecologic malignancy worldwide. Metastasis beyond the ovary is found in 75% of patients at the time of diagnosis due to the absence of symptoms in early stages and lack of a reliable method for early detection, resulting in a high mortality rate despite optimal surgery and aggressive chemotherapy [1, 2]. This necessitates a better understanding of the molecular events of ovarian cancer progression, which may play an important role in early diagnosis and early therapy.
     Notch signaling is an evolutionarily conserved pathway that regulates critical cell fate decisions[3]. Notch ligands and receptors are type I membrane proteins that regulate cell fate during cell-cell contact [3, 4]. In mammals, the Notch family consists of four receptors (Notch1-Notch4) and five ligands (Jagged-1, Jagged-2, Delta-like-1, Delta-like-3 and Delta-like-4) [5]. Receptor–ligand interaction between two neighboring cells leads toγ-secretase–mediated proteolytic release of the Notch intracellular domain (NICD [6]. NICD then translocates into the nucleus, in which it interacts with the transcriptional cofactor CBF1 and transactivates gene targets such as those in the Hes and Hey families [7, 8]. Notch signaling and its gene targets control variety of processes, involving cell fate specification, differentiation, proliferation, and survival [3].
     Abnormal Notch signaling has been documented in many cancers and has been associated with tumorigenesis[9, 10]. Notch1 can function as a tumor oncogene or a suppressor, depending on the cell type and context. For instance, it acts as a tumor suppressor in murine skin tumors and non-small cell lung cancer[11, 12], but it acts as a tumor oncogene in many other types of cancers, such as renal cancer, pancreatic cancer, breast cancer and prostate carcinomas[13]. Some reports show that Notch3 and its target gene Pbx1 may play an important role in the development of ovarian cancer[14, 15]. Notch1 is considered as a tumor oncogene in ovarian cancer and a higher Notchl protein expression is found in ovarian carcinoma cell lines[16, 17]. These reports hint that Notch signaling might play important roles in ovarian cancer. The relationship between Notch siganling and ovarial carcinoma is a new field of study,and it also may be a new gene therapy for ovarial carcinoma.
     Purpose
     (1) To study the significance of Notch1 expression in ovarial carcinoma transformation and progression and its relationship with clinical pathology characteristics.
     (2)To determine the expression of Notch1 and hes1 in ovarian carcinoma cell lines and to screen target cells for further study at Notch1 in ovarian carcinomas. (3)To determine the expression of Notch1 and hes1 in A2780 cells after the inhibition of Notch signaling byγ-secretase inhibitor(DAPT) and study the biologic behavior of A2780 cells for providing experiment data for further study. (4) To determine the influence of cisplatin resistance by down-regulation of Notch signaling byγ-secretase inhibitor(DAPT).
     Methods
     (1) using Immunohistochemistry, real-time polymerase chain reaction and Western Blot examine the expression of Notch1 in 109 ovarian cancer tissues, 65 patient-matched opposite side normal ovarian tissues and 48 normal ovarian tissues. They are analyzed by Chi-square test of SPSS14.0.
     (2)using real-time polymerase chain reaction and Western Blot examine the expressions of Notch1 and hes1 in ovarian carcinoma cell lines A2780, SKOV3, HO-8910, HO-8910PM and IOSE 144 and using MTT assay, Flow cytometry, ELISA, colony-forming assay to examine biologic behavior of ovarian cancer cells after the inhibition of Notch signaling byγ-secretase inhibitor(DAPT).
     (3) using real-time polymerase chain reaction and Western Blot examine the expressions of hes1 after the treatment of DAPT on ovarian cancer cisplatin-resistant cells A2780/CP70 and using MTT assay, Flow cytometry, ELISA, colony-forming assay to examine biologic behavior of A2780/CP70 after DAPT-cisplatin combination on A2780/CP70 cells.
     Results:
     (1)The expression of Notch1 in ovarian cancers was correlated with differentiation status and FIGO stage(P﹤0.05), not with age, family history, tumor location, ascites, adjacent tissue infiltration, lymphaden metachoresis and pathology subtypes(P>0.05).
     (2) Notch1 and hes1 are highly expressed in ovarian cancer cells A2780.
     (3) DAPT could down-regulate the expression of Notch1 and hes1 in a time-dependent and dose-dependent manner.
     (4) Down-regulation of Notch1 expression by DAPT inhibited A2780 cell growth and induced cell cycle G1 arrest.
     (5) Down-regulation of Notch1 expression by DAPT induced apoptosis in A2780 cells.
     (6) Notch signaling and its target gene hes1 are downregulated by DAPT in A2780/CP70 cells.
     (7) DAPT potentiates cisplatin-induced growth inhibition in a drug sequence–dependent manner.
     (8) DAPT-cisplatin combination arrests cisplatin-resistant A2780/CP70 cells in G2 phase.
     (9) DAPT enhances cisplatin-induced apoptosis in A2780/CP70 cells.
     Conclusion:
     (1) Notch1 expression was increased with decreasing levels of differentiation, as well as with increasing FIGO stage, that means the higher malignancy of the tumor is relevant to the higher Notch1 expression levels.
     (2) Notch1 and hes1 are expressed in lots of ovarian cancer cell lines and highly expressed in ovarian cancer cells A2780. So, we could choose A2780 to finish the subsequent studies.
