用户名: 密码: 验证码:
黄河流域河南段不同环境梯度下的植物多样性及其动态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国际地圈—生物圈计划IGBP(International Geosphere-Biosphere Program)的一个长期目标是建立动态全球植被模型DGVM(Dynamic Global Vegetation Model)。在中国植被分区上,黄河流域河南段地处南北气候带,该地区植物多样性的动态过程是历史上自然变迁和人类活动双重作用的结果。因此,该地区在保存全球性生物多样性和维护地球生态系统中具有重要的作用。
     近30年来,该地区的人们对自然资源进行大量的开发,导致该地区流域生态系统结构发生了显著性的变化,同时,也意味随着土地利用、栖息地、生物多样性,以及生态系统稳定性发生显著性的变化,对该地区流域生态系统的功能产生了深刻的影响。理解植物多样性的这些动态变化及其产生的原因,对于未来研究该地区生态系统功能、生物多样性保护的可持续性发展的目标来说有重要的理论意义。前人研究表明生物多样性与干扰相互联系(中度干扰假说),并且表明对于生物多样性的保护来说,干扰(的频率和强度)是研究的一个重要目标。这项研究中,分析了黄河流域河南段群落多样性、植物物种多样性动态及其与环境梯度之间的关系。
     本文应用群落生态学的方法,在黄河流域河南段环境梯度上,调查研究了环境因子如何影响植物多样性的动态。这项研究是在不同景观类型(山地、丘陵、平原)中,以草本植物为主要的研究对象,于2009年至2011年进行了野外调查,通过不同环境梯度下植物物种分布格局、物种流动特征等,总结草本物种多样性沿着环境梯度的分布格局。
     研究结果表明:
     1.黄河流域河南段垂直于河岸50Km范围内,共有50个植物群落类型。山地、丘陵、平原的植物群落均体现出:随着海拔梯度的增加,Jaccard指数(相似性指数)和Simpson指数均为增加的趋势,Code指数(物种替代速率指数)为减少的趋势;Jaccard指数、Simpson指数、Code指数和海拔梯度之间存在显著或极显著的相关关系(P<0.05或P<0.01)。植物群落Simpson指数总的趋势是:山地>丘陵>平原。2009年~2011年黄河流域河南段的植物种类可分为54个科,159个属,241个种。
     2.由于不同季节的干扰的种类和强度发生变化,因此,随着不同景观类型中受到干扰的样地数目的增加,Simpson多样性指数持续减小。
     (1)由于四季(春季、夏季、秋季、冬季)里农田中使用除草剂的样地数目大小排序为:平原>丘陵>山地,因此,沿着山地、丘陵、平原不同环境(经度、海拔和干扰)梯度的变化,农田生态系统草本物种在四季(春季、夏季、秋季、冬季)的Simpson多样性指数均为持续减小的趋势。
     (2)由于春季和秋季放牧样地数目大小排序为:平原>丘陵>山地,草本物种的Simpson多样性指数沿着山地、丘陵、平原不同环境(经度、海拔和干扰)梯度的变化,均为逐渐减小的趋势。由于夏季河滩被水淹没的样地数目为山地>丘陵>平原,因此,草本物种的Simpson多样性指数沿着山地、丘陵、平原不同环境梯度(经度、海拔和干扰)的变化,为逐渐增加的趋势。由于冬季河滩冰封的样地数目为山地>丘陵>平原,因此,草本物种的Simpson多样性指数从山地经丘陵到平原不同环境(经度、海拔和干扰)梯度的变化,为逐渐增加的趋势。
     (3)由于人工林和撂荒地放牧的样地数目的排序为:平原>丘陵>山地,因此,沿着山地、丘陵、平原不同环境(经度、海拔和干扰)梯度的变化,在春季、夏季和秋季的草本物种Simpson多样性指数均表现为下降的趋势;由于冬季人工林和撂荒地火烧后的样地数目的排序为山地>丘陵>平原,因此,沿着山地、丘陵、平原不同环境(经度、海拔和干扰)梯度的变化,人工林和撂荒地生态系统中草本物种的Simpson多样性指数为逐渐增加的趋势。
     (4)由于灌丛在四季(春季、夏季、秋季、冬季)中水土流失的强度大小排序为:丘陵>山地,因此,沿着山地、丘陵不同环境梯度(经度和海拔)的变化,对于不同季节(春季、夏季、秋季、冬季)灌丛下草本物种α-多样性特征的动态来说物种Simpson多样性指数的变化均为:持续降低的趋势。
     3.沿着黄河流域河南段整个流域环境梯度的变化,从山地经丘陵到平原,河滩地、农田、人工林、撂荒地、滩地和农田交错带在不同季节(春季、夏季、秋季、冬季)产生了相似的生态效应,β多样性指数表明,物种相似性多为抛物线的变化趋势,物种替代速率多为倒抛物线的趋势。草本种类数的季节性变化的大小排序为:夏季>春季>秋季>冬季。
     4.不同季节草本物种在不同生态系统中的物种相似性和替代速率的大小排序存在差异:
     (1)春季Jaccard指数(物种相似性指数)大小排序:林地与农田>撂荒地与农田>林地与撂荒地>林地与滩地>滩地与农田>滩地与撂荒地;Code指数(物种替代速率指数)的大小排序:滩地与撂荒地>滩地与农田>林地与滩地>林地与撂荒地>撂荒地与农田>林地与农田。
     (2)夏季Jaccard指数(物种相似性指数)的大小排序为:滩地与撂荒地>林地与撂荒地>林地与滩地>林地与农田>滩地与农田>撂荒地与农田;Code指数(物种替代速率指数)的大小排序为:林地与滩地>撂荒地与农田>滩地与撂荒地>林地与撂荒地>滩地与农田>林地与农田。
     (3)秋季Jaccard指数(物种相似性指数)的大小排序为:滩地与撂荒地>林地与滩地>滩地与农田>林地与撂荒地>撂荒地与农田>林地与农田;Code指数(物种替代速率指数)的大小排序为:林地与滩地>滩地与撂荒地>滩地与农田>林地与撂荒地>撂荒地与农田>林地与农田。
     (4)冬季Jaccard指数(物种相似性指数)的大小排序为:撂荒地与农田>林地与滩地>滩地与撂荒地>林地与农田>林地与撂荒地>滩地与农田;Code指数(物种替代速率指数)的大小排序为:滩地与农田>滩地与撂荒地>林地与滩地>林地与撂荒地>林地与农田>撂荒地与农田。
     5.沿着“滩地→林地→撂荒地→滩地和农田的交错带→农田”不同环境梯度的动态表明:不同季节草本优势种表现出不同的环境依赖型的物种流:
     (1)春季的朝天委陵菜(Potentilla supina)为“滩地依赖型”,荠(Capsella bursa-pastoris)和藜(Chenopodium album)为“林地依赖型”,小蓬草(Conyza canadensis)为“撂荒地依赖型”,打碗花(Calystegia hederacea)和播娘蒿(Descurainia sophia)为“农田依赖型”;
     (2)夏季的朝天委陵菜为“滩地依赖型”,小蓬草为“林地依赖型”,双稃草(Diplachnefusca)为“撂荒地依赖型”,金狗尾草(Setaria glauca)为“农田依赖型”;
     (3)秋季的芦苇(Phragmites australis)为“滩地依赖型”,小藜(C.serotinum)为“滩地和农田之间的交错带依赖型”,金狗尾草为“农田依赖型”,止血马唐(Digitariaischaemum)为“林地依赖型”、“撂荒地依赖型”和“农田依赖型”;
     (4)冬季的朝天委陵菜和石龙芮(Ranunculus sceleratus)为“滩地依赖型”,止血马唐为“林地依赖型”,狗牙根(Cynodon dactylon)为“撂荒地依赖型”,播娘蒿为“农田依赖型”,香丝草(C.bonariensis)为“林地依赖型”和“滩地和农田交错带依赖型”。
     6.从山地经丘陵到平原,在不同景观类型的同一生态系统中,以及在不同景观类型的不同生态系统中,沿着不同环境(经度、海拔和干扰)梯度的变化,草本优势种的重要值均为连续性的变化。并且,在同一景观类型内的同一生态系统内部(沿着外缘、内缘和中央的不同环境梯度的变化),以及同一景观类型内的不同生态系统之间,草本优势种的重要值沿着不同环境梯度的变化也为连续性的变化。
A long-term goal of the International Geosphere-Biosphere Program (IGBP) is toestablish a Dynamic Global Vegetation Model (DGVM). The plot is located in the north-southclimate transition zones in Henan Province section of the Yellow River basin. The dynamicsof plant diversity in Henan Province section of the Yellow River basin are the results of thehistorical natural and anthropogenic activities. Thus, it plays a vital part in conserving globalbiodiversity and maintaining global ecosystem function.
