人体热舒适客观评价指标研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体热舒适评价一直是人体热舒适研究中一个相当重要的内容。到目前为止,对人体热舒适程度评价主要以热舒适主观评价方法为主,即采用热舒适问卷调查的形式直接询问人们的热感觉与热舒适程度。热舒适主观评价方法是一种较为可靠简便的人体热舒适评价方法,然而,其评价结果依赖于受试者的主观判断,因此受人的主观因素影响较大。
     人体平均皮肤温度(简称“平均皮温”)与人体热感觉、热舒适关系密切,而且平均皮肤温度的测量及计算都比较简单。本文将从生理学角度对人体平均皮温作为热舒适客观评价指标进行深入研究,研究将建立基于人体平均皮温的有效的人体热舒适客观评价方法,为人体热舒适生理机理研究提供理论基础。
     本文的研究思路为:通过心率变异性分析为平均皮肤温度作为人体热舒适客观评价指标提供生理依据;在此基础上,对各种平均皮肤温度测试方法进行评价,得出最适合用于人体热舒适评价的测试方法;根据平均皮肤温度(由最佳测试方法得出)对人体热舒适程度进行评价,探讨基于平均皮温对人体热舒适进行评价的一般方法;最后,通过一个应用实例来反映平均皮肤温度评价指标的实际应用。
     具体研究工作如下:
     对33个受试者在不同空调温度(21~30°C)下的皮肤温度与心率变异性进行测量,同时对受试者的热感觉和热舒适程度进行主观问卷调查。对不同热舒适状态下受试者的心率变异性进行分析,结合人体体温调节活动,探讨人体热舒适机理,从生理角度证明了人体平均皮温作为评价人体热舒适的客观指标确实是可行的。
     对26种现有的平均皮温测试方法(其中最大皮温测点数达17)进行评价,得出了最佳的适用于人体热舒适评价的测试方法。同时根据人体21个部位间的皮肤温度变化及分布情况,给出了一种新的适用于人体热舒适评价的平均皮温测试方法。
     将受试者热舒适程度分为3个等级:冷不舒适、热舒适、暖不舒适,采用马氏距离判别法,对不同热舒适等级下平均皮温样本进行分析,得出了根据人体平均皮温评价热舒适程度的评判法则。评价结果表明,该方法对多数人的热舒适等级进行了正确判断,尤其是对热舒适这一等级的判断,准确率可达90%。
     最后,引入本文提出的平均皮温作为评价指标来确定热环境舒适温度,在此基础上,采用本文修正的房间式空调器气流组织性能评价方法来评价落地式房间空调器的气流组织性能,得出了其出风口可调叶片的最佳倾角。
     本文的研究表明,人体平均皮温确实可作为一个合理、有效的人体热舒适客观评价指标,评价结果将不再完全依赖于受试者的主观判断,将更为客观,同时揭示了人体平均皮肤温度与热舒适程度的联系。
In the study on human thermal comfort, the evaluation of thermal comfort is an important basis. Up to now, human thermal comfort is usually evaluated using subjective evaluation method (with a thermal comfort questionnaire). The subjective evaluation method is reliable and simple at most occasions. However, its evaluation result depends on subjects’judgments, therefore, the method is influenced by human subjective factors.
     Human mean skin temperature (MST) was closely related to thermal comfort and thermal sensation. Moreover, measurement of MST is simple. Therefore, in this study, MST was proposed as an objective index to evaluate human thermal comfort. This paper established an objective evaluation method of thermal comfort based on human MST.
     In this paper, analysis of human heart rate variability (HRV) was performed to provide a physiological proof for MST as an objective evaluation index of thermal comfort. Based on the proof, various MST calculation methods were evaluated, and the optimal calculation method was obtained. According to the MST samples calculated with the optimal calculation method, subjects’thermal comfort levels were evaluated, and a universal evaluation method was proposed. At last, application of the objective evaluation of thermal comfort based on human MST was discussed.
     The present work was described as follows.
     33 subjects’skin temperatures and HRV were measured at different environment temperatures (21~30°C). Also, their thermal sensation and thermal comfort were investigated with subjective questionnaire.
     Related with thermoregulation, the mechanism of human thermal comfort was discussed based on analysis of HRV. The results indicate that MST can be taken as an objective index to evaluate thermal comfort.
     The existing 26 types of MST calculation methods (the maximum of measurement sites is 17) were evaluated, and the most suitable calculation method of mean skin temperature for evaluation of human thermal comfort was obtained. Also, a new MST calculation method was proposed according to the distribution and change of 21 local skin temperatures.
     Subjects’thermal comfort was divided into three levels, including cold discomfort, comfort and warm discomfort. Based on the subjects’MST at each level, an evaluation rule of thermal comfort was obtained using Mahalanobis distance discrimination. The results indicated that most subjects’thermal comfort levels were correctly evaluated according to the rule, especially for the comfort level, the accuracy reached 90%.
     Based on the evaluation results of thermal comfort using MST, the indoor air diffusion performance of a floor-standing type air-conditioner was evaluated and the best inclination angles of the vanes in the outlet was determined for an optimal air diffusion. At last, the future work was presented.
     This study indicates that human MST can be used as a reasonable and effective objective index for evaluation of thermal comfort. The evaluation result does not depend on subjects’subjective judge on thermal comfort. Moreover, it relates to human physiological state, thus, can provide a basis for study on the mechanism of thermal comfort.
引文
[1] TafféP. A qualitative response model of thermal comfort. Building and Environment, 1997, 32(2): 115-121
    [2] Zhang H, Huizenga HC, Arens E, etc. Considering individual physiological differences in a human thermal model. Journal of Thermal Biology, 2001, 26: 401-408
    [3] Heidari S, Sharples S. A comparative analysis of short-term and long-term thermal comfort surveys in Iran. Energy and Buildings, 2002, 34: 607-614
    [4] Karyono TH. Report on thermal comfort and building energy studies in Jakarta—Indonesia. Building and Environment, 2000, 35: 77-90
    [5] Gadi BM. A new computer program for the prediction and analysis of human thermal comfort. Applied Energy, 2000, 65: 315-320
    [6] Cheong KWD, Djunaedy E, Chua LY, etc. Thermal comfort study of an air-conditioned lecture theatre in the tropics. Building and Environment, 2003, 38(1): 63-73
    [7] Kandjov MI. Thermal stability of the human body under environmental air conditions. Journal of Thermal Biology, 1998, 23(2):117-121
    [8] Ivanov KP. Subject of temperature control and the main function of thermoregulation of an organism. Journal of Thermal Biology, 1999, 24: 415-421
    [9] Houghton FC, Yaglou CP. Determining lines of equal comfort. ASHRAE Trans., 1923, 28: 163-176, 361-384
    [10] Fanger P.O. Calculation of thermal comfort. ASHRAE Trans. 1967, 73: 5-6
    [11] ASHRAE. ANSI/ASHRAE Standard 55-1992, Thermal Environmental Conditions for Human Occupancy. Atlanta, GA, 1992
    [12] ASHRAE. Thermal comfort. ASHRAE Handbook: Fundamentals. Atlanta, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc, 2001
    [13] Hensel H. Thermoreception and temperature regulation. New York: Academic Press Inc, 1981
    [14]陈晓春,王元.热舒适的生理机制及其与健康的关系.环境与健康杂志, 2002, 19: 411-412
    [15]孙碧英,董丽,叶晓江,等.热舒适的生理机制.上海第二医科大学学报, 2005, 25(10): 1041-1044
    [16]赵荣义.关于“热舒适”的讨论.暖通空调, 2000, 30(3): 25-26
    [17] Gagge AP. Introduction to thermal comfort. INSERM, 1977,75:11-24
    [18] Fanger PO. Thermal comfort. New York: McGraw Hill, 1972
    [19]王昭俊.关于“热感觉”和“热舒适”的讨论.建筑热能通风空调, 2005, 24(2): 93-94
    [20]纪秀玲,李国忠,戴自祝.室内热环境舒适性的影响因素及预测评价研究进展.卫生研究, 2003, 32(3): 295-298
    [21] McIntyre DA. Indoor Climate. London: Applied Science Publishers LTD, 1980
    [22] L.巴赫基著.付忠诚等译.房间的热微气候.北京:中国建筑工业出版社, 1987
    [23] Givoni, Man B, Climate and architecture. London: Applied Science Publishers, 1976
    [24]闫斌等.舒适性空调室内设计参数的优化与节能.全国暖通空调学术年会论文集, 1988
    [25]连之伟,冯海燕.空调房间热环境模糊综合评判.暖通空调, 2001, 31(5): 15-18
    [26] Parsons KC. The effects of gender, acclimation state, the opportunity to adjust clothing and physical disability on requirements for thermal comfort. Energy and Buildings, 2002, 34(6): 593-599
    [27] Humphreys MA. Thermal comfort temperatures worldwide - the current position. Renewable Energy, 1996, 8(1-5): 139-144
    [28] Nicol JF, Raja IA, Allaudin A, etc. Climatic variations in comfortable temperatures: the Pakistan projects. Energy and Buildings, 1999, 30(3): 261-279
    [29] Rahmanl SA. Air flow and thermal comfort simulation studies of wind ventilated classrooms in malaysia. Renewable Energy, 1996, 8(1-5): 264-267
    [30] Srinavin K, Mohamed S. Thermal environment and construction workers’productivity: some evidence from Thailand. Building and Environment, 2003, 8(2): 339-345
    [31] Sharples S, Malama A. A thermal comfort field survey in the cool season of Zambia. Building and Environment, 1997, 32(3): 237-243
    [32] Ealiwa MA, Taki AH, Howarth AT, etc. An investigation into thermal comfort in the summer season of Ghadames, Libya. Building and Environment, 2001, 36(2): 231-237
    [33] Ouertani A, Ghrab N, Gharbi L. Optimal design of buildings for comfort achievement. Renewable Energy, 1998, 15(1-4): 461-465
    [34] Nakano J, Tanabe S, Kimura K. Differences in perception of indoor environment between Japanese and non-Japanese workers. Energy and Buildings, 2002, 34(6): 615-621
    [35] H?ppe P. Different aspects of assessing indoor and outdoor thermal comfort. Energy and Buildings, 2002, 34(6): 661-665
    [36] Bedford T. The warmth factor in comfort at work. Rep Industr Health Res, 1936,76(5): 45-60
    [37] ISO 7730. Moderate thermal environments - Determination of the PMV and PPD indices and the specification of conditions for thermal comfort, 2nd ed, Geneva, International Standards Organization, 1994
    [38]王昭俊,张志强,廉乐明.热舒适评价指标及冬季室内计算温度探讨.暖通空调, 2002, 32(2): 26-28
    [39]刘念雄,秦佑国.建筑热环境.北京:清华大学出版社, 2005
    [40] Stolwijk JAJ, Hardy JD. Temperature regulation in man– a theoretical study. Pdugers Archiv Ges. Physiol, 1966, 291: 129-162
    [41] Huizenga C, Zhang H, Arens E. A model of human physiology and comfort for assessing complex thermal environments. Building and Environment, 2001, 36 (6): 691-699
    [42] Tanabe S, Kobayashi K, Nakano J, etc. Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy and Buildings, 2002, 34: 637-646
    [43] Gagge AP, Fobelets AP, Berglund LG. A standard predictive index of human response to the thermal environment. ASHRAE Transactions, 1986, 92(2): 709-731
    [44]连之伟,冯海燕.建筑室内热环境的模糊评判模型.上海交通大学学报, 2002, 36(2): 169-171
    [45]赵博,连之伟,周湘江等.基于神经网络的室内热舒适评判模型.哈尔滨工业大学学报, 2003, 35 (12): 1436-1438
    [46] Liu W, Lian Z, Zhao B. A neural network evaluation model for individual thermal comfort. Energy and buildings, 2007, 34: 637-646
    [47]纪秀玲,李国忠,戴自祝.室内热环境舒适性的影响因素及预测评价研究进展.卫生研究, 2003, 32(3): 295-298
    [48]徐小林.重庆夏季室内热环境对人体生理指标及热舒适的影响研究. [硕士学位论文].重庆:重庆大学, 2005
    [49]欧阳骅.服装卫生学.北京:人民军医出版社, 1985
    [50]沈晋明.西德人体舒适性研究概况.暖通空调. 1990,20(4): 25-26
    [51] Bulcao CF, Frank SM, Raja SN, etc. Relative contribution of core and skin temperatures to thermal comfort in humans. Journal of Thermal Biology, 2000, 25: 147-150
    [52] Huizenga C, Zhang H, Arens E, etc. Skin and core temperature response to partial- and whole-body heating and cooling. Journal of Thermal Biology, 2004, 29: 549-558
    [53] Mohr E, Langbein J, Nurnberg G. Heart rate variability a noninvasive approach tomeasure stress in calves and cows. Physiology & Behavior, 2002, 75: 251-259
    [54] Hansen AL, Johnsen BH, Thayer JF. Vagal influence on working memory and attention. International Journal of Psychophysiology, 2003,48: 263–274
    [55]王正伦,杨磊,丁嘉顺.心率变异性在脑力负荷评价中的应用.中华劳动卫生职业病杂志, 2005, 23(3): 182-184
    [56] Costa F, Lavin P, Robertson D, etc. Effect of neurovestibular stimulation on autonomic regulation. Clin. Autonom, Res. 1995, 5: 289–293
    [57] Jauregui-Renaud K, Yarrow K, Oliver R, etc. Effects of caloric stimulation on respiratory frequency and heart rate and blood pressure variability. Brain Research Bulletin, 2000,53: 17-23
    [58]叶晓江.人体热舒适机理及应用研究. [博士学位论文].上海:上海交通大学, 2005
    [59]吕永达,霍仲厚.特殊环境生理学.北京:军事医学科学出版社, 2003
    [60]伍国锋,张文渊.脑电波产生的神经生理机制.临床脑电学杂志, 2000, 9(3): 188-190
    [61]袁全.噪声和音乐对脑电功率谱的影响.航天医学与医学工程, 2000, 13(6): 401-404
    [62]刘洋,陈庆官.脑电及在人体感觉评价中的应用.苏州大学学报(工科版), 2004, 24(2): 55-57
    [63] Kanosue K, Sadato N, Okada T, etc. Brain activation during whole body cooling in humans studied with functional magnetic resonance imaging. Neuroscience Letters, 2002, 329(2): 157-160
    [64] Deboer T, Tobler I. Temperature dependence of EEG frequencies during natural hypothermia. Brain Research, 1995, 670(2): 153-156
    [65] Deboer T. Electroenphalogram theta frequency changes in parallel with euthermic brain temperature. Brain Research, 2002, 930(3): 212-215
    [66] Chang PF, Arendt-Nielsen L, Chen ACN. Dynamic changes and spartial correlation of EEG activities during cold pressor test in man. Brain Research Bulletin, 2002, 57(5): 667-675
    [67]李世明.肌电测量技术的应用.中国临床康复, 2006, 10(41): 149-151
    [68]王伟,刘旭锋,苗丹民,等.情绪稳定性与Sternberg认知作业静态肌电及皮温的关系.中国临床康复, 2004, 8(6): 1084-1085
    [69]徐丰彦,张镜如.人体生理学(第二版).北京:人民卫生出版社, 1989
    [70]刘高燕.出汗与健康.解放军健康, 2004, (6): 38-39
    [71]邱曼,武建民,常绍勇,等.不同环境温度条件下不同活动强度人体出汗调节机制的探讨.中国应用生理学杂志, 2005, 21(1): 90-94
    [72]王正,姚云云,张红静,等.大学生皮肤电阻实验设计与研究.医学教育探索, 2005, 4(3): 153-157
    [73]吴国春,李文石.皮肤电阻测量X-Y指示器.哈尔滨师范大学自然科学学报, 2002, 18(4): 24-27
    [74]嵇赟喆,高屹,王晓杰,等,空气流速对人体热舒适影响的研究,兰州大学学报(自然科学版), 2003, 39, 95-99
    [75]李俊,张渭源,王云仪,人体着装部位间皮肤冷感受之差异性研究,东华大学学报(自然科学版), 2002, 28, 13-18
    [76] Cheonga KWD, Yua WJ, Sekhara SC, etc., Local thermal sensation and comfort study in a field environment chamber served by displacement ventilation system in the tropics, Building and environment, 2007, 42, 525-533
    [77]沈毅,严日树.医学统计学.上海:上海医科大学出版社, 1999
    [78]上海第一医学院卫生统计学教研组.医学统计方法.上海:上海科学技术出版社, 1979
    [79]郭继红,张萍.动态心电图学.北京:人民卫生出版社, 2003
    [80] Pomeranz B, Macaulay RJB, Caudill MA, etc. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol, 1985, 248: H151–H3 (Heart Circ Physiol, 17)
    [81] Pagani M, Lombardi F, Guzzetti S, etc. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res, 1986, 59: 178–193
    [82] Malliani A, Pagani M, Lombardi F, etc. Cardiovascular neural regulation explored in the frequency domain. Circulation, 1991,84: 482-491
    [83]吕国蔚.医学神经生物学.北京:高等教育出版社, 2000
    [84] Kataoka Y, Yoshida F. The change of hemodynamics and heart rate variability on bathing by the gap of water temperature. Biomedicine & Pharmacotherapy, 2005,59: S92-S99
    [85] Jin X.J, Zhou D.B, Li D.L. Physiology. Beijing: Military Medicine Science Press, 1999
    [86] Iwasea S, Ikeda T, Kitazawa H, etc. Altered response in cutaneous sympathetic outflow to mental and thermal stimuli in primary palmoplantar hyperhidrosis. Journal of the Autonomic Nervous System, 1997, 64: 65-73
    [87] Sawasaki N ,Iwasea S, Manoa T. Effect of skin sympathetic response to local or systemic cold exposure on thermoregulatory functions in humans. AutonomicNeuroscience: Basic and Clinical, 2001, 87: 274–281
    [88] Lee HM, Cho CK., Yun MH, etc. Development of a temperature control procedure for a room air-conditioner using the concept of just noticeable difference (JND) in thermal sensation. International Journal of Industrial Ergonmics, 1998, 22: 207-216
    [89] Burton AC. Human calorimetry. II. The average temperature of the tissue of the body. J Nutr, 1935, 9: 261–280
    [90] Houdas Y, Ring EJJ. Human body temperature. New York: Plenum Press, 1982
    [91] Ramanathan NL. A new weighting system for mean surface temperature of the human body. J Appl Physiol, 1964, 19: 531-533
    [92] Mitchell D, Wyndham CH. Comparison of weighting formula for calculating mean skin temperature. J Appl Physiol, 1969, 26: 616-622
    [93] Hardy JD, DuBois EF. The technic of measuring radiation and convection. J Nutr, 1938, 15: 461-475
    [94] Gagge AP, Nishi Y. Heat exchange between human skin surface and thermal environment. In: Lee DHK (ed) Handbook of physiology. American Physiological Society, Bethesda, Md., 1977: 69-92
    [95] Nadel ER, Mitchell JW, Stolwijk JAJ. Differential thermal sensitivity in the human skin. Pflügers Arch, 1973, 340:71–76
    [96] Crawshaw LI, Nadel ER, Stolwijk JAJ, etc. Effect of local cooling on sweat rate and cold sensation. Pflügers Arch, 1975, 354:19-27
    [97] Stolwijk JAJ, Hardy JD. Partitional calorimetric studies of response of man to thermal transients. J Appl Physiol 1966, 21: 967-977
    [98] ISO 9920. Thermal environment– estimation of the thermal characteristics of a clothing ensemble. Geneva: International Organization for Standardization, 1992
    [99] ISO 9886. Evaluation of thermal strain by physiological measurements. Geneva: International Organization for Standardization, 1992
    [100] Choi JK, Miki K, Sagawa S. Evaluation of mean skin temperature formulas by infrared thermography. Int J Biometeorol, 1997, 41: 68-75
    [101]孙振球.医学统计方法.北京:人民卫生出版社, 2002
    [102]盛骤,谢式千,潘承毅.概率论与数理统计.北京:高等教育出版社, 1997
    [103]朱勇华,邰淑彩,孙韫玉.应用数理统计.武汉:武汉水利电力大学出版社, 2000
    [104]张尧庭,方开泰.多元统计分析引论.北京:科学出版社, 1999
    [105]陆守曾.医学统计学.北京:中国统计出版社, 2002
    [106]陈启光.医学统计学.南京:东南大学出版社, 2005
    [107]连之伟,马仁民.下送风空调原理与设计.上海:上海交通大学出版社, 2006
    [108] Hanna R. The relationship between thermal comfort and user satisfaction in hot dry climates. Renewable Energy, 1997, 10(4): 559-568
    [109] ASHRAE. ASHRAE Standard 62. Ventilation for Acceptable Indoor Air Quality. American Society of Heating, Refrigeration and Air-conditioning Engineers, Atlanta. GA, USA, 1989
    [110] Zhang L, Chow TT, Fong KF, etc. Comparison of performances of displacement and mixing ventilations. Part I: thermal comfort. International Journal of Refrigeration, 2005, 28: 276-287
    [111] Sekhar SC, Ching CS. Indoor air quality and thermal comfort studies of an under-floor air-conditioning system in the tropics. Energy and Building, 2002, 34: 431-444
    [112] Imanari T, Omori T, Bogaki K. Thermal comfort and energy consumption of the radiant ceiling panel system. Comparison with the conventional all-air system. Energy and Buildings, 1999, 30: 167-175
    [113] Pan CS, Chiang HC, Yen MC, etc. Thermal comfort and energy saving of a personalized PFCU air-conditioning system. Energy and Buildings, 2005,37: 443–449
    [114] Chung KC, Lee CY. Predicting Air Flow and Thermal Comfort in an Indoor Environment under Different Air Diffusion Models. Building and Environment, 1996, 31: 21-26
    [115] Bojic M, Yik F, Lo TY. Locating air-conditioners and furniture inside residential flats to obtain good thermal comfort. Energy and Buildings, 2002, 34: 745-751
    [116]赵荣义,范存养,薛殿华,等.空气调节.北京:中国建筑工业出版社, 1994
    [117] Gan G. Evaluation of room air distribution systems using computational fluid dynamics. Energy and Buildings, 1995, 23: 83-93
    [118] Rydberg J, Norback P. Air distribution and draft. ASHVE Transactions, 1949, 55: 225-240
    [119] Koestel A, Tuve GL. Performance and evaluation of room air distribution systems. ASHRAE Transactions, 1955, 61: 533-550
    [120] ASHRAE. ASHRAE Applications Handbook (SI). HOTELS, MOTELS, AND DORMITORIES. Atlanta, GA, 2003
    [121]中国机械工业部第十设计研究院.空气调节设计手册.北京:中国建筑工业出版社, 1983
    [122] Abanto J, Barrero D, Reggio M, etc. Airflow modeling in a computer room. Building and Environment, 2004, 39:1393-1402
    [123] Teodosiu C, Hohota R, Rusaouen G, etc. Numerical prediction of indoor air humidity and its effect on indoor environment. Building and Environment, 2003, 38: 655-664
    [124] Hangan H, McKenty F, Gravel L, etc. Case study: Numerical simulations for comfort assessment and optimization of the ventilation design for complex atriums. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89: 1031-1045
    [125] Nielsen PV. Computational fluid dynamics and room air movement. Indoor Air, 2004, 14: 134-143
    [126] Fluent Inc. Fluent 6.0. user’s guide. Fluent Inc, 2001
    [127] Fluent Inc. Gambit 2.0. user’s guide. Fluent Inc, 2001
    [128]陶文铨.数值传热学(第2版).西安:西安交通大学出版社, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700