用户名: 密码: 验证码:
植被退化雷竹林养分响应及其化学计量特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷竹(Phyllostachys praecox Z.D. Chu et C.S. Chao f. prevelnalis)是一种优良的栽培笋用竹种,在浙江、江西、江苏、安徽、福建等地广泛栽培。随着以冬季地表增温覆盖和施肥为核心的早产高效栽培技术的实施,雷竹林的竹笋产量和经济产出效益大大提高。但连年林地覆盖和化学肥料的长期大量施用,使得雷竹林林分结构失衡,养分代谢功能失调,竹笋产量和质量大幅度下降,竹林退化现象越来越严重。因此,如何在保证竹林经济效益稳步提升的同时维持竹林系统结构和功能的稳定性,从而实现雷竹林的可持续经营显得至关重要。本研究从雷竹林植被退化的角度入手,选择雷竹原产地浙江省临安市以及重要引种地之一江西省万年县的雷竹试验林,进行雷竹林植被退化等级划分,在对雷竹林植被退化进行科学定位评价的基础上,选择不同退化程度雷竹林进行土壤—植被系统不同组分养分及其化学计量特征研究,探讨土壤—植被系统内土壤、竹叶、竹鞭在抽枝换叶期、行鞭期、笋芽分化期、孕笋出笋期年生长周期内的养分时空动态变化规律,同时兼顾竹叶养分内、外循环规律,细根养分储量在不同退化程度雷竹林养分循环中的特征响应,并通过研究退化雷竹林系统C、N、P养分化学计量特征加以验证,以期得出雷竹林退化的限制性养分元素及其敏感响应期,从而为退化雷竹林修复工作的开展奠定理论基础。具体研究结论如下:
     1、根据林分结构因子和竹笋产量对不同经营程度雷竹林进行植被退化评价,将雷竹试验林划分为未退化、轻度退化、中度退化和重度退化四类。随退化程度的加重,立竹平均胸径以及竹笋产量呈逐渐降低的趋势,2年生立竹比例逐渐降低,而3年生及其以上老龄竹的比例逐渐升高,重度退化雷竹林的新竹比例最低,仅为18.67%,林分自我更新能力降低。立竹年龄结构、立竹胸径和竹笋产量是响应人工经营雷竹林植被退化程度的主要指标。
     2、不同退化程度雷竹林土壤—植被系统各组分养分响应特征之间差异显著,不同组分因功能不同表现出不同的养分响应特征。雷竹林土壤养分有效性水平受地表覆盖和施肥等人为经营措施影响显著,随着经营年限的延长,土壤养分含量的累积使得竹林养分代谢水平失衡,植被退化程度加剧。P、Zn养分的富集是竹林退化的显著特征,其中P素大量富集的特点在竹林笋芽分化期明显显现,而抽枝换叶期Zn素的累积是竹林退化程度加剧的又一明显特征。
     (1)雷竹林土壤有效养分含量随退化程度不同表现出明显的差异性。重度退化雷竹林土壤有机C、有效P、有效Zn含量因经营年限和地表覆盖时间的延长而显著升高,有效Mn呈降低的趋势。轻度退化雷竹林由于未进行地表覆盖,有效P含量在不同生长期均为最低值,分别为抽枝换叶期:54.82mg·kg~(-1),行鞭期:50.96mg·kg~(-1),笋芽分化期:61.92mg·kg~(-1),孕笋出笋期:13.04mg·kg~(-1),而重度退化雷竹林在相应的生长期分别为477.19mg·kg~(-1)、705.83mg·kg~(-1)、544.63mg·kg~(-1)、402.92mg·kg~(-1),分别是轻度退化雷竹林的8.71、13.85、8.80和30.89倍,可见地表覆盖导致竹林土壤P素显著升高是退化竹林的显著特征。而在雷竹林退化过程中,土壤酸化与土壤P、Zn等养分离子的积累呈显著正相关。
     (2)土壤中有效P、Zn水平是制约退化雷竹林竹叶、竹鞭中养分含量变化的关键因素。竹叶、竹鞭中P、Zn养分含量均能及时反映退化雷竹林土壤中养分含量的变化,其中笋芽分化期竹叶、竹鞭中P养分含量与土壤中Zn养分含量显著相关,抽枝换叶期竹鞭中Zn素的含量又受土壤中P养分水平的制约,不同生长期养分元素在地上、地下不同营养器官中的分配表现出明显的差异性,退化雷竹林土壤P素大量富集对雷竹林的影响与土壤中Zn素水平的升高有显著正相关关系。
     (3)叶片养分内、外循环是竹林应对养分胁迫环境的一种适应性机制,同时也是表征竹林退化程度的重要特征。未退化雷竹林生长代谢旺盛,吸收大量养分,以一种“节约保守”型的方式充分利用养分资源,而重度退化雷竹林由于受到P素胁迫的响应表现出“铺张浪费”、“奢侈”型的消费方式,叶片表现出较低的P养分再吸收效率。叶片适应性机制的存在使得养分再吸收效率与土壤中相应养分的有效性水平相关关系不显著。随着退化程度的加重,雷竹林凋落叶量呈逐渐降低的趋势,凋落叶中养分归还量与土壤中有效P、Zn水平呈显著负相关关系。
     (4)细根(直径≤2mm的根系)生物量及养分储量是表征竹林退化程度的重要指标。随着退化程度的加重,雷竹林细根生物量呈逐渐降低的趋势,未退化雷竹林在孕笋出笋期达到最高值4.68t·hm-2,而重度退化雷竹林此时达到最低值0.95t·hm-2,呈现出明显的退化特征;重度退化雷竹林细根N、P、K、Mn、Zn养分储量显著降低,细根周转速度降低,土壤中有效P、Zn含量的富集是制约细根生产的关键因素。
     3、雷竹林土壤—植被系统中各组分的C、N、P养分化学计量特征可以真实、有效地反映雷竹林的退化程度以及受养分限制状况。与未退化雷竹林相比,重度退化雷竹林土壤、叶片、细根N∶P化学计量比值显著降低,而凋落叶N∶P在抽枝换叶期和孕笋出笋期显著升高,明显地表现出竹林的退化程度;在笋芽分化期,凋落叶P素化学计量比值转而降低,表现出退化竹林P素过量积累而P养分吸收保存能力显著降低的特征。土壤、叶片的N∶P化学计量比值可以反映退化雷竹林土壤P素富集的特点;叶片、凋落叶中N、P化学计量比值可以明显表征退化雷竹林叶片对N的再吸收水平,而叶片对P的再吸收水平仅在细根N∶P变化中得以体现。
     4、退化雷竹林限制性养分元素的响应特征为退化雷竹林修复工作的开展提供理论依据。以施肥和地表覆盖为主的早产高效经营技术在实施早期有减缓植被退化、增加竹林经济产出的效果,随着经营年限的延长,养分元素尤其是P素的富集使得植被退化程度加剧。因而在退化竹林的修复过程中,应该适当减少P肥的输入,尤其在竹林生长代谢比较缓慢的笋芽分化期;考虑到土壤酸化对养分含量的影响,可以适当调节土壤酸碱度,从而改善退化竹林遭受土壤养分胁迫的局面;由于P、Zn等养分离子之间存在一定的交互作用,因而在进行竹林养分管理过程中必须兼顾到单一养分含量的变化对其他养分离子含量的影响,合理搭配养分比例,实现雷竹林可持续经营。
Phyllostachys praecox Z.D. Chu et C.S. Chao f. prevelnalis, cultivated in Zhejiang,Jiangxi, Jiangsu, Anhui, Fujian province, et al., is an excellent bamboo used for bamboo shoots.With the implementation of cultivation techniques of winter soil-surface mulching andfertilization for early shooting and high yielding, the yield of bamboo shoots and economicoutput efficiency had been greatly increased. However, with the current annual soil-surfacemulching and the long-term application of chemical fertilizer, the stand structure becameirrational, the nutrient metabolism become disorder, the quality and yield of bamboo shootsdecreased substantially. As a result, the phenomenon of degradation became more and moreserious. Therefore, it is crucial to ensure the steady increment of the economic benefit andmaintain the stability of the structure and function in the meantime so as to realize thesustainable management for P. praecox. In this paper, the evaluation of vegetation degradationdegree was conducted for experimental forests of P. praecox in the city of Lin’an, Zhejiangprovince and Wannian County in Jiangxi province. Based on the