     Over the past thirty years, the local people have conducted a mass exploitation on naturalresources, leading to significant changes in the local watershed ecosystem structure whichalso means the obvious changes of land use, habitat, biodiversity, and watershed ecosystemstability. They also deeply influence the local watershed ecosystem function. Understandingthese dynamic changes of plant biodiversity and the causes of these dynamics is essential forthe further research of local ecosystem functions and the goal of sustainable development inthe context of biodiversity conservation. Previous studies show the relationship betweendisturbance and biodiversity (intermediate disturbance hypothesis), for bio-protection,disturbances (frequency and intensity) are a main goal of relevance. This study was conductedin Henan Province section of the Yellow River basin. We conducted a research on the plantspecies diversity, plant community diversity, and did analysis toward the relationshipsbetween their herb species flow distributions and different environmental factors.
     By employing community ecology techniques, the study examined how theenvironmental factors influence the dynamics of plant biodiversity on the level ofenvironmental gradient in Henan section of the Yellow River. This study is carried on with theherb species of different landscape types (mountain, hill, plain) as its research object. Thecommunity research is conducted in the year of2009-2011and the distribution types of herbsalong environmental gradient are summarized by analyzing the plant species distribution, theflow feature of species along environmental gradient. The results of the research indicatedthat:
     1. There are50plant community types in the range of50km where Henan Provincesection of the Yellow River basin is perpendicular to the banks of the river. Jaccard Index(species similarity index) and Simpson Index showed increasing; Code Index (species replacement rate index) showed decreasing along elevation gradient decreasing. JaccardIndex (species similarity index) and Simpson Index and Code Index were significantlycorrelated with elevation (P<0.05or P<0.01). The order of plant communities Simpson Indexis: mountain>hill>plain. Plant species research in the year of2009-2011in Henan section ofthe Yellow River includes54families,159generas, and241species.
     2. Due to the changes of species and intensity of interference in different seasons,therefore, the diversity index of plant will decrease as the increasement of number of differentlandscape types.
     (1) Because the order sample number of herbicide used in farmland in four seasons(spring, summer, fall, and winter) is mountain>hills>plain, therefore, Simpson Index of herbspecies showed decreasing in the farmland ecosystem along environment (longitude, elevationand disturbance) gradient changes of mountain, hills, and plain in four seasons.
     (2) Due to the number of sample plots for grazing in the wetland is plain>hills>mountain,therefore, Simpson Index of herb species showed decreasing along mountain, hills, and plaindifferent environment (longitude, elevation and disturbance) gradient of changes. For thenumber of sample plots for water flooded in the wetland is mountain>hills>plain, SimpsonIndex of herb species showed increasing along environment (longitude, elevation anddisturbance) gradient changes of mountain, hills, and plain. Due to the number of sampleplots for iceing in the wetland is mountain>hills>plain, therefore, Simpson Index of herbspecies showed increasing along environment (longitude, elevation and disturbance) gradientchanges of mountain, hills, and plain.
     (3) Due to the number of sample plots for grazing in plantation and abandoned farmlandis plain> hills>mountain, therefore, Simpson Index of herb species showed decreasing alongenvironment (longitude, elevation and disturbance) gradient changes of mountain, hills, andplain in spring, summer and autumn. Because the number of sample plots of fireing inplantation and abandoned farmland is mountain>hills>plain, Simpson Index of herb speciesshowed increasing along environment (longitude, elevation and disturbance) gradient changesof mountain, hills, and plain in winter.
     (4) Because the intensity order of shrub-grassland ecosystem in soil and water loss offour (spring, summer, fall, and winter) is hills>mountain, therefore, Simpson Index of herbspecies showed decreasing along environment (longitude, elevation and disturbance) gradientchanges of mountain and hills in shrub-grassland in spring, summer, autumn, and winter.