     (3) DAPT could down-regulate the expression of Notch1 and hes1 in a time-dependent and dose-dependent manner and also inhibited A2780 cell growth and induced cell cycle G1 arrest and induced A2780 cells apoptosis.γ-secretase inhibitor(DAPT) may be a potential target of new therapeutic investigation in ovarian cancer.
     (4) DAPT could sensitize the cisplatin-resistant ovarian cancer A2780/CP70 cells to cisplatin induced cytotoxicity and potentiates cisplatin-induced growth inhibition and also enhances cisplatin-induced apoptosis in A2780/CP70 cells. DAPT-cisplatin combination may be a target for the development of novel therapies for ovarian cancer.
引文
[1]. P.J. Paley, Ovarian cancer screening: are we making any progress?, Curr Opin Oncol 13 (2001), pp. 399-402.
    [2]. C.H. Holschneider and J.S. Berek, Ovarian cancer: epidemiology, biology, and prognostic factors, Semin Surg Oncol 19 (2000), pp. 3-10.
    [3]. S. Artavanis-Tsakonas, M.D. Rand and R.J. Lake, Notch signaling: cell fate control and signal integration in development, Science 284 (1999), pp. 770-776.
    [4]. B.J. Nickoloff, B.A. Osborne and L. Miele, Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents, Oncogene 22 (2003), pp. 6598-6608.
    [5]. E.C. Lai, Notch signaling: control of cell communication and cell fate, Development 131 (2004), pp. 965-973.
    [6]. M.E. Fortini, Gamma-secretase-mediated proteolysis in cell-surface- receptor signalling, Nat Rev Mol Cell Biol 3 (2002), pp. 673-684.
    [7]. T. Iso, L. Kedes and Y. Hamamori, HES and HERP families: multiple effectors of the Notch signaling pathway, J Cell Physiol 194 (2003), pp. 237-255.
    [8]. T. Kadesch, Notch signaling: the demise of elegant simplicity, Curr Opin Genet Dev 14 (2004), pp. 506-512.
    [9]. E.M. Hansson, U. Lendahl and G. Chapman, Notch signaling in development and disease, Semin Cancer Biol 14 (2004), pp. 320-328.
    [10]. H. Axelson, Notch signaling and cancer: emerging complexity, Semin Cancer Biol 14 (2004), pp. 317-319.
    [11]. M. Nicolas, A. Wolfer, K. Raj, J.A. Kummer, P. Mill, M. van Noort, et al.,Notch1 functions as a tumor suppressor in mouse skin, Nat Genet 33 (2003), pp. 416-421.
    [12]. V. Sriuranpong, M.W. Borges, R.K. Ravi, D.R. Arnold, B.D. Nelkin, S.B. Baylin, et al., Notch signaling induces cell cycle arrest in small cell lung cancer cells, Cancer Res 61 (2001), pp. 3200-3205.
    [13]. L. Miele, Notch signaling, Clinical Cancer Research 12 (2006), pp. 1074-1079.
    [14]. J.T. Park, M. Li, K. Nakayama, T.L. Mao, B. Davidson, Z. Zhang, et al., Notch3 gene amplification in ovarian cancer, Cancer Res 66 (2006), pp. 6312-6318.
    [15]. J.T. Park, M. Shih Ie and T.L. Wang, Identification of Pbx1, a potential oncogene, as a Notch3 target gene in ovarian cancer, Cancer Res 68 (2008), pp. 8852-8860.
    [16]. O. Hopfer, D. Zwahlen, M.F. Fey and S. Aebi, The Notch pathway in ovarian carcinomas and adenomas, Br J Cancer 93 (2005), pp. 709-718.
    [17]. S. Ishiyama, S. Matsueda, L.A. Jones, C. Efferson, J. Celestino, R. Schmandt, et al., Novel natural immunogenic peptides from Numb1 and Notch1 proteins for CD8+ cells in ovarian ascites, Int J Oncol 30 (2007), pp. 889-898.
    [18]. S.S. Saravanamuthu, C.Y. Gao and P.S. Zelenka, Notch signaling is required for lateral induction of Jagged1 during FGF-induced lens fiber differentiation, Dev Biol 332 (2009), pp. 166-176.
    [19]. R.A. Oldershaw and T.E. Hardingham, Notch signaling during chondrogenesis of human bone marrow stem cells, Bone (2009).
    [20]. Cao, P.R. Arany, Y.S. Wang and D.J. Mooney, Promoting angiogenesis via manipulation of VEGF responsiveness with notch signaling, Biomaterials30 (2009), pp. 4085-4093.
    [21]. J.L. Li and A.L. Harris, Notch signaling from tumor cells: a new mechanism of angiogenesis, Cancer Cell 8 (2005), pp. 1-3.
    [22]. K. Lefort, A. Mandinova, P. Ostano, V. Kolev, V. Calpini, I. Kolfschoten, et al., Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCK alpha kinases, Genes & Development 21 (2007), pp. 562-577.
    [23]. C. Talora, S. Cialfi, O. Segatto, S. Morrone, J. Kim Choi, L. Frati, et al., Constitutively active Notch1 induces growth arrest of HPV-positive cervical cancer cells via separate signaling pathways, Exp Cell Res 305 (2005), pp. 343-354.
    [24]. M. Wang, J. Wang, L. Wang, L. Wu and X. Xin, Notch1 expression correlates with tumor differentiation status in ovarian carcinoma, Med Oncol (2009).
    [25]. D. Allman, J.C. Aster and W.S. Pear, Notch signaling in hematopoiesis and early lymphocyte development, Immunol Rev 187 (2002), pp. 75-86.
    [26]. L. Redmond, S.R. Oh, C. Hicks, G. Weinmaster and A. Ghosh, Nuclear Notch1 signaling and the regulation of dendritic development, Nat Neurosci 3 (2000), pp. 30-40.
    [27]. F. Radtke, F. Schweisguth and W. Pear, The Notch 'gospel', EMBO Rep 6 (2005), pp. 1120-1125.
    [28]. S. Pfister, G.K. Przemeck, J.K. Gerber, J. Beckers, J. Adamski and M. Hrabe de Angelis, Interaction of the MAGUK family member Acvrinp1 and the cytoplasmic domain of the Notch ligand Delta1, J Mol Biol 333 (2003), pp. 229-235.
    [29]. S.S. Nijjar, H.A. Crosby, L. Wallace, S.G. Hubscher and A.J. Strain, Notchreceptor expression in adult human liver: a possible role in bile duct formation and hepatic neovascularization, Hepatology 34 (2001), pp. 1184-1192.
    [30]. N.E. Baker, Notch signaling in the nervous system. Pieces still missing from the puzzle, Bioessays 22 (2000), pp. 264-273.
    [31]. M. Baron, An overview of the Notch signalling pathway, Semin Cell Dev Biol 14 (2003), pp. 113-119.
    [32]. R. Le Borgne, A. Bardin and F. Schweisguth, The roles of receptor and ligand endocytosis in regulating Notch signaling, Development 132 (2005), pp. 1751-1762.
    [33]. T. Tun, Y. Hamaguchi, N. Matsunami, T. Furukawa, T. Honjo and M. Kawaichi, Recognition sequence of a highly conserved DNA binding protein RBP-J kappa, Nucleic Acids Res 22 (1994), pp. 965-971.
    [34]. K. Shimizu, S. Chiba, T. Saito, T. Takahashi, K. Kumano, Y. Hamada, et al., Integrity of intracellular domain of Notch ligand is indispensable for cleavage required for release of the Notch2 intracellular domain, EMBO J 21 (2002), pp. 294-302.
    [35]. N. Gupta-Rossi, E. Six, O. LeBail, F. Logeat, P. Chastagner, A. Olry, et al., Monoubiquitination and endocytosis direct gamma-secretase cleavage of activated Notch receptor, J Cell Biol 166 (2004), pp. 73-83.
    [36]. M.L. Deftos and M.J. Bevan, Notch signaling in T cell development, Curr Opin Immunol 12 (2000), pp. 166-172.
    [37]. G. Weinmaster and R. Kopan, A garden of Notch-ly delights, Development 133 (2006), pp. 3277-3282.
    [38]. R.A. Conlon, A.G. Reaume and J. Rossant, Notch1 is required for the coordinate segmentation of somites, Development 121 (1995), pp.1533-1545.
    [39]. Y. Hamada, Y. Kadokawa, M. Okabe, M. Ikawa, J.R. Coleman and Y. Tsujimoto, Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality, Development 126 (1999), pp. 3415-3424.
    [40]. P.J. Swiatek, C.E. Lindsell, F.F. del Amo, G. Weinmaster and T. Gridley, Notch1 is essential for postimplantation development in mice, Genes Dev 8 (1994), pp. 707-719.
    [41]. L. Li, I.D. Krantz, Y. Deng, A. Genin, A.B. Banta, C.C. Collins, et al., Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1, Nat Genet 16 (1997), pp. 243-251.
    [42]. T. Oda, A.G. Elkahloun, B.L. Pike, K. Okajima, I.D. Krantz, A. Genin, et al., Mutations in the human Jagged1 gene are responsible for Alagille syndrome, Nat Genet 16 (1997), pp. 235-242.
    [43]. M.P. Bulman, K. Kusumi, T.M. Frayling, C. McKeown, C. Garrett, E.S. Lander, et al., Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis, Nat Genet 24 (2000), pp. 438-441.
    [44]. A. Joutel, C. Corpechot, A. Ducros, K. Vahedi, H. Chabriat, P. Mouton, et al., Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia, Nature 383 (1996), pp. 707-710.
    [45]. R.M. Costa, T. Honjo and A.J. Silva, Learning and memory deficits in Notch mutant mice, Curr Biol 13 (2003), pp. 1348-1354.
    [46]. A.J. Capobianco, P. Zagouras, C.M. Blaumueller, S. Artavanis-Tsakonas and J.M. Bishop, Neoplastic transformation by truncated alleles of human NOTCH1/TAN1 and NOTCH2, Mol Cell Biol 17 (1997), pp. 6265-6273.
    [47]. W.S. Pear, J.C. Aster, M.L. Scott, R.P. Hasserjian, B. Soffer, J. Sklar, et al.,Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles, J Exp Med 183 (1996), pp. 2283-2291.
    [48]. D. Bellavia, A.F. Campese, E. Alesse, A. Vacca, M.P. Felli, A. Balestri, et al., Constitutive activation of NF-kappaB and T-cell leukemia/lymphoma in Notch3 transgenic mice, EMBO J 19 (2000), pp. 3337-3348.
    [49]. R. Callahan and A. Raafat, Notch signaling in mammary gland tumorigenesis, J Mammary Gland Biol Neoplasia 6 (2001), pp. 23-36.
    [50]. H. Kiaris, K. Politi, L.M. Grimm, M. Szabolcs, P. Fisher, A. Efstratiadis, et al., Modulation of notch signaling elicits signature tumors and inhibits hras1-induced oncogenesis in the mouse mammary epithelium, Am J Pathol 165 (2004), pp. 695-705.
    [51]. J.J. Hsieh and S.D. Hayward, Masking of the CBF1/RBPJ kappa transcriptional repression domain by Epstein-Barr virus EBNA2, Science 268 (1995), pp. 560-563.
    [52]. J.J. Hsieh, D.E. Nofziger, G. Weinmaster and S.D. Hayward, Epstein-Barr virus immortalization: Notch2 interacts with CBF1 and blocks differentiation, J Virol 71 (1997), pp. 1938-1945.
    [53]. A. Dievart, N. Beaulieu and P. Jolicoeur, Involvement of Notch1 in the development of mouse mammary tumors, Oncogene 18 (1999), pp. 5973-5981.
    [54]. D. Gallahan and R. Callahan, The mouse mammary tumor associated gene INT3 is a unique member of the NOTCH gene family (NOTCH4), Oncogene 14 (1997), pp. 1883-1890.
    [55]. B.M. Jehn, W. Bielke, W.S. Pear and B.A. Osborne, Cutting edge: protective effects of notch-1 on TCR-induced apoptosis, J Immunol 162(1999), pp. 635-638.
    [56]. A.P. Weng, A.A. Ferrando, W. Lee, J.P.t. Morris, L.B. Silverman, C. Sanchez-Irizarry, et al., Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia, Science 306 (2004), pp. 269-271.
    [57]. Y. Miyamoto, A. Maitra, B. Ghosh, U. Zechner, P. Argani, C.A. Iacobuzio-Donahue, et al., Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis, Cancer Cell 3 (2003), pp. 565-576.
    [58]. P. Zagouras, S. Stifani, C.M. Blaumueller, M.L. Carcangiu and S. Artavanis-Tsakonas, Alterations in Notch signaling in neoplastic lesions of the human cervix, Proc Natl Acad Sci U S A 92 (1995), pp. 6414-6418.
    [59]. B. Daniel, A. Rangarajan, G. Mukherjee, E. Vallikad and S. Krishna, The link between integration and expression of human papillomavirus type 16 genomes and cellular changes in the evolution of cervical intraepithelial neoplastic lesions, J Gen Virol 78 ( Pt 5) (1997), pp. 1095-1101.
    [60]. T.P. Dang, A.F. Gazdar, A.K. Virmani, T. Sepetavec, K.R. Hande, J.D. Minna, et al., Chromosome 19 translocation, overexpression of Notch3, and human lung cancer, J Natl Cancer Inst 92 (2000), pp. 1355-1357.
    [61]. C. Leethanakul, V. Patel, J. Gillespie, M. Pallente, J.F. Ensley, S. Koontongkaew, et al., Distinct pattern of expression of differentiation and growth-related genes in squamous cell carcinomas of the head and neck revealed by the use of laser capture microdissection and cDNA arrays, Oncogene 19 (2000), pp. 3220-3224.
    [62]. F.K. Rae, S.A. Stephenson, D.L. Nicol and J.A. Clements, Novel association of a diverse range of genes with renal cell carcinoma as identified by differential display, Int J Cancer 88 (2000), pp. 726-732.
    [63]. T. Suzuki, D. Aoki, N. Susumu, Y. Udagawa and S. Nozawa, Imbalanced expression of TAN-1 and human Notch4 in endometrial cancers, Int J Oncol 17 (2000), pp. 1131-1139.
    [64]. M.J. Hendrix, R.E. Seftor, E.A. Seftor, L.M. Gruman, L.M. Lee, B.J. Nickoloff, et al., Transendothelial function of human metastatic melanoma cells: role of the microenvironment in cell-fate determination, Cancer Res 62 (2002), pp. 665-668.
    [65]. M. Bocchetta, L. Miele, H.I. Pass and M. Carbone, Notch-1 induction, a novel activity of SV40 required for growth of SV40-transformed human mesothelial cells, Oncogene 22 (2003), pp. 81-89.
    [66]. S. Weijzen, P. Rizzo, M. Braid, R. Vaishnav, S.M. Jonkheer, A. Zlobin, et al., Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells, Nat Med 8 (2002), pp. 979-986.
    [67]. N. Haruki, K.S. Kawaguchi, S. Eichenberger, P.P. Massion, S. Olson, A. Gonzalez, et al., Dominant-negative Notch3 receptor inhibits mitogen-activated protein kinase pathway and the growth of human lung cancers, Cancer Res 65 (2005), pp. 3555-3561.
    [68]. B.W. Purow, R.M. Haque, M.W. Noel, Q. Su, M.J. Burdick, J. Lee, et al., Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation, Cancer Res 65 (2005), pp. 2353-2363.
    [69]. X. Fan, I. Mikolaenko, I. Elhassan, X. Ni, Y. Wang, D. Ball, et al., Notch1 and notch2 have opposite effects on embryonal brain tumor growth, Cancer Res 64 (2004), pp. 7787-7793.
    [70]. S. Santagata, F. Demichelis, A. Riva, S. Varambally, M.D. Hofer, J.L. Kutok, et al., JAGGED1 expression is associated with prostate cancermetastasis and recurrence, Cancer Res 64 (2004), pp. 6854-6857.
    [71]. M. Reedijk, S. Odorcic, L. Chang, H. Zhang, N. Miller, D.R. McCready, et al., High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival, Cancer Res 65 (2005), pp. 8530-8537.
    [72]. S. Tohda and N. Nara, Expression of Notch1 and Jagged1 proteins in acute myeloid leukemia cells, Leuk Lymphoma 42 (2001), pp. 467-472.
    [73]. R. Hubmann, J.D. Schwarzmeier, M. Shehata, M. Hilgarth, M. Duechler, M. Dettke, et al., Notch2 is involved in the overexpression of CD23 in B-cell chronic lymphocytic leukemia, Blood 99 (2002), pp. 3742-3747.
    [74]. F. Jundt, I. Anagnostopoulos, R. Forster, S. Mathas, H. Stein and B. Dorken, Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma, Blood 99 (2002), pp. 3398-3403.
    [75]. Y. Nefedova, P. Cheng, M. Alsina, W.S. Dalton and D.I. Gabrilovich, Involvement of Notch-1 signaling in bone marrow stroma-mediated de novo drug resistance of myeloma and other malignant lymphoid cell lines, Blood 103 (2004), pp. 3503-3510.
    [76]. Lathion, J. Schaper, P. Beard and K. Raj, Notch1 can contribute to viral-induced transformation of primary human keratinocytes, Cancer Res 63 (2003), pp. 8687-8694.
    [77]. C. Ronchini and A.J. Capobianco, Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic), Mol Cell Biol 21 (2001), pp. 5925-5934.
    [78]. E. Sicinska, I. Aifantis, L. Le Cam, W. Swat, C. Borowski, Q. Yu, et al., Requirement for cyclin D3 in lymphocyte development and T cellleukemias, Cancer Cell 4 (2003), pp. 451-461.
    [79]. K. Fitzgerald, A. Harrington and P. Leder, Ras pathway signals are required for notch-mediated oncogenesis, Oncogene 19 (2000), pp. 4191-4198.
    [80]. Y. Chen, W.H. Fischer and G.N. Gill, Regulation of the ERBB-2 promoter by RBPJkappa and NOTCH, J Biol Chem 272 (1997), pp. 14110-14114.
    [81]. M.S. Jang, H. Miao, N. Carlesso, L. Shelly, A. Zlobin, N. Darack, et al., Notch-1 regulates cell death independently of differentiation in murine erythroleukemia cells through multiple apoptosis and cell cycle pathways, J Cell Physiol 199 (2004), pp. 418-433.
    [82]. F. Oswald, S. Liptay, G. Adler and R.M. Schmid, NF-kappaB2 is a putative target gene of activated Notch-1 via RBP-Jkappa, Mol Cell Biol 18 (1998), pp. 2077-2088.
    [83]. P. Hayward, K. Brennan, P. Sanders, T. Balayo, R. DasGupta, N. Perrimon, et al., Notch modulates Wnt signalling by associating with Armadillo/beta-catenin and regulating its transcriptional activity, Development 132 (2005), pp. 1819-1830.
    [84]. S. Kamakura, K. Oishi, T. Yoshimatsu, M. Nakafuku, N. Masuyama and Y. Gotoh, Hes binding to STAT3 mediates crosstalk between Notch and JAK-STAT signalling, Nat Cell Biol 6 (2004), pp. 547-554.
    [85]. M.V. Gustafsson, X. Zheng, T. Pereira, K. Gradin, S. Jin, J. Lundkvist, et al., Hypoxia requires notch signaling to maintain the undifferentiated cell state, Dev Cell 9 (2005), pp. 617-628.
    [86]. B.J. Nickoloff, J.Z. Qin, V. Chaturvedi, M.F. Denning, B. Bonish and L. Miele, Jagged-1 mediated activation of notch signaling induces complete maturation of human keratinocytes through NF-kappaB and PPARgamma,Cell Death Differ 9 (2002), pp. 842-855.
    [87]. A. Rangarajan, C. Talora, R. Okuyama, M. Nicolas, C. Mammucari, H. Oh, et al., Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation, EMBO J 20 (2001), pp. 3427-3436.
    [88]. C. Mammucari, A. Tommasi di Vignano, A.A. Sharov, J. Neilson, M.C. Havrda, D.R. Roop, et al., Integration of Notch 1 and calcineurin/NFAT signaling pathways in keratinocyte growth and differentiation control, Dev Cell 8 (2005), pp. 665-676.
    [89]. C. Talora, D.C. Sgroi, C.P. Crum and G.P. Dotto, Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation, Genes Dev 16 (2002), pp. 2252-2263.
    [90]. A. Rangarajan, R. Syal, S. Selvarajah, O. Chakrabarti, A. Sarin and S. Krishna, Activated Notch1 signaling cooperates with papillomavirus oncogenes in transformation and generates resistance to apoptosis on matrix withdrawal through PKB/Akt, Virology 286 (2001), pp. 23-30.
    [91]. S. Weijzen, A. Zlobin, M. Braid, L. Miele and W.M. Kast, HPV16 E6 and E7 oncoproteins regulate Notch-1 expression and cooperate to induce transformation, J Cell Physiol 194 (2003), pp. 356-362.
    [92]. M.A. Vorontchikhina, R.C. Zimmermann, C.J. Shawber, H. Tang and J. Kitajewski, Unique patterns of Notch1, Notch4 and Jagged1 expression in ovarian vessels during folliculogenesis and corpus luteum formation, Gene Expr Patterns 5 (2005), pp. 701-709.
    [93]. J. Johnson, T. Espinoza, R.W. McGaughey, A. Rawls and J. Wilson-Rawls, Notch pathway genes are expressed in mammalian ovarian follicles, Mech Dev 109 (2001), pp. 355-361.
    [94]. B. De Strooper, Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex, Neuron 38 (2003), pp. 9-12.
    [95]. M. Hutton and J. Hardy, The presenilins and Alzheimer's disease, Hum Mol Genet 6 (1997), pp. 1639-1646.
    [96]. J. Shen, R.T. Bronson, D.F. Chen, W. Xia, D.J. Selkoe and S. Tonegawa, Skeletal and CNS defects in Presenilin-1-deficient mice, Cell 89 (1997), pp. 629-639.
    [97]. B. De Strooper, P. Saftig, K. Craessaerts, H. Vanderstichele, G. Guhde, W. Annaert, et al., Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein, Nature 391 (1998), pp. 387-390.
    [98]. A. Herreman, L. Serneels, W. Annaert, D. Collen, L. Schoonjans and B. De Strooper, Total inactivation of gamma-secretase activity in presenilin-deficient embryonic stem cells, Nat Cell Biol 2 (2000), pp. 461-462.
    [99]. D. Edbauer, E. Winkler, J.T. Regula, B. Pesold, H. Steiner and C. Haass, Reconstitution of gamma-secretase activity, Nat Cell Biol 5 (2003), pp. 486-488.
    [100]. G. Yu, M. Nishimura, S. Arawaka, D. Levitan, L. Zhang, A. Tandon, et al., Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and betaAPP processing, Nature 407 (2000), pp. 48-54.
    [101]. K. Shirotani, D. Edbauer, A. Capell, J. Schmitz, H. Steiner and C. Haass, Gamma-secretase activity is associated with a conformational change of nicastrin, J Biol Chem 278 (2003), pp. 16474-16477.
    [102]. [102] C. Goutte, M. Tsunozaki, V.A. Hale and J.R. Priess, APH-1 is a multipass membrane protein essential for the Notch signaling pathway in Caenorhabditis elegans embryos, Proc Natl Acad Sci U S A 99 (2002), pp.775-779.
    [103]. A.S. Crystal, V.A. Morais, T.C. Pierson, D.S. Pijak, D. Carlin, V.M. Lee, et al., Membrane topology of gamma-secretase component PEN-2, J Biol Chem 278 (2003), pp. 20117-20123.
    [104]. S. Prokop, C. Haass and H. Steiner, Length and overall sequence of the PEN-2 C-terminal domain determines its function in the stabilization of presenilin fragments, J Neurochem 94 (2005), pp. 57-62.
    [105]. Y. Nam, J.C. Aster and S.C. Blacklow, Notch signaling as a therapeutic target, Curr Opin Chem Biol 6 (2002), pp. 501-509.
    [106]. L. Miele, H. Miao and B.J. Nickoloff, NOTCH signaling as a novel cancer therapeutic target, Curr Cancer Drug Targets 6 (2006), pp. 313-323.
    [107]. .S. Huppert, A. Le, E.H. Schroeter, J.S. Mumm, M.T. Saxena, L.A. Milner, et al., Embryonic lethality in mice homozygous for a processing-deficient allele of Notch1, Nature 405 (2000), pp. 966-970.
    [108]. M. Armogida, A. Petit, B. Vincent, S. Scarzello, C.A. da Costa and F. Checler, Endogenous beta-amyloid production in presenilin-deficient embryonic mouse fibroblasts, Nat Cell Biol 3 (2001), pp. 1030-1033.
    [109]. De Strooper, W. Annaert, P. Cupers, P. Saftig, K. Craessaerts, J.S. Mumm, et al., A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain, Nature 398 (1999), pp. 518-522.
    [110]. D. Selkoe and R. Kopan, Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration, Annu Rev Neurosci 26 (2003), pp. 565-597.
    [111]. C.L. Curry, L.L. Reed, T.E. Golde, L. Miele, B.J. Nickoloff and K.E. Foreman, Gamma secretase inhibitor blocks Notch activation and induces apoptosis in Kaposi's sarcoma tumor cells, Oncogene 24 (2005), pp.6333-6344.
    [112]. A.R. Hallahan, J.I. Pritchard, S. Hansen, M. Benson, J. Stoeck, B.A. Hatton, et al., The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas, Cancer Res 64 (2004), pp. 7794-7800.
    [113]. J.H. van Es, M.E. van Gijn, O. Riccio, M. van den Born, M. Vooijs, H. Begthel, et al., Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells, Nature 435 (2005), pp. 959-963.
    [114]. G. Evin, M.F. Sernee and C.L. Masters, Inhibition of gamma-secretase as a therapeutic intervention for Alzheimer's disease: prospects, limitations and strategies, CNS Drugs 20 (2006), pp. 351-372.
    [115]. G.C. Grosveld, Gamma-secretase inhibitors: Notch so bad, Nat Med 15 (2009), pp. 20-21.
    [116]. S. Masuda, K. Kumano, T. Suzuki, T. Tomita, T. Iwatsubo, H. Natsugari, et al., Dual antitumor mechanisms of Notch signaling inhibitor in a T-cell acute lymphoblastic leukemia xenograft model, Cancer Sci (2009).
    [117]. P.J. Real, V. Tosello, T. Palomero, M. Castillo, E. Hernando, E. de Stanchina, et al., Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia, Nat Med 15 (2009), pp. 50-58.
    [118]. M. Shih Ie and T.L. Wang, Notch signaling, gamma-secretase inhibitors, and cancer therapy, Cancer Res 67 (2007), pp. 1879-1882.
    [119]. D.M. Barten, J.E. Meredith, Jr., R. Zaczek, J.G. Houston and C.F. Albright, Gamma-secretase inhibitors for Alzheimer's disease: balancing efficacy and toxicity, Drugs R D 7 (2006), pp. 87-97.
    [120]. J.A. Green, L. Robertson, I.R. Campbell and J. Jenkins, p53 Expression correlates with differentiation but not survival in human ovarian cancer, European Journal of Cancer 29 (1993), pp. S194-S194.
    [121]. T. Sch?ndorf, M.P. Ebert, J. Hoffmann, M. Becker, N. Moser, S. Pur, et al., Hypermethylation of the PTEN gene in ovarian cancer cell lines, Cancer Letters 207 (2004), pp. 215-220.
    [122]. H. Meden and W. Kuhn, Overexpression of the oncogene c-erbB-2 (HER2/neu) in ovarian cancer: a new prognostic factor, European Journal of Obstetrics & Gynecology and Reproductive Biology 71 (1997), pp. 173-179.
    [123]. L. Wang, H. Qin, B. Chen, X. Xin, J. Li and H. Han, Overexpressed active Notch1 induces cell growth arrest of HeLa cervical carcinoma cells, International Journal of Gynecological Cancer 17 (2007), pp. 1283-1292.
    [124].颜真,张英起,蛋白质研究技术,西安:第四军医大学出版社(2007), pp. 240-251.
    [125]. K. Balint, M. Xiao, C.C. Pinnix, A. Soma, I. Veres, I. Juhasz, et al., Activation of Notch1 signaling is required for beta-catenin-mediated human primary melanoma progression, J Clin Invest 115 (2005), pp. 3166-3176.
    [126]. P. Buchler, A. Gazdhar, M. Schubert, N. Giese, H.A. Reber, O.J. Hines, et al., The Notch signaling pathway is related to neurovascular progression of pancreatic cancer, Ann Surg 242 (2005), pp. 791-800, discussion 800-791.
    [127]. Z. Wang, Y. Zhang, Y. Li, S. Banerjee, J. Liao and F.H. Sarkar, Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells, Mol Cancer Ther 5 (2006), pp. 483-493.
    [128]. K.H. Lu, A.P. Patterson, L. Wang, R.T. Marquez, E.N. Atkinson, K.A. Baggerly, et al., Selection of potential markers for epithelial ovarian cancer with gene expression arrays and recursive descent partition analysis, Clin Cancer Res 10 (2004), pp. 3291-3300.
    [129]. N.I. Euer, S. Kaul, H. Deissler, V.J. Mobus, R. Zeillinger and U.H. Weidle, Identification of L1CAM, Jagged2 and Neuromedin U as ovarian cancer-associated antigens, Oncol Rep 13 (2005), pp. 375-387.
    [130]. T. Enomoto, C.M. Weghorst, M. Inoue, O. Tanizawa and J.M. Rice, K-ras activation occurs frequently in mucinous adenocarcinomas and rarely in other common epithelial tumors of the human ovary, Am J Pathol 139 (1991), pp. 777-785.
    [131]. H. Tashiro, K. Miyazaki, H. Okamura, A. Iwai and M. Fukumoto, c-myc over-expression in human primary ovarian tumours: its relevance to tumour progression, Int J Cancer 50 (1992), pp. 828-833.
    [132]. A.J. Philp, I.G. Campbell, C. Leet, E. Vincan, S.P. Rockman, R.H. Whitehead, et al., The phosphatidylinositol 3'-kinase p85alpha gene is an oncogene in human ovarian and colon tumors, Cancer Res 61 (2001), pp. 7426-7429.
    [133]. H. Yu, X. Zhao, S. Huang, L. Jian, G. Qian and S. Ge, Blocking Notch1 signaling by RNA interference can induce growth inhibition in HeLa cells, International Journal of Gynecological Cancer 17 (2007), pp. 511-516.
    [134]. S.L. Rose, Notch signaling pathway in ovarian cancer, Int J Gynecol Cancer 19 (2009), pp. 564-566.
    [135]. J.H. Choi, J.T. Park, B. Davidson, P.J. Morin, M. Shih Ie and T.L. Wang, Jagged-1 and Notch3 juxtacrine loop regulates ovarian tumor growth and adhesion, Cancer Res 68 (2008), pp. 5716-5723.
    [136]. S. Suwanjunee, W. Wongchana and T. Palaga, Inhibition of gamma-secretase affects proliferation of leukemia and hepatoma cell lines through Notch signaling, Anticancer Drugs 19 (2008), pp. 477-486.
    [137].司徒镇强,吴正军,细胞培养,西安:世界图书出版公司(2004), pp. 250-251.
    [138]. T. Kobayashi, H. Mizuno, I. Imayoshi, C. Furusawa, K. Shirahige and R. Kageyama, The cyclic gene Hes1 contributes to diverse differentiation responses of embryonic stem cells, Genes Dev 23 (2009), pp. 1870-1875.
    [139]. J.H. Suh, H.W. Lee, J.W. Lee and J.B. Kim, Hes1 stimulates transcriptional activity of Runx2 by increasing protein stabilization during osteoblast differentiation, Biochem Biophys Res Commun 367 (2008), pp. 97-102.
    [140]. A.D. Himes and L.T. Raetzman, Premature differentiation and aberrant movement of pituitary cells lacking both Hes1 and Prop1, Dev Biol 325 (2009), pp. 151-161.
    [141]. H.F. Dovey, V. John, J.P. Anderson, L.Z. Chen, P. de Saint Andrieu, L.Y. Fang, et al., Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain, J Neurochem 76 (2001), pp. 173-181.
    [142]. J.J. Stewart, J.T. White, X. Yan, S. Collins, C.W. Drescher, N.D. Urban, et al., Proteins associated with Cisplatin resistance in ovarian cancer cells identified by quantitative proteomic technology and integrated with mRNA expression levels, Mol Cell Proteomics 5 (2006), pp. 433-443.
    [143]. M. Previati, I. Lanzoni, E. Corbacella, S. Magosso, V. Guaran, A. Martini, et al., Cisplatin-induced apoptosis in human promyelocytic leukemia cells, Int J Mol Med 18 (2006), pp. 511-516.
    [144]. K.J. Mellish, C.F. Barnard, B.A. Murrer and L.R. Kelland, DNA-binding properties of novel cis- and trans platinum-based anticancer agents in 2human ovarian carcinoma cell lines, Int J Cancer 62 (1995), pp. 717-723.
    [145]. C.F. O'Neill, B. Koberle, J.R. Masters and L.R. Kelland, Gene-specific repair of Pt/DNA lesions and induction of apoptosis by the oral platinum drug JM216 in three human ovarian carcinoma cell lines sensitive and resistant to cisplatin, Br J Cancer 81 (1999), pp. 1294-1303.
    [146]. M. Ohmichi, J. Hayakawa, K. Tasaka, H. Kurachi and Y. Murata, Mechanisms of platinum drug resistance, Trends Pharmacol Sci 26 (2005), pp. 113-116.
    [147]. Z. Wang, Y. Li, D. Kong, S. Banerjee, A. Ahmad, A.S. Azmi, et al., Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway, Cancer Res 69 (2009), pp. 2400-2407.
    [148]. R.D. Meng, C.C. Shelton, Y.M. Li, L.X. Qin, D. Notterman, P.B. Paty, et al., gamma-Secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity, Cancer Res 69 (2009), pp. 573-582.
    [149]. G. Farnie, R.B. Clarke, K. Spence, N. Pinnock, K. Brennan, N.G. Anderson, et al., Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways, J Natl Cancer Inst 99 (2007), pp. 616-627.
    [150]. M. Wang, L. Wu, L. Wang and X. Xin, Down-regulation of Notch1 by gamma-secretase inhibition contributes to cell growth inhibition and apoptosis in ovarian cancer cells A2780, Biochem Biophys Res Commun 393 (2010), pp. 144-149.
    [151]. R.Y. Tsang, T. Al-Fayea and H.J. Au, Cisplatin overdose: toxicities and management, Drug Saf 32 (2009), pp. 1109-1122.
    [152]. X.M. Sun, H.W. Wen, C.L. Chen and Q.P. Liao, [Expression of Notch intracellular domain in cervical cancer and effect of DAPT on cervical cancer cell], Zhonghua Fu Chan Ke Za Zhi 44 (2009), pp. 369-373.
    [153]. S.J. Korsmeyer, Regulators of cell death, Trends Genet 11 (1995), pp. 101-105.
    [154]. H.C. Drexler, Programmed cell death and the proteasome, Apoptosis 3 (1998), pp. 1-7.
    [155]. M. Ito, Factors controlling cyclin B expression, Plant Mol Biol 43 (2000), pp. 677-690.
    [156]. K. Friedrich, T. Wieder, C. Von Haefen, S. Radetzki, R. Janicke, K. Schulze-Osthoff, et al., Overexpression of caspase-3 restores sensitivity for drug-induced apoptosis in breast cancer cell lines with acquired drug resistance, Oncogene 20 (2001), pp. 2749-2760.
    [157]. J. Williams, P.C. Lucas, K.A. Griffith, M. Choi, S. Fogoros, Y.Y. Hu, et al., Expression of Bcl-xL in ovarian carcinoma is associated with chemoresistance and recurrent disease, Gynecol Oncol 96 (2005), pp. 287-295.
    [158]. A.J. Beel and C.R. Sanders, Substrate specificity of gamma-secretase and other intramembrane proteases, Cell Mol Life Sci 65 (2008), pp. 1311-1334.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700