scientific evaluation ofvegetation degradation, the characteristics of nutrient and its ecological stoichiometry werestudied for different components in the soil vegetation system (SVS) of different degradationdegrees of P. praecox. Temporal-spatial variability of soil, bamboo leaf and bamboo rhizomenutrients was discussed in the annual growth cycle of refoliation and branch developmentperiod, rhizome growing period, bud differentiation period, pregnancy and emergence forshoots period. The response characteristics of internal and external nutrient cyclings forbamboo leaf, nutrient stock of fine root in the nutrient cycling of different degradation degreesof P. praecox were also given consideration, which was tested through the characteristic ofnutrients ecological stoichiometry in the system of different degradation degrees of P. praecox.The aiming of the research was to distinguish the limiting nutrient element and its sensitive responding periods which could lay a theoretical foundation for remediation. The main resultswere as follows:
     1The evaluation of vegetation degeneration for P. praecox of different degrees ofmanagement was conducted based on the factors of stand structure and bamboo shoot yield.The P. praecox testing forests were classified into four categories in terms of vegetationdegradation degree, namely, non-degraded, light-degraded, moderate-degraded andheavy-degraded. With the increasing of degradation degree, average DBH and bamboo shootyield decreased gradually. The proportion of two-year-old standing bamboo decreased whilethat of three-year-old-and-over standing bamboo increased. The heavy degradation degrees of P.praecox had the lowest proportion of new bamboo which had low self-renewal capacity. Theage structure,average diameter of breast height (DBH) and bamboo shoot yield were mainresponding indexes for different degradation degrees of P. praecox.
     2There were obvious differences among different degradation degrees of P. praecox forthe nutrients responding characteristics. Different components in SVS showed differentnutrient characteristics for different functions. With the extension of implementation years, theenrichment of nutrients made the metabolism lose balance and the degradation degree becomeaggravating. The enrichment of P, Zn elements was the critical factors for the degradation of P.praecox. The levels of soil available nutrients were affected signicificantly by the cultivationtechniques. The effect of P element appeared obviously in the period of bud differentiationwhile that of Zn element was revealed in the period of refoliation and branch development.
     (1) Soil available nutrient content show significant difference among different degradationdegrees of P. praecox. Soil organic matter, soil available P and Zn contents were increasedsignificantly while available Mn decreased for heavy-degraded forests with the extension ofyears for soil-surface mulching. Light-degraded forests of P. praecox without soil-surfacemulching had the lowest soil available P content, which were54.82mg·kg~(-1)in the period ofrefoliation and branch development,50.96mg·kg~(-1)in the period of rhizome growing,61.92mg·kg~(-1)in the period of bud differentiation,13.04mg·kg~(-1)in the period of pregnancy and emergence for shoots, while soil available P content for heavy-degraded forests of P. praecoxwere477.19mg·kg~(-1),705.83mg·kg~(-1),544.63mg·kg~(-1)and402.92mg·kg~(-1)in the correspondingperiods, which were8.71,13.85,8.80and30.89times as much as that for light-degradedforests of P. praecox. Therefore, the significant increment of soil available P content caused bysoil-surface mulching was the distinguishing feature for degraded forests of P. praecox. In theprocess of degradation, soil acidification had the significant positive correlation with theaccumulation of soil available P, Zn and other contents.