     3. Jaccard Index (species similarity index) of herb species mostly shows the trend of the parabola dynamic change, Code Index (species replacement rate index) of herb species mostlypresents inverted parabolic dynamic change in different ecosystems. Seasonal changes of herbspecies number is: summer>spring>autumn> winter.
     4. In different ecosystems, the similarity and replacement rate of herbs in differentseasons are different:
     (1) Jaccard Index (species similarity index) of size sort: plantation and farmland>abandoned farmland and farmland>plantation and abandoned farmland>plantation andwetland>wetland and farmland>wetland and abandoned farmland in spring. Code Index(species replacement rate index) of size sort: wetland and abandoned farmland>wetland andfarmland>plantation and wetland>plantation and abandoned farmland>abandoned farmlandand farmland>plantation and farmland in spring.
     (2) Jaccard Index (species similarity index) of size sort: wetland and abandonedfarmland>plantation and abandoned farmland>plantation and wetland>plantation andfarmland>wetland and farmland>abandoned farmland and farmland in summer. Code Index(species replacement rate index) of size sort: plantation and wetland>abandoned farmland andfarmland>wetland and abandoned farmland>plantation and abandoned farmland>wetland andfarmland>plantation and farmland in summer.
     (3) Jaccard Index (species similarity index) of size sort: wetland and abandonedfarmland>plantation and wetland>wetland and farmland>plantation and abandoned farmland>abandoned farmland and farmland>plantation and farmland in autumn. Code Index (speciesreplacement rate index) of size sort: plantation and wetland>wetland and abandonedfarmland>wetland and farmland>plantation and abandoned farmland>abandoned farmlandand farmland>plantation and farmland in autumn.
     (4) Jaccard Index (species similarity index) of size sort: abandoned farmland andfarmland>plantation and wetland>wetland and abandoned farmland>plantation and farmland>plantation and abandoned farmland>wetland and farmland in winter. Code Index (speciesreplacement rate index) of size sort: wetland and farmland>wetland and abandoned farmland>plantation and wetland>plantation and abandoned farmland>plantation and farmland>abandoned farmland and farmland in winter.
     5. Along "wetland→plantation→abandoned farmland→ecotone between wetland andfarmland→farmland" different environmental gradient dynamics indicates that herb dominantspecies in different seasons exhibit different environment-dependent species flow:
     (1) Potentilla supina as "wetland-dependent type", Capsella bursa-pastoris and Chenopodium album as "plantation-dependent type", Conyza canadensis as "abandonedfarmland–dependent type", Calystegia hederacea and Descurainia sophia as "farmland-dependent" in spring;
     (2) P. supina as "wetland-dependent type", C. canadensis as "plantation-dependent type",Diplachne fusca as "abandoned farmland-dependent type", Setaria glauca as "farmland-dependent" in summer;
     (3) Phragmites australis as "wetland-dependent type", C.serotinum as "ecotone betweenwetland and farmland-dependent type", S. glauca as "farmland-dependent type", Digitariaischaemum as "plantation-dependent type" and "abandoned farmland-dependent type" and"farmland-dependent" in autumn;
     (4) P.sophia and Ranunculus sceleratus as "wetland-dependent type", D. ischaemum as"plantation-dependent type", Cynodon dactylon as "abandoned farmland-dependent type", D.sophia as "farmland-dependent type", C.bonariensis as "plantation-dependent type" and"ecotone between wetland and farmland-dependent type" in winter.
     6. In the same ecosystem of various landscape types and in the different ecosystem ofvarious landscape types along environment (longitude, elevation and disturbance) gradientchanges of mountain, hills, and plain, the importance value of herb dominant species presentscontinuous change. Moreover, in the same type of ecosystem of the same landscape types(along different environment gradient changes of outside boundary, inside boundary andcenter), the importance values of herb dominant species present continuous changes amongdifferent ecosystems of the same landscape type along environment gradient changes, theimportance value of herb dominant species shows continuous change.
引文
[1] Carnaval AC, Hickerson MJ, Haddad CFB, et al.Stability predicts genetic diversity in theBrazilian Atlantic forest hotspot [J]. Science,2010,323:785-789.
    [2] Lankau RA, Strauss SY. Mutual Feedbacks maintain both genetic and species diversity ina plant community [J]. Science,2007,317:1561-1563.
    [3] Ives AR, Carpenter SR. Stability and diversity of ecosystems [J]. Science,2007,317:58-62.
    [4] Rocchini D, Balkenhol N, Delucchi L, et al.23-Spatial Algorithms Applied to LandscapeDiversity Estimate from Remote Sensing Data[J]. Developments in EnvironmentalModelling,2012,25:391-411.
    [5] Palacios MR, Huber-Sannwald E, Barrios LG, et al. Landscape diversity in a rural territory:Emerging land use mosaics coupled to livelihood diversification [J]. Land Use Policy,2013,30:814-824.
    [6] Bai YF, Han XG., Wu JG, Chuo ZZ, et al. Ecosystem stability and compensatory effects inthe Inner Mongolia grassland [J]. Nature,2004,431:181-184.
    [7] Williams CB. Area and number of species [J]. Nature,1943,152:264-267.
    [8] Fisher RA, Steven CA, Williams CB. The relation between the number of species and thenumber of individuals in a Random Sample of an animal population [J]. The Journal ofanimal ecology,1943,12:42-58.
    [9] Fridley JD, Grime JP, Huston MA, et al. Comment on “Productivity Is a Poor Predictor ofPlant Species Richness”[J]. Science,2012,335:1441.
    [10] Post E, Forchhammer MC, Bret-Harte MS, et al. Ecological dynamics across the Arcticassociated with recent climate change [J]. Science,2009,325:1355-1358.
    [11] Kraft NJB, Valencia R, Ackerly DD. Functional Traits and Niche-Based Tree CommunityAssembly in an Amazonian Forest [J]. Science,2008,322:580-582.
    [12] Hisashi S, Akihiko I, Takashi K. SEIB-DGVM: A new Dynamic Global VegetationMobel using a spatially explicit individual-based approach [J]. Ecological Modelling,2007,200:279-307.
    [13] Chen SP, Bai YF, Han XG. Variations in composition and water use efficiency of plantfunctional groups based on their water ecological groups in the Xilin River basin [J].Acta Botanica Sinica,2003,45:1251-1260.
    [14]白永飞,李凌浩,王其兵等.锡林河流域草原群落植物多样性和初级生产力沿水热梯度变化的样带研究[J].植物生态学报,2000,24:667-673.
    [15] Gould WA, Walker MD. Plant communities and landscape diversity along a CanadianArctic river [J]. Journal of Vegetation Science,1999,10:537-548.
    [16] Ernoult A, Bureau F, Poudevigne I. Patterns of organisation in changing landscapes:implications for the mangement of biodiversity [J]. Landscape Ecology,2003,18:239-251.
    [17] Stokstad E. A second chance for rainforest biodiversity [J]. Science,2008,320:1436-1438.
    [18] Bowers K, Boutin C. Evaluating the relationship between floristic quality and measuresof plant biodiversity along stream bank habitats [J]. Ecological indicators,2008,8:466-475.
    [19]梁国付,丁圣彦.河南黄河沿岸地区景观格局演变[J].地理学报,2005,60:665-672.
    [20]梁国付,丁圣彦.近20年来河南沿黄湿地景观格局演化[J].地理学报,2004,59:653-661.
    [21] Liang GF, Ding SY. Impacts of human activity and natural change on the wetlandlandscape pattern along the Yellow River in Henan Province [J]. Journal of geographicalscience,2004,14:339-348.
    [22] Lawler A. Archaeology in China. Beyond the Yellow River: how China became China [J].Science,2009,325:930-935.
    [23] Wang X, Meng ZL, Chen B, et al. Simulation of nitrogen contaminant trans-portation bya compact difference scheme in the downstream Yellow River, China [J].Communications in Nonlinear Science and Numerical Simulation,2009,14:935-945.
    [24] Xu XG, Lin HP, Fu ZY. Probe into the method of regional ecological risk assessment-acase study of wetland in the Yellow River Delta in China [J]. Journal of EnvironmentalManagement,2004,70:253-262.
    [25] Yue TX, Liu JY, J rgensen SE, et al. Landscape change detection of the newly createdwetland in Yellow River Delta[J]. Ecological Modelling,2003,164:21-31.
    [26] Hector A, Bagchi R. Biodiversity and ecosystem multifunctionality [J]. Nature,2007,448:188-190.
    [27] Tilman D, Reich PB, Knops JMH. Biodiversity and ecosystem stability in a decade longgrassland experiment [J]. Nature,2006,441:629-632.
    [28] Haddad NM, Crutsinger GM, Gross K, et al. Plant species loss decreases arthropoddiversity and shifts trophic structure [J]. Ecology letters,2009,12:1029-1039.
    [29] Helm A, Hanski I, P rtel M. Slow response of plant species richness to habitat loss andfragmentation [J]. Ecology Letters,2006,9:72-77.
    [30] Hanski I. Landscape fragmentation, biodiversity loss and the societal response. The longterm consequences of our use of natural resources may be surprising and unpleasant [J].EMBO reports,2005,6:388-392.
    [31] O'Connor TG, Kuyler P. Impact of land use on the biodiversity integrity of the moistsub-biome of the grassland biome, South Africa [J]. Journal of environmentalmanagement,2009,90:384-395.
    [32] Cyranoski D. Putting China's wetlands on the map [J]. Nature,2009,458:134.
    [33] Dunn AL, Wofsy SC, Bright, AH. Landscape heterogeneity, soil climate, and carbonexchange in a boreal black spruce forest [J]. Ecological applications,2009,19:495-504.
    [34] Heimsath AM, Dietrich WE, Nishiizumi K, et al. The soil production function andlandscape equilibrium [J]. Nature,1997,388:358-361.
    [35] Chen JS, Li L, Wang JY, et al. Water resources: Groundwater maintains dune landscape[J]. Nature,2004,432:459-460.
    [36] Parsons T, Ji C, Kirby, E. Stress changes from the2008Wenchuan earthquake andincreased hazard in the Sichuan basin [J]. Nature,2008,454:509-510.
    [37] Poelwijk FJ, Kiviet DJ, Weinreich DM, et al. Empirical fitness landscapes revealaccessible evolutionary paths [J]. Nature,2007,445:383-386.
    [38] Andersen DC, Cooper DJ, Northcott K. Dams, floodplain land use, and riparian forestconservation in the semiarid upper Colorado River basin, USA [J]. EnvironmentalManagement,2007,40:453-475.
    [39] Engelhardt KA, Ritchie ME. Effects of macrophyte species richness on wetlandecosystem functioning and services [J]. Nature,2001,411:687-689.
    [40] Boonsong K, Piyatiratitivorakul S, Patanaponpaiboon P. Potential use of mangroveplantation as constructed wetland for municipal wasterwater treatment [J]. Water scienceand technology,2003,48:257-266.
    [41] Whigham DF, Jacobs AD, Weller DE, et al. Combining HGM and EMAP procedures toassess wetlands at the watershed scale-status of flats and non-tidal riverine wetlands inthe Nanticoke River watershed, Delaware and Maryland (USA)[J]. Wetlands,2007,27:462-478.
    [42] Marshall CH, Pielke RA, Steyaert LT. Wetlands: Crop freezes and land-use change inFlorida [J]. Nature,2003,426:29-30.
    [43] Pan XB, Wang B.Time for China to restore its natural wetlands [J].Nature,2009,459:321.
    [44] Banner EB, Stahl AJ, Dodds WK. Stream dischange and riparian land use influence instream concentrations and loads of phosphorus from central plains watersheds [J].Environmental Management,2009,44:552-565.
    [45] Unterschultz JR, Miller J, Boxall PC. The on-ranch economics of riparian zone cattlegrazing management [J]. Environmental Management,2004,33:664-676.
    [46] Porwal MC, Roy PS. Vegetation type discrimination on Landsat TM data inheterogeneous forested landscape of Western Ghats-Accuracy evalution from large scaleaerial photo maps [J]. Journal of the Indian Society of Remote Sensing,1992,20:21-33.
    [47] Nathan F. Risk perception, risk management and vulnerability to landslides in the hillslopes in the city of La Paz, Bolivia. A preliminary statement [J]. Disasters,2008,32:337-357.
    [48] Freeman A. On valuing the services and functions of ecosystems. In: Simponson R,Christensen N.(Eds.) Human activity and ecosystem function: Reconciling economicsand ecology [M]. Chapman&Hall, London, UK,1996.
    [49] Smith SV, Bullock SH, Hinojosa-Corona A, et al.. Soil erosion and significance forcarbon fluxes in a mountainous Mediterranean-climate watershed [J]. Ecologicalapplications,2007,17:1379-1387.
    [50] Bazzaz FA. Plant species diversity in old-field successional ecosystems in southernIllinois [J]. Ecology,1975,56:485-488.
    [51] Concepcion ED, Diaz M, Baquero RA. Effects of landscape complexity on the ecologicaleffectiveness of agri-environment schemes [J]. Landscape ecology,2008,23:135-148.
    [52] Tundisi JG, Matsumura-Tundisi T, Abe DS. The ecological dynamics of Barra Bonita(Tietê River, SP, Brazil) reservoir: implications for its biodiversity [J]. Brazilian journalof biology,2008,68:1079-1098.
    [53] Davidowitz G, Rosenzweig ML. The latitudinal gradient of spcies diversity among NorthAmerican grasshoppers within a single habitat: a test of the spatial heter-geneityhypothesis [J]. Journal of Biogeography,1998,25:553-560.
    [54] Barnes B, Roderick M. An ecological framework linking scales across space and timebased on self-thinning [J]. Theoretical population biology,2004,66:113-128.
    [55] Barnes B, Sidhu HS, Roxburgh SH. A model integrating patch dynamics, competingspecies and the intermediate disturbance hypothesis [J]. Ecological Modelling,2006,194:414-420.
    [56] Connell JH. Diversity in tropical rain forests and coral reefs [J]. Science,1978,199:1302-1310.
    [57]王正文,邢福,祝廷成等.松嫩平原羊草草地植物功能群组成及多样性特征对水淹干扰的响应[J].植物生态学报,2002,26:708-716.
    [58]赵玉晶,白云大鹏,韩大勇.松嫩平原环境破碎化后羊草斑块植物组成多样性的空间变化[J].草地学报,2008,16:158-163.
    [59]毛志宏,朱教君,谭辉.干扰对辽东山区次生林植物多样性的影响[J].应用生态学报,2006,17:1357-1364.
    [60]江小蕾,张卫国,杨振宇等.不同干扰类型对高寒草甸群落结构和植物多样性的影响[J].西北植物学报,2003,23:1479-1485.
    [61] Aronson RB, Precht WF. Landscape patterns of reef coral diversity: a test of theintermediate disturbance hypothesis [J]. Journal of Experimental Marine Biology andEcology,1995,192:1-14.
    [62]李博.生态学[M].高等教育出版社,2000:142.
    [63] Kleijn D, Berendse F, Smit R, et al. Agri-environment schemes do not effectively protectbiodiversity in Dutch agricultural landscapes [J]. Nature,2001,413:723-725.
    [64] Erickson CL. An artifical landscape-scale fishery in the Bolivian Amazon [J]. Nature,2000,408:190-193.
    [65] Cressie N, Calder CA, Clark JS, et al. Accounting for uncertainty in ecological analysis:the strengths and limitations of hierarchical statistical modeling [J]. Ecologicalapplications,2009,19:553-570.
    [66] Hanski I, Ovaskaimen O. The metapopulation capacity of a fragmented landscape [J].Nature,2000,404:755-758.
    [67] Smith TM, Woodward FI, Shugart HH. Plant function Types [M]. Cambridge UniversityPress, New York.1996.
    [68] Raunkiaer C. The life forms of plants and statistical plant geography. Introduction byTansley AG [M]. Oxford University Press, Oxford.1934,632.
    [69] Pickett S, Cadenasso M L. Landscape ecology: spatial heterogeneity in ecologicalsystems [J]. Science,1995,269:331-333.
    [70]刘铁军.河南黄河小浪底风景区植被调查研究[J].河南林业科技,2006,26:38-40.
    [71]赵勇,王鹏飞,叶永忠等.黄河小浪底库区退化山地典型植物群落物种多样性分析[J].安全与环境学报,2007,7:77-82.
    [72]赵勇,樊巍,范国强.黄河小浪底库区山地植物群落恢复进程研究[J].北京林业大学学报,2008,30:33-38.
    [73]赵雪,雷妮娅,张劲松.黄河小浪底退耕还林后群落特征的研究[J].科学技术与工程,2008,8:3127-3135.
    [74]张琳,冯茜茜.河南黄河小浪底风景区绿化规划探析[J].中南林业调查规划,2006,25:31-34.
    [75]张全来,杨伟民等.郑州黄河湿地生态特征及保护利用研究[J].河南林业科技,2009,29:26-28.
    [76]段艳芳,赵东,赵辉.郑州黄河滩地植被特征[J].安徽农业科学,2008,36:11465-11466.
    [77]李錾华,张杰,雷雅凯等.郑州黄河湿地自然保护区生物多样性保护规划研究[J].河南科学,2008,26:681-684.
    [78]孟平,贾宝全,张劲松等.太行山低山丘陵区景观变化特征分析——以河南省济源市为例[J].生态学报,2004,24:825-830.
    [79]靳秀兰,李慧.济源市黄楝树林场林区植物资源的现状调查[J].平原大学学报,2007,24:125-127.
    [80]常丽若,阴三军.河南黄河湿地生物多样性价值评估[J].河南林业科技,2006,26:48-49.
    [81]赵小全.焦作地区野生植物资源概况及保护[J].焦作师范高等专科学校学报,2008,24:76-79.
    [82]上官铁梁,樊杰,宋伯为.黄河中游河漫滩(禹渡口—桃花峪)种子植物资源中国野生植物资源[J].中国野生植物资源,2005,24:10-13.
    [83]常中芳.黄河中游湿地生物多样性及保护对策[J].山西大学学报(自然科学版),2006,29:321-325.
    [84]樊杰,上官铁梁,宋伯为.黄河中游(禹门口—桃花峪)河漫滩种子植物区系[J].地理研究,武汉植物学研究,2003,21:332-338.
    [85]张丽,李敏.黄河中游水土保持植物措施的成就与发展趋势[J].水土保持,1996,10:33-35.
    [86]王保业.豫东黄河故道湿地自然保护区植被的多样性及其保护性开发[J].商丘职业技术学院学报,2006,22:143-145.
    [87]王保业.豫东黄河故道湿地维管植物资源调查[J].商丘职业技术学院学报,2003,3:50-52.
    [88]王保业,王国庆.豫东黄河故道湿地水生种子植物区系分析[J].商丘职业技术学院学报,2004,6:66-70.
    [89]席桂萍.豫东黄河故道农林复合生态模式经济效益分析[J].河南林业科技,2008,28:23-25.
    [90]张玉君.三门峡黄河湿地植物和鸟类资源现状与保护[J].河北农业科学,2009,121:71-72.
    [91]杜健刚,肖宏,桑武军.三门峡黄河湿地植物[J].河南水产,2008,1:8-9.
    [92]王静洲,山晓伟,王红霞等.三门峡市陕州公园景观规划探讨[J].中南林业调查规划,2009,3:27-31.
    [93]陈求稳,欧阳志云.流域生态学及模型系统[J].生态学报,2005,25:1184-1192.
    [94]尚宗波,高琼.流域生态学——生态学研究的一个新领域[J].生态学报,2001,21:468-473.
    [95] Lamb EG, Bayne E, Holloway G, et al. Indices for monitoring biodiversity change: Aresome more effective than others?[J]. Ecological indicators,2009,9:432-444.
    [96] Simpson EH. Measurement of diversity[J]. Nature,1949,163:688.
    [97]徐远杰,陈亚宁,李卫红等.伊犁河谷山地植物群落物种多样性分布格局及环境解释[J].植物生态学报,2010,34:1142-1154.
    [98]张文,张建利,周玉锋等.喀斯特山地草地植物群落结构与相似性特征[J].生态环境学报,2011,20:843-848.
    [99]杜泉滢,李智,刘书润等.干旱、半干旱区湖泊周围盐生植物群落的多样性格局及特点[J].生物多样性,2007,15:271-281.
    [100]王正文,祝廷成.松嫩草地水淹干扰后的土壤种子库特征及其与植被关系[J].生态学报,2002,22:1392-1398.
    [101]王正文,祝廷成.松嫩草原主要草本植物的生态位关系及其对水淹干扰的响应[J].草业学报,2004,13:27-33.
    [102]张喜,崔迎春,朱军等.火烧对黔中喀斯特山地马尾松林分的影响[J].生态学报,2011,31:6442-6450.
    [103]马克平,叶万辉,于顺利等.北京东灵山地区植物群落多样性研究Ⅷ.群落组成随海拔梯度的变化[J].生态学报,1997,17:593-600.
    [104]马克平,黄建辉,于顺利等.北京东灵山地区植物群落多样性的研究Ⅱ.丰富度、均匀度和物种多样性指数[J].生态学报,1995,15:268-277.
    [105]高贤明,马克平,黄建辉等.北京东灵山地区植物群落β多样性的研究Ⅺ.山地草甸多样性[J].生态学报,1998,18:24-32.
    [106]庄树宏,王克明,陈礼学.昆嵛山老杨坟阳坡与阴坡半天然植被植物群落学特性的初步研究[J].植物生态学报,1999,23:238-249.
    [107]史惠兰,王启基,景增春.江河源区人工草地群落特征、多样性及其稳定性分析[J].草业学报,2005,14:23-30.
    [108]李春,周刊社,李晖.拉鲁湿地主要植物群落结构及物种多样性[J].西北植物学报,2008,28:2514-2520.
    [109]靳虎甲,马全林,张德魁等.乌兰布和沙漠典型灌木群落结构及数量特征[J].西北植物学报,2012,32:0579-0588.
    [110] Grime JP. Plant strategies and vegetation processes [M]. Chichester (UK): JohnWiley,1979.
    [111]方精云.探索中国山地植物多样性的分布规律[J].生物多样性,2004,12:1-4.
    [112] Stevens GC. The elevational gradient in altitudinal range: an extension of Rapoport′slatitudinal rule to altitude [J]. American Naturalist,1992,140:893-911.
    [113]尚占环,姚爱兴,辛明等.宁夏香山荒漠草原区生物多样性与环境特征研究[J].中国生态农业学报,2006,14:28-32.
    [114]叶万辉,马克平,马克明等.北京东灵山地区植物群落多样性研究Ⅸ.尺度变化对α多样性的影响.生态学报,1998,18:10-14.
    [115]贺金生,陈伟烈.陆地植物群落物种多样性的梯度变化特征[J].生态学报,1997,17:91-98.
    [116]张健,刘国彬,许明祥等.黄土丘陵区沟谷地植被恢复群落特征研究[J].草地学报,2008,16:485-489.
    [117]程积民,万惠娥,胡相明.黄土丘陵区植被恢复重建模式与演替过程研究[J].草地学报,2008,13:324-333.
    [118]李裕元,邵明安.子午岭植被自然恢复过程中植物多样性的变化[J].生态学报,2004,24:252-260.
    [119]卢涛,马克明,倪红伟.三江平原不同强度干扰下湿地植物群落的物种组成和多样性变化[J].生态学报,2008,28:1893-1900.
    [120]马斌,周志宇,张莉丽等.阿拉善左旗植物物种多样性空间分布特征[J].生态学报,2008,28:6099-6106.
    [121]杨利民,韩梅,李建东.中国东北样带草地群落放牧干扰植物多样性的变化[J].植物生态学报,2001,25:110-114.
    [122] Chapin FSIII, Zavaleta ES, Eviner VT, et al. Consequences of changing biodiversity [J].Nature,2000,405:234-242.
    [123] Hutchinson GE. Ecological aspects of succession in natural population [J].AmericanNaturalist,1941,75:406-418.
    [124] Whittaker RH. Dominance and diversity in land plant communities[J].Science,1965,147:250-260.
    [125] Jobin B, Boutin C, DesGranges JL. Effects of agricultural practices on the flora ofhedgerows and woodland edges in southern Quebec [J]. Canadian Journal of PlantScience,1997,77:293-299.
    [126]阳彬,王熙钱,欧阳勋志.森林健康的概念、特征及其影响因素探析[J].江西林业科技,2007,6:26-29.
    [127] Tilman D. The ecological consequences of changes in Biodiversity: A search for generalprinciples [J]. Ecology,1999,80:1455-1474.
    [128]马克平.生物群落多样性的测度方法:α多样性的测度方法(上)[J].生物多样性,1994,2:162-168.
    [129]马克平,刘玉明.生物多样性的测度方法:α多样性的测度方法(下)[J].生物多样性,1994,2:231-239.
    [130] Magurran A E. Ecological Diversity and its Measurement [M]. New Jersey: PrincetonUniversity Press,1998.
    [131] Eggleton P, Vanbergen AJ, Jones DT, et al. Assemblages of soil macrofauna across aScottish land-use intensification gradient: influences of habitat quality, heterogeneityand area [J]. Journal of Applied Ecology,2005,42:1153-1164.
    [132] Attwood SJ, Maron M, House APN, et al. Do arthropod assemblages display globallyconsistent responses to intensified agricultural land use and management?[J]. GlobalEcology Biogeography,2008,17:585-599.
    [133] Yeates GW, Stirling GR. Regional patterns among soil nematode assemblages inAustralasian pastures and effects of management practices [J]. Australasian PlantPathology,2008,37:298-307.
    [134] Neher DA, Wu J, Barbercheck ME, et al.Ecosystem type affects interpretation of soilnematode community measures [J]. Applied Soil Ecology,2005,30:47-64.
    [135] Flynn DFB, Gogol-Prokurat M, Nogeire T, et al. Loss of functional diversity under landuse intensification across multiple taxa [J]. Ecology Letters,2009,12:22-33.
    [136] Daily GC (ed). Nature’s services: societal dependence on natural ecosystems [M].Island Press, Washington, DC,1997.
    [137] Damschen EI, Brudvig LA, Haddad NM, et al. The movement ecology and dynamics ofplant communities in fragmented landscapes [J]. PNAS,2008,105:19078-19083.
    [138] Whittaker RH, Niering WA. Vegetation of the Santa Catalina Mountains, Arizona. V.biomass, production, amd diversity along the elevation gradient [J]. Ecology,1975,56:771-790.
    [139] Belyzid S, Kurz D, Braun S. A dynamic modeling approach for estimating critical loadsof nitrogen based on plant community changes under a changing climate [J].Environmental pollution,2011,159:789-801.
    [140] Clark JS. Individuals and the variation needed for high species diversity in forest trees[J]. Science,2010,327:1129-1132.
    [141] Pereira HM, Leadley PW, Proen a V, et al. Scenarios for global biodiversity in the21stcentury [J]. Science,2010,330:1496-1501.
    [142] Ruiz J, Domon G. Analysis of landscape pattern change trajectories within areas ofintensive agricultural use: case study in a watershed of southern Quebec, Canada [J].Landscape Ecology,2009,24:419-432.
    [143] Matson PA, Parton WJ, Power AG, et al. Agricultural intensification and ecosystemproperties [J]. Science,1997,277:504-509.
    [144] Roy PS. Tomar S. Biodiversity characterization at landscape level using geospatialmodelling technique [J]. Biological Conservation,2000,95:95-109.
    [145] Swift MJ, Izac A-MN, van Noordwijk M. Biodiversity and ecosystem services inagricultural landscapes-are we asking the right questions?[J]. Agricuture, Ecosystems&Environment,2004,104:113-134.
    [146] Neldner VJ, Crossley DC, Cofinas M. Using geographic information systems (GIS) todetermine the adquacy of sampling in vegetation surveys [J]. Biological Conservation,1995,73:1-17.
    [147] Naveh Z. Landscape ecology and sustainability [J]. Landscape Ecology,2007,22:1437-1440.
    [148] Opdam P, Wascher D. Climate change meets habitat fragmentation: linking landscapeand biogeographical scale levels in research and conservation [J]. BiologicalConservation,2004,117:285-297.
    [149] Termorshuizen JW, Opdam P, Van DBA. Incorporating ecological sustainability inlandscape planning [J]. Landscape Urban Planning,2007,79:374-384.
    [150] Ahern J. Integration of landscape ecology and landscape design: an evolutionaryprocess. In: Wiens JA, Moss MR (eds) Issues in landscape ecology [M]. InternationalAssociation for Landscape Ecology (IALE), Faculty of Environmental Sciences,University of Guelph, Guelph, ON, Canada,1999a:119-133.
    [151] Ahern J. Spatial concepts, planning strategies, and future scenarios: a frameworkmethod for integrating landscape ecology and landscape planning [M]. In: Klopatek JM,Gardner RH (eds) Landscape ecological analysis: issues and applications. Springer,New York,1999b:175-201.
    [152] Vos C, Opdam P, Steingr ver E, et al. Transferring ecological knowledge to landscapeplanning: a design method for robust corridors. In: Wu J, Hobbs R (eds) Key topics inlandscape ecology [M]. Cambridge University Press, Cambridge, UK:2007,227-245.
    [153] McKey D, Rostain S, Iriarte J, et al. Pre-Columbian agricultural landscapes, ecosystemengineers, and self-organized patchiness in Amazonia [J]. PNAS,2010,107:7823-7828.
    [154] Raudsepp-Hearne C, Peterson GD, et al. Ecosystem service bundles for analyzingtradeoffs in diverse landscapes [J]. PNAS,2010,107:5242-5247.
    [155] Brudvig LA, Damschen EI, Tewksbury JJ, et al. Landscape connectivity promotes plantbiodiversity spillover into non-target habitats [J]. PNAS,2009,106:9328-9332.
    [156] Ranganathan J, Daniels RJR, Chandran MDS, et al. Reply to Sridhar: Agriculturallandscapes remain an essential front for biodiversity conservation [J]. PNAS,2009,106:35.
    [157] Loreau M, Naeem S, Inchausti P, et al. Biodiversity and ecosystem functioning: currentknowledge and future challenges [J]. Science,2001,294:804-808.
    [158] Williams CB. Patterns in the balance of nature [M].New York: Academic Press,1964.
    [159] Jackson LE, Pascual U, Hodgkin T. Utilizing and conserving agrobiodiversity inagricultural landscapes [J]. Agricature, Ecosystems&Environment,2007,121:196–210.
    [160] Jackson LE, Rosenstock T, Thomas M, et al. Managed ecosystems: biodiversity andecosystem functions in landscapes modified by human use. In: Naeem S, Bunker D,Hector A, Loreau M, Perrings C (eds) Biodiversity and human impacts[M]. OxfordUniversity Press, Oxford, UK,2009,178-194.
    [161] Balvanera P, Pfisterer AB, Buchmann N, et al. Quantifying the evidence for biodiversityeffects on ecosystem functioning and services[J]. Ecology Letters,2006,9:1146-1156.
    [162] Sala OE, Chapin FS3rd, Armesto JJ, et al. Global biodiversity scenarios for the year2100[J]. Science,2000,287:1770-1774.
    [163] Lichtfouse E. Biodiversity, Biofuels, Agroforestry and Conservation Agriculture [M].Springer Dordrecht Heidelberg London New York,2010.
    [164] Hendrickx F, Maelfait HF, Wingerden WV, et al. How landscape structure, land-useintensity, and habitat diversity affect components of total arthropod diversity inagricultural landscapes [J]. Journal Applied of Ecology,2007,44:340-351.
    [165] Billeter R, Liira J, Bailey D, et al. Indicators for biodiversity in agricultural landscapes:A pan-European study [J]. Journal Applied of Ecology,2008,45:141-150.
    [166] Rockstr m J, Steffen W, Noone K, et al. A safe operating space for humanity [J]. Nature,2009,461:472-475.
    [167] Lindenmayer D, Hobbs RJ, Montague-Drake R, et al. A checklist for ecologicalmanagement of landscapes for conservation [J]. Ecology Letters,2008,11:78-91.
    [168] Risser PG, Karr JR, Forman RTT. Landscape ecology: directions and approaches [M].Illinois Natural History Survey, Champaign, IL, USA,1984.
    [169] Wu JG. Landscape ecology, cross-disciplinarity, and sustainability science [J].Landscape Ecology,2006,21:1-4.
    [170] Belyzid S, Kurz D, Braun S. A dynamic modeling approach for estimating critical loadsof nitrogen based on plant community changes under a changing climate [J].Environmental pollution,2011,159:789-801.
    [171]郑达贤,陈加兵.以流域为基本单元的中国自然区划新方案[J].亚热带资源与环境学报,2007,2:10-15.
    [172]王家骥,高吉喜,舒俭民等.西藏一江两河地区农业景观调整研究[J].地理科学,1998,18:213-218.
    [173]江明喜,邓红兵,唐涛等.香溪河流域河岸带植物群落物种丰富度格局[J].生态学报,2002,5:629-635.
    [174]刘建军,吴秀芹.塔里木河下游土地利用格局的景观生态学评价[J].干旱环境监测,2002,16:210-211+222.
    [175]丁圣彦,曹新向.清末以来开封市水域景观格局变化[J].地理学报,2004,59:956-963.
    [176]董哲仁,孙东亚,赵进勇等.河流生态系统结构功能整体性概念模型[J].水科学进展,2010,21:550-559.
    [177]李生宇,雷加强.额尔齐斯河流域生态系统格局及变化[J].干旱区研究,2002,19:56-61.
    [178]丁圣彦,钱乐祥,曹新向等.伊洛河流域典型地区森林景观格局动态[J].地理学报,2003,58:354-362.
    [179]余新晓,秦永胜,陈丽华等.北京山地森林生态系统服务功能及其价值初步研究[J].生态学报,2002,22:627-630.
    [180]谢高地,张钇锂,鲁春霞等.中国自然草地生态系统服务价值[J].自然资源学报,2001,16:47-53.
    [181]方精云,沈泽昊,唐志尧等.中国山地植物物种多样性调查计划及若干技术规范[J].生物多样性,2004,2:5-9.
    [182]朴世龙,方精云,贺金生等.中国草地植被生物量及其空间分布格局[J].植物生态学报,2004,28:491-498.
    [183]张峰,乔利鹏,张桂萍.关帝山撂荒地植物群落种间关系数量分析[J].山西大学学报(自然科学版),2007,30:290-294.
    [184]焦菊荚,张振国,贾燕锋等.陕北丘陵沟壑区撂荒地自然恢复植被的组成结构与数量分类[J].生态学报,2004,28:491-498.
    [185]乔利鹏,张峰,张桂萍等.山西关帝山撂荒地植物群落物种多样性研究(简报)[J].草业学报,2007,16:132-135.
    [186]包维楷,陈厌恒,刘照光.眠江上游山地生态系统的退化及其恢复与重建对策[J].长江流域资源与环境,1995,4:277-282.
    [187]刘国华,张育新.岷江干旱河谷三种主要灌丛地上生物量的分布规律[J].山地学报,2003,21:24-32.
    [188]冶民生,关文彬,谭辉.崛江干旱河谷灌丛α多样性分析[J].生态学报,2004,24:1123-1130.
    [189]张光富.浙江天童山区灌丛群落的物种多样性及其与演替的关系[J].生物多样性,2000,8:271-276.
    [190]张金屯,柴宝峰,邱扬.晋西吕梁山严村流域撂荒地植物群落.演替中的物种多样性变化[J].生物多样性,2000,8:378-384.
    [191]杨尚功,李向义,雷加强等.昆仑山前山带植物群落调查及相似性初步研究[J].西北植物学报,2009,29:809-817.
    [192] Whittaker RH.Evolution and measurement of species diversity[J]. Taxom,1972,21:213-215.
    [193]马克平,刘灿然.生物多样性的测度方法:β多样性的测度方法[J].生物多样性,1995,3:38-43.
    [194]关文彬,冶民生,马克明等.岷江干旱河谷植物群落物种周转速率与环境因子的关系[J].生态学报,2004,24:2367-2373.
    [195]闫凯,张仁平,李德祥等.新源县山地草原植被特征及植物营养对放牧强度的响应[J].草业科学,2011,28:1507-1511.
    [196]王晓荣,程瑞梅,封晓辉等.三峡库区消落带回水区水淹初期土壤种子库特征[J].应用生态学报,2009,20:2891-2897.
    [197] Fried G, Norton LR, Reboud X. Environmental and management factors determiningweed species composition and diversity in France[J].2008, Agriculture, Ecosystems&Environment,2008,128:68-76.
    [198] de Ruiter PC, Neutel A, Moore JC. Energetics, patterns of interaction strengths, andstability in real ecosystems [J].1995, Science,269:1257-1260.
    [199] Power ME, Tilman D, Estes JA, et al. Challenges in the quest for keystones[J].BioScience,1996,46:609-620.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700