     (2) Soil available P, Zn contents were the key factors to restrict the changing of bambooleaf and bamboo rhizome nutrient contents. P, Zn contents of both bamboo leaf and rhizomecould reflect the changing of soil nutrient contents for different degradation degrees of P.praecox. In the period of bud differentiation, P content of bamboo leaf and rhizome had thesignificant correlation with soil available Zn content, while in the period of refoliation andbranch development, Zn content of bamboo rhizome was restricted by the soil available Pcontent. There was obvious differentiation between the nutrient contents of bamboo leaf andrhizome in different growing periods. The influence of the enrichment of soil P content to thenutrient metabolic level of P. praecox had a significant positive correlation with the high levelof soil Zn.
     (3) The internal and external nutrient cyclings for bamboo leaf, an adaptive mechanismunder nutrient stressed environments, were also the important feature representing thedegradation degrees of P. praecox. Non-degraded forests, with a large nutrient absorption andexuberant metabolic level, made the best of nutrient resources in a manner of “conservation”;while heavy-degraded forests of P. praecox, which had a low P nutrient resorption efficiency,showed an “extravagance” pattern of consumption under P nutrient stress. The existence ofadaptive mechanism for bamboo resulted in the non-significant correlation between thenutrient resorption efficiency and the corresponding soil nutrient availability level. With theincreasing of degradation degree, the quantity of litter leaf decreased gradually. Nutrient returnof litter leaf had a significant negative correlation with the soil P, Zn content.
     (4) Fine root biomass and nutrient stock were the vital indicators representing thedegradation degrees of P. praecox. With the increasing of degradation degree, fine root biomassshowed a gradually decreasing trend. Non-degraded forests reached the highest level of4.68t·hm-2while heavy-degraded forests got to the lowest level of0.95t·hm-2in the period ofpregnancy and emergence for shoots, which showed an obvious degradation feature. The N, P,K, Mn, Zn stock of fine root for heavy-degraded forests decreased significantly, which revealeda low rate of fine root turnover. The enrichment of soil available P and Zn contents were thekey restricting indicators for the production of fine root.
     3C, N, P stoichiometric characteristics for different components in SVS of differentdegradation degrees of P. praecox could reflect the degradation degree and the influence oflimiting nutrient element effectively for P. praecox. Compared with non-degraded forests, N: Pstoichiometric ratios of soil, leaf and fine root for heavy-degraded forests of P. praecox reducedsignificantly, while N: P of litter leaf rose in the periods of refoliation and branch developmentand emergence for shoots, which reflected the degradation degree; however, in the period ofbud differentiation, the stoichiometric characteristic of P element of litter leaf reduced whichrevealed the feature of reduction for P absorption and conservation capacity resulted from theexcessive accumulation of P element in degraded forests. N: P stoichiometric ratios of soil andleaf could reveal the characteristic of P enrichment for soil in degraded forests, while that ofleaf and litter leaf could represent leaf N resorption level of degraded forests. N: Pstoichiometric ratio of fine root gave expression to leaf P resorption level.
     4The responding characteristics of limiting nutrient element could provide a theoreticalbasis for the management countermeasures of remediation for degraded forests of P. praecox.In the early period of the implementation, cultivation techniques for early shooting and highyielding had effects of slowing down the process of vegetation degradation and increasing theeconomic output. With the extension of implementation years, the enrichment of nutrientsespecially P element made the degradation degree become aggravating. Thus, it is necessary toreduce the input of P fertilizer properly, especially in the period of bud differentiation when the level of growth and metaboly is slow for forests. In view of the effect of the soil acidificationto the changing of soil nutrient content, it is proper to adjust soil pH to improve the situation ofnutrient stress. Meanwhile, the interaction of P, Zn and other elements should be given highconsideration in the process of nutrients formulation management for degraded forests so as torealize the sustainable management for P. praecox effectively.
引文
鲍士旦.2000.土壤农化分析.第三版.北京:中国农业出版社
    蔡富春,吴志伟,谢善文等.2009.雷竹地下鞭系结构分布调查.江苏林业科技,36(1):29~30,33
    曹志洪,林先贵.2006.太湖流域土—水间的物质交换与水环境质量.北京:科学出版社
    柴振林,何建荣.2001.雷竹花期激素组成的初步研究.浙江林业科技,21(3):36~37
    柴振林,华锡奇.2003.雷竹花期营养动态研究.浙江林业科技,23(1):10~12,28
    陈国孟,鲁如坤.1993.关于测定土壤有效磷总量的研究.土壤学报,30(4):380~389
    陈礼清,赵安玖,陈正清等,2003.人工林地力衰退现状及防治对策.林业调查规划,28(1):9~12
    陈立新.2002.城市土壤质量演变与有机改土培肥作用研究.水土保持学报,16(3):36~39
    陈灵芝,陈伟烈.1995.中国退化生态系统研究.北京:中国科学技术出版社
    陈龙池,汪思龙,陈楚莹.2004.杉木人工林衰退机理探讨.应用生态学报,15(10):1953~1957
    陈双林,吴柏林,吴明等.2004.新造毛竹林林分结构年际演替规律及影响因子.浙江林学院学报,21(4):393~397
    陈双林,萧江华.2005.现代竹业栽培的土壤生态管理.林业科学研究,18(3):351~355
    陈学文,张兴义,隋跃宇等.2008.利用空间移位法研究东北黑土pH季节变化及其影响因素.农业现代化研究,29(3):365~367
    程徐冰,韩士杰,张忠辉等.2011.蒙古栎不同冠层部位叶片养分动态,应用生态学报,22(9):2272~2278
    崔国发.1996.人工林地力衰退机理及其防止对策.世界林业研究,(5):61~69
    单建平,陶大立.1992.国外对树木细根的研究动态.生态学杂志,11(4):46~49
    丁国泉,于立忠.2009.施肥对日本落叶松人工林土壤化学计量学特性影响.第二届中国林业学术大会—S4人工林培育理论与技术论文集,215~221
    丁兴萃.2006.矿质元素在保护地栽培促进早竹开花中的影响.浙江林业科技,26(4):10~14,38
    董林根,姜小娟,方茂盛.1998.雷竹覆盖栽培林地土壤微生物的初步研究.浙江林学院学报,15(3):236~239
    杜凡,薛嘉榕,杨宇明等.2000.十五年来云南竹子的开花现象及其类型研究.林业科学,36(6):57~69
    杜晓军,高贤明,马克平.2003.生态系统退化程度诊断:生态恢复的基础与前提.植物生态学报,27(5):700~708
    杜有新,潘根兴,李恋卿.2010.贵州中部喀斯特山地不同植被生态系统细根生态特征及养分储量.应用生态学报,21(8):1926~1932
    段桂林.2011.留养母竹与修枝对麻竹竹笋产量的影响研究.林业调查规划,36(3):81~83
    范少辉,肖复明,汪思龙等.2009.毛竹林细根生物量及其周转.林业科学,45(7):1~6
    方伟,何钧潮,卢学可.1994.雷竹早产高效栽培技术.浙江林学院学报,11(2):121~128
    冯宗炜,陈楚莹,王开平等.1985.亚热带杉木纯林生态系统中营养元素的积累、分配和循环的研究.植物生态学与地植物学丛刊,9(4):245~256
    高旺盛,陈源泉,石彦琴等.2007.中国集约高产农田生态健康评价方法及指标体系初探.中国农学通报,23(10):131~137
    格日乐,姚云峰.1998.土地退化防治综述.内蒙古林学院学报,20(2):47~52
    顾也萍,罗爱武,张前达等.1992.皖南优质烟基地的土壤环境.安徽师大学报(自然科学版),15(4):76~83
    桂东伟,雷加强,曾凡江等.2010.绿洲化进程中不同利用强度农田对土壤质量的影响.生态学报,30(7):1780~1788
    郭子武.2008.笋用竹林地有机农药污染土壤微生物修复机理研究.中国林业科学研究院博士学位论文
    何光训.2002.连栽杉木林地土壤肥力退化的症结.浙江林学院学报,19(1):100~103
    何奇江,汪奎宏,华锡奇等.2005.雷竹开花期内源激素、氨基酸和营养成分含量变化.林业科学,41(2):169~173
    洪游游,陈双林,吴柏林.2005.竹林可持续经营及主要栽培措施的探讨.华东森林经理,19(3):20~22
    胡国松.2000.烤烟营养原理.北京:科学出版社
    黄芳,金炳华,孙达等.2011.集约经营雷竹林序列的土壤磷素含量与组分.土壤学报,48(2):347~355
    黄建辉,陈灵芝.1991.北京百花山附近杂灌丛的化学元素含量特征.植物生态学与地植物学学报,15(3):224~233
    黄石竹,张彦东,王政权.2006.树木细根养分内循环.生态学杂志,25(11):1395~1399
    江泽慧.2002.世界竹藤.沈阳:辽宁科学技术出版社
    江祖潭,方伟,何钧潮.1995.雷竹笋用林高产高效栽培技术.北京:中国林业出版社
    姜培坤,王安国.2000.丰产雷竹林地土壤养分分析.竹子研究汇刊,19(4):50~53
    姜培坤,徐秋芳,储家淼等.2006.雷竹早产高效栽培过程中土壤养分质量分数的变化.浙江林学院学报,23(3):242~247
    姜培坤,徐秋芳,钱新标.1999.雷竹林地覆盖增温过程中土壤酶活性的动态变化.林业科学研究,12(5):548~551
    姜培坤,徐秋芳.2005.不同施肥雷竹林土壤重金属含量的动态分析.水土保持学报,19(1):168~170,180
    姜培坤,徐秋芳.2004.雷竹笋硝酸盐含量及其与施肥的关系.浙江林学院学报,21(1):10~14
    姜培坤,徐秋芳.2006.雷竹早产高栽培过程中土壤养分质量分数的变化.浙江林学院学报,23(3):242~247
    姜培坤,徐秋芳.2005.施肥对雷竹林土壤活性有机碳的影响.应用生态学报,16(2):253~256
    姜培坤,许小婉.2000.雷竹林地土壤酶活性研究.浙江林学院学报,17(2):132~136
    姜培坤,俞益武,金爱武等.2000.丰产雷竹林地土壤养分分析.竹子研究汇刊,19(4):50~53
    姜培坤,俞益武,张立钦等.2000.雷竹林地土壤酶活性研究.浙江林学院学报,17(2):132~136
    姜培坤,张瑞华.1999.雷竹林地覆盖增温过程中土壤化学性质的动态变化.浙江林学院学报,16(2):123~130
    姜培坤,周国模,徐秋芳.2002.雷竹高效栽培措施对土壤碳库的影响.林业科学,38(6):6~11
    姜勇,张玉革,梁文举等.2003.耕地土壤中交换态钙镁铁锰铜锌相关关系研究.生态环境,12(2):160~163
    金爱武,周国模,郑炳松等.1999.雷竹保护地栽培林分退化机制的初步研究.福建林学院学报,19(1):94~96
    阚文杰,吴启堂.1994.一个定量综合评价土壤肥力的方法初探.土壤通报,25(6):245~247
    黎茂彪,肖华英.2002.糙花少穗竹笋产量与林分状况关系初探.福建林业科技,29(4):34~36
    李博.生态学.北京:高等教育出版社,2000
    李国栋,刘国群,庄舜尧等.2010.不同种植年限下雷竹林土壤的有机质转化.土壤通报,(4):845~849
    李娟.2003.烤烟钾、钙、镁互作效应的研究.福建农林大学硕士学位论文
    李灵.2004.不同退化林地土壤微生物生物量动态.福建农林大学硕士学位论文
    李凌浩,林鹏,邢雪荣.1998.武夷山甜槠林细根生物量和生长量研究.应用生态学报,9(4):337~340
    李玉霖,毛伟,赵学勇等.2010.北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究.环境科学,31(8):1716~1725
    李兆华,赵丽娅,卢进登.2004.“易根”:竹子群体开花的生态诠释.世界竹藤通讯,2(4):21~23
    李智勇.2001.商品人工林可持续经营的环境成本研究.中国农业大学博士学位论文
    李忠佩,程励励.1994.退化红壤的有机质状况及施肥影响的研究.土壤,26(2):70~76
    李子川,庄舜尧,桂仁意等.2011.不同集约栽培年限下雷竹林土壤化学性质与生理毒性铝的分布.浙江农林大学学报,28(6):837~844
    理永霞,茶正早,罗微等.2009.3种桉树幼苗叶片养分变化及其转移特性.林业科学,45(1):152~157
    梁爱荣,杨冬生,江心.2000.楠竹枯黄(死)与土壤营养关系的研究(Ⅱ).竹子研究汇刊,19(1):68~73
    梁淑敏,谢瑞芝,李朝苏等.2011.成都平原不同耕作模式的农田效应研究—II.土壤综合质量评价.中国农业科学,44(4):738~744
    廖利平.1994.国外林木养分内循环研究.生态学杂志,13(6):34~38
    林海明,张文霖.2005.主成分分析与因子分析详细的异同和SPSS软件.统计研究,(3):65~69
    林英华.2003.长期施肥对农田土壤动物群落影响及安全评价.中国农业科学院博士学位论文
    刘波,王力华,阴黎明等.2010.两种林龄文冠果叶N、P、K的季节变化及再吸收特征.生态学杂志,29(7):1270~1276
    刘国华,傅伯杰,陈利顶等.2000.中国生态退化的主要类型、特征及分布.生态学报,20(1):13~19
    刘国群,庄舜尧,李国栋等.2008.不同种植年限下雷竹林土壤中铝的形态变化.土壤,40(6):1013~1016
    刘菊秀,余清发,褚国伟等.2001.鼎湖山主要森林类型土壤pH值动态变化.土壤与环境,10(1):39~41
    刘力,潘锡东.1994.早竹高产笋用林及其土壤理化性质分析研究.竹子研究汇刊,13(3):38~43
    刘丽,陈双林,李艳红.2010.基于林分结构和竹笋产量的有机材料覆盖雷竹林退化程度评价.浙江林学院学报,27(1):15~21
    刘丽,陈双林.2009.有机材料林地覆盖对雷竹林生态系统的负面影响研究综述.广西植物,29(3):327~330
    刘丽.2009.林地覆盖雷竹林退化特征及土壤改良研究.中国林业科学研究院硕士学位论文
    刘敏,张合平,徐刚标等.2008.松林生态系统退化评价及其与马尾松毛虫灾害关系的研究.福建林业科技,35(1):35~44
    刘秀清.2008.栗茶间作模式对土壤酶活性和土壤养分含量的影响.安徽农业大学硕士学位论文
    刘莹,盖钧镒,吕彗能.2003.作物根系形态与非生物胁迫耐性关系的研究进展.植物遗传资源学报,4(3):265~269
    刘增文,段而军,付刚等.2008.秦岭北山几种典型人工纯林土壤性质极化问题研究.土壤,40(6):997~1001
    刘增文,王乃江,李雅素等.2006.森林生态系统稳定性的养分原理.西北农林科技大学学报(自然科学版),34(12):129~134
    龙健,黄昌勇,李娟.2002.喀斯特山区土地利用方式对土壤质量演变的影响.水土保持学报,16(1):76~79
    楼一平,盛炜彤.1998.人工林长期立地生产力研究概述.世界林业研究,(5):18~25
    鲁如坤.2000.土壤农业化学分析方法.北京:中国农业科学技术出版社
    马祥庆,黄宝龙.1997.人工林地力衰退研究综述.南京林业大学学报(自然科学版),21(2):77~82
    买文选,田霄鸿,保琼莉等.2008.利用螯合—缓冲营养液对小麦苗期磷—锌关系的研究.植物营养与肥料学报,14(6):1056~1063
    孟赐福,沈菁,姜培坤等.2009.不同施肥处理对雷竹林土壤养分平衡和竹笋产量的影响.竹子研究汇刊,28(4):11~17
    聂三安,葛体达,肖和艾等.2011.不同栽培管理方式下土壤交换性盐基特征差异分析.土壤通报,42(5):1064~1069
    潘复静,张伟,王克林等.2011.典型喀斯特峰丛洼地植被群落凋落物C∶N∶P生态化学计量特征.生态学报,31(2):335~343
    潘寅辉,虞敏之,胡建军等.2006.四季竹叶面积指数与竹笋产量的关系.西南林学院学报,26(5):21~23,32
    彭少麟,刘强.2002.森林凋落物动态及其对全球变暖的响应.生态学报,22(9):1534~1544
    漆良华,张旭东,孙启祥等.2007.土壤—植被系统及其对土壤健康的影响.世界林业研究,20(3):1~8
    秦华,徐秋芳,曹志洪.2010.长期集约经营条件下雷竹林土壤微生物量的变化.浙江林学院学报,27(1):1~7
    邱燕,张鼎华.2003.南方酸性土壤磷素化学研究进展.福建稻麦科技,21(3):14~17
    沈国舫.1988.对世界造林发展新趋势的几点看法.世界林业研究,1(1):1~27
    沈国舫.1991.集约育林—世界林业研究的主要课题.世界林业研究,4(3):1~6
    沈宏,曹志洪,徐志红.2000.施肥对土壤不同C形态及C库管理指数的影响.土壤学报,37(2):166~173
    沈善敏,宇万太,张璐等.1992.杨树主要营养元素内循环及外循环研究Ⅰ.落叶前后各部位养分浓度及养分贮量变化.应用生态学报,3(4):296~301
    沈渭寿,曹学章,沈发云.2006.中国土地退化的分类与分级.生态与农村环境学报,22(4):88~93
    盛炜彤,范少辉.2004.人工林长期生产力保持机制研究的背景、现状和趋势.林业科学研究,17(1):106~115
    盛炜彤.2001.杉木林的密度管理与长期生产力研究.林业科学,37(5):2~9
    史德明,韦启潘,梁音等.2000.中国南方侵蚀土壤退化指标体系研究.水土保持学报,14(3):1~9
    史建伟,王孟本,于立忠等.2007.土壤有效氮及其相关因素对植物细根的影响.生态学杂志,26(10):1634~1639
    苏波,韩兴国,黄建辉等.2000.植物的养分利用效率(NUE)及植物对养分胁迫环境的适应策略.生态学报,2(2):335~343
    苏波,韩兴国,渠春梅等.2002.森林土壤氮素可利用性的影响因素研究综述.生态学杂志,21(2):40~46
    孙波,赵其国.1999.红壤退化中的土壤质量评价指标及评价方法.地理科学进展,18(2):118~128
    孙达,黄芳,蔡荣荣等.2007.集约经营雷竹林土壤磷素的时空变化.浙江林学院学报,24(6):670~674
    孙晓,庄舜尧,刘国群等.2010.集约经营下雷竹林土壤酸化的初步研究.土壤通报,41(6):1339~1343
    谭荣波,梅晓仁.2007.SPSS统计分析实用教程.北京:科学出版社
    田昆.2004.云南纳帕海高原湿地土壤退化过程及驱动机制.中国科学院研究生院(东北地理与农业生态研究所)博士学位论文
    同延安,高宗,刘杏兰等.1995.有机肥及化肥对土娄土中微量元素平衡的影响.土壤学报,32(3):315~319
    万猛,田大伦,樊巍.2009.豫东平原杨—农复合系统凋落物的数量、组成及其动态.生态学报,29(5):2507~2513
    王白荪,彭少麟.1997.植被生态学.北京:中国环境科学出版社
    王光剑,马光良,李呈翔等.2006.合江方竹笋产量与林分结构的相关性.林业科技开发,20(4):38~41
    王庆仁,李继云.1999.论合理施肥与土壤环境的可持续性发展.环境科学进展,7(2):116~123
    王秋兵,贾树海,丁玉荣.2004.土地退化评价方法的探讨—以辽西北农牧交错带彰武县北部为例.土壤通报,35(4):396~400
    王绍强,于贵瑞.2008.生态系统碳氮磷元素的生态化学计量学特征.生态学报,28(8):3937~3947
    王维奇,仝川,贾瑞霞等.2010.不同淹水频率下湿地土壤碳氮磷生态化学计量学特征.水土保持学报,24(3):238~242
    王希华,黄建军,闫恩荣.2004.天童常绿阔叶林若干树种的叶片营养转移研究.广西植物,24(1):81~85
    王小艺,沈佐锐.2001.农业生态系统健康评估方法研究概况.中国农业大学学报,6(1):84~90
    翁俊,徐春和.2003.光合作用氧释放机理研究进展.植物生理与分子生物学学报,29(2):83~91
    吴家森,姜培坤,盛卫星等.2009.雷竹集约栽培对周边河流水质的影响.林业科学,45(8):76~81
    吴家森,吴夏华,叶飞.2005.雷竹林营养元素分配与积累.竹子研究汇刊,24(1):29~31
    吴统贵,吴明,刘丽.2010.杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化.植物生态学报,34(1):23~28
    吴蔚东,张桃林,高超等.2001.红壤地区杉木人工林土壤肥力质量性状的演变.土壤学报,38(3):285~293
    武兰芳,欧阳竹,唐登银.2004.区域农业生态系统健康定量评价.生态学报,24(12):2740~2748
    肖洋,陈丽华,余新晓.2010.北京密云油松人工林凋落物营养元素归还特征研究.水土保持学报,24(2):112~115
    谢秉楼.2009.高效栽培雷竹林土壤水溶性有机碳、氮研究.浙江林学院硕士学位论文
    邢雪荣,韩兴国,陈灵芝.2000.植物养分利用效率研究综述.应用生态学报,11(5):785~790.
    徐冰,程雨曦,甘慧洁等.2010.内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联.植物生态学报,34(1):29~38
    徐秋芳,姜培坤,陆贻通.2008.不同施肥对雷竹林土壤微生物功能多样性影响初报.浙江林学院学报,25(5):548~552
    徐秋芳,徐建明,姜培坤.2003.集约经营毛竹林土壤活性有机碳库研究.水土保持学报,17(4):15~17
    徐仁扣,Coventry.2002.某些农业措施对土壤酸化的影响.农业环境保护,21(5):385~388
    徐涌,叶正钱,姜培坤等.2009.太湖源林区水系源头水质时空变异与原因探析.浙江林学院学报,26(5):607~612
    徐祖祥,陈丁红,李良华等.2010.临安雷竹种植条件下土壤养分的变化.中国农学通报,26(13):247~250
    阎恩荣,王希华,郭明等.2010.浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C∶N∶P化学计量特征.植物生态学报,34(1):48~57
    阎恩荣,王希华,周武.2008.天童常绿阔叶林不同退化群落的凋落物特征及与土壤养分动态的关系.植物生态学报,32(1):1~12
    杨芳,吴家森,姜培坤等.2006.不同施肥雷竹林土壤水溶性有机碳动态变化.浙江林业科技,26(3):34~37
    杨芳,徐秋芳.2003.不同栽培历史雷竹林土壤养分与重金属含量的变化.浙江林学院学报,20(2):111~114
    杨红卫.2010.毛竹林低龄化立竹结构模式探讨.华东森林经理,24(3):26~28
    杨娟,李静,宋永昌等.2006.受损常绿阔叶林生态系统退化评价指标体系和模型.生态学报,26(11):3749~3756
    杨卿,郎南军,苏志豪等.2009.土壤退化研究综述.林业调查规划,34(1):20~24
    杨万勤,张健.2008.土壤生态研究.成都:四川科学技术出版社
    杨万勤.2001.土壤生态退化与生物修复的生态适应性研究.西南农业大学博士学位论文
    杨艳生.1998.土壤退化指标体系研究.水土保持学报,4(4):44~46,71
    杨智杰,陈光水,谢锦升等.2010.杉木、木荷纯林及其混交林凋落物量和碳归还量.应用生态学报21(9):2235~2240
    姚茂和,盛炜彤,熊有强.1991.林下植被对杉木林地力的影响研究.林业科学研究,4(3):247~251
    阴黎明,王力华,刘波.2009.文冠果叶片养分元素含量的动态变化及再吸收特性.植物研究,29(6):685~691
    于福科,黄新会,王克勤等.2009.桉树人工林生态退化与恢复研究进展.中国生态农业学报,17(2):393~398
    于洪艳.2006.培肥方式对黑土区土壤氮素转化的影响.东北农业大学硕士学位论文
    余树全,姜春前,苏增建.2001.雷竹林水土流失现状及对策.当代生态农业,(Z2):134~136
    俞慎,李勇,王俊华等.1999.土壤微生物生物量作为红壤质量生物指标的探讨.土壤学报,36(3):413~422
    袁军,谭晓风,袁德义.2011.植物营养学在经济林研究中的运用.经济林研究,29(3):107~110
    袁娜.2009.覆盖雷竹林土壤生化性质及其变化动态.中国林业科学研究院硕士学位论文
    袁伟,董元华,王辉.2010.菠菜对不同施肥模式的响应及其生态化学计量学特征研究.中国农学通报,26(10):164~170
    袁渭阳,李贤伟,张健等.2009.不同年龄巨桉林土壤呼吸及其与土壤温度和细根生物量的关系.林业科学,45(11):1~8
    曾德慧,陈广生,陈伏生等.2005.不同林龄樟子松叶片养分含量及其再吸收效率.林业科学,41(5):21~27
    曾德慧,陈广生.2005.生态化学计量学:复杂生命系统奥秘的探索.植物生态学报,29(6):1007~1019
    曾莹,盖钧镒,吕彗能.2003.作物根系形态与非生物胁迫耐性关系的研究进展.植物遗传资源学报,4(3):265~269
    张建锋,邢尚军.2009.环境胁迫下刺槐人工林地土壤退化特征研究.土壤通报,40(5):1086~1091
    张俊华,常庆瑞,张佳宝.2006.不同林龄人工林对退化生态系统土壤肥力质量的影响.土壤通报,37(3):429~433
    张林,罗天祥.2004.植物叶寿命及其相关叶性状的生态学研究进展.植物生态学报,28(6):844~852
    张庆费,宋永昌,吴化前等.1999.浙江天童常绿阔叶林演替过程凋落物数量及分解动态.植物生态学报,23(3):250~255
    张如莲,李艳,刘国道等.2011.豆科绿肥对砖红壤交换性盐基组成的动态影响.热带作物学报,32(7):1282~1286
    张桃林.1999.中国红壤退化机制与防治.北京:中国农业出版社
    张文霖.2005.主成分分析在SPSS中的操作应用.市场研究,(12):31~34
    张文彦,樊江文,钟华平等.2010.中国典型草原优势植物功能群氮磷化学计量学特征研究.草地学报,18(4):503~509
    张小全,侯振宏.2003.森林退化、森林管理、植被破坏和恢复的定义与碳计量问题.林业科学,39(4):140~144
    张小全,吴可红.2001.森林细根生产和周转研究.林业科学,37(3):126~138
    章家恩,徐琪.1996.土壤生态研究的回顾及其发展趋向.长江流域资源与环境,5(3):278~283
    赵静,沈向,李欣等.2009.梨园土壤pH值与其有效养分相关性分析.北方园艺,(11):5~8
    赵平.2003.退化生态系统植被恢复的生理生态学研究进展.应用生态学报,14(11):2031~2036
    赵其国.土壤退化及其防治.土壤,1991,23(2):57~61
    赵志轩,金鑫,王凌河等.2010.基于动态因子的农田生态系统稳定性评价.华南农业大学学报,31(4):22~31
    郑仁红.2006.覆盖栽培对雷竹林衰退的化感效应研究.中国林业科学研究院硕士学位论文
    周本智,傅懋毅.2008.粗放经营毛竹林鞭系和根系结构研究.林业科学研究,21(2):217~221
    周芳纯.1996.竹林开花结实及其处理.竹类研究,25(2):19~29
    周国模,金爱武,何钧潮等.1999.覆盖保护地栽培措施对雷竹笋用林丰产性能的影响.中南林学院学报,19(2):52~54
    周国模,金爱武,郑炳松等.1998.雷竹保护地栽培林分立竹结构的初步研究.浙江林学院学报,15(2):111~115
    周国模,金爱武.1999.覆盖保护地栽培措施对雷竹笋用林丰产性能的影响.中南林学院学报,19(2):52~54
    周国模,余伟朵.1998.雷竹保护地栽培林分立竹结构的初步研究.浙江林学院学报,15(2):111~115
    周会萍,职丽娟,蔡祖国等.2009.江西吉安退化湿地松群落外貌特征分析.江西农业大学学报,31(4):690~694
    周跃.2004.山地灾害与生态工程.昆明:云南科技出版社中国农业出版社
    周跃.1999.土壤植被系统及其坡面生态工程意义.山地学报,17(3):224~229
    朱教君,李凤芹.2007.森林退化/衰退的研究与实践.应用生态学报,18(7):1601~1609
    朱教君.2002.次生林经营基础研究进展.应用生态学报,13(12):1689~1694
    朱维琴,吴良欢,陶勤南.2002.作物根系对干旱胁迫逆境的适应性研究进展.土壤与环境,11(4):430~433
    朱祖祥.1983.土壤学(上册).北京:农业出版社
    邹邦基,何雪晖.1985.植物的营养.北京:农业出版社
    Aber J, McDowell W, Nadelhoffer K, et al..1998. Nitrogen saturation in temperate forest ecosystems.BioScience,48:921~934
    Adamas M B, Campbell R G, Allen H L, et al..1987. Root and foliar nutrient concentrations in loblolly pine:Effects of season, site and fertilization. Forest Science,33:984~996
    Aerts R, Chapin FS III.2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes andpatterns. Advances in Ecological Research,30:1~67
    Aerts R.2003. Nrtiogen Partitioning between resorption and decomposition pathways: a trade-off betweennitrogen use efficiency and litter decomposition?. Oikos,80:603~605
    Alexander M.1971. Agriculture responsibility in establishing soil quality criteria, in environmentalimprovement-agricultural challenge in the seventies. Washington D C: National Academy of Sciences
    Arrouays D, Deslais W, Badeau V.2001. The carbon content of topsoil and its geographical distribution inFrance. Soil Use and Management,17(1):7~11
    Batjes N H.1996. Total carbon and nitrogen in the soils of the world. Europe Journal of Soils Science,47:151~163
    Bauhus J, Bartsch N.1996. Fine root growth in beech (Fagus sylvatica) forest gaps. Canadian JournalForest Research,26(12):2153~5159
    Bengtsson G, Bengtson P M, Nsson K F.2003. Gross nitrogen mineralization-, immobilization-, andnitrification rates as a function of soil C/N ratio and microbial activity. Soil Biology and Biochemistry,35(1):143~154
    Berendse F, Aerts R.1987, Nitrogen-use-efficiency: a biologically meaningful definition?. FunctionalEcology,1:293~196
    Blanco J A, Imbert J B, Castillo F J.2009. Thinning affects nutrient resorption and nutrient-use efficiency intwo Pinus sylvestris stands in the Pyrenees. Ecological Applications,19(3):682~698
    Boardman R, McGuire D O.1990. The role of zinc in forestry. II. Zinc deficiency and forest management:Effect on yield and silviculture of Pinus radiata plantations in South Australia. Forest Ecology andManagement,37:207~218
    Boudot J P, Bel Hadj B A, Steiman R, et al..1989. Biodegradation of synthetic organo-metallic complexes ofiron and aluminum with selected metal to carbon ratios. Soil Biology. Biochemistry,21:961~966
    Bulluck III L R, Brosius M, Evanylo G K, et al..2002. Organic and synthetic fertility amendments influencesoil microbial, physical and chemical properties on organic and conventional farms. Applied SoilEcology,19(2):147~160
    Burger J A, Kelting D L.1998. The contributions of soil science to the development of and implementationof criterion and indicators of sustainable forest management. Soil Science Society of America Journal,(53):1~67
    Chapin FS III, Moilanen L.1991. Nutritional controls over nitrogen and phosphorus resorption from Alaskanbirch leaves. Ecology,72:709~715
    Chapman J L, Reiss M J.1999. Ecology: Principles and applications. Cambridge: Cambridge UniversityPress
    Comeau P G, Kimmins J P.1989. Above-and below-ground biomass and production of lodgepole pine onsites with differing soil moisture regimes. Canadian Journal Forest Research,19(4):447~454
    Comerford N B, Cole D W, Dyck W J.1994. Impacts of harvesting on long-term site quality: future research.In: Dyck W J, Cole D W, Comerford N B (Eds.), Impacts of Forest Harvesting on Long-term SiteProductivity. London: Chapman and Hall
    Copley J.2000. Ecology goes underground. Nature,406:452~454
    Cote B, Belanger N, Courchesne F, et al..2003. A cyclical but asynchronous pattern of fine root and woodybiomass production in a hard-wood forest of southern Quebec and its relationships with annualvariation of temperature and nutrient availability. Plant and Soil,250(1):49~57
    Currie W S, Jadelhoffer K N.2002. The imprint of land use history: patterns of carbon and nitrogen indowned woody debris at the Harvard forest. Ecosystems,5:446~460
    Dai Z H, Liu Y X, Wang X J, et al..1998. Changes in pH, CEC and exchangeable acidity of some forestsoils in southern China during the last32-35years. Water, Air and Soil Pollution,108(3/4):377~390
    Daily G C.1995. Restoring value to the world’s degraded lands. Science,269:350~354
    Del Arco J M, Escudero A, Garrido M V.1991. Effects of site characteristics on nitrogen retranslocationfrom senescing leaves. Ecology,72:701~708
    Doran J W, Oparkin T B.1994. Defining and assessing soil quality. In: Doran J W, Coleman D C, BezdicekD F, Stewart B A (Eds.), Defining Soil Quality for a Sustainable Environment. Madison: Soil ScienceSociety of America Special Publication
    Drenovsky R E, Richards J H.2004. Critical N:P values: Predicting nutrient deficiencies in desert shrublands.Plant and Soil,259:59~69
    Dumanski J.1997. Criteria and indicators for land quality and sustainable land management. Journal ofInstrumental Transcommunication,(3/4):216~223
    Dupouey J L, Dambrine E, Laffite J D, et al..2002. Irreversible impact of past land use on forest soils andbiodiversity. Ecology,83(11):2978~2984
    Duxbury J M, Nkambule S V.1994. Assessment and significance of biologically active soil organic nitrogen.In: Doran J W, Coleman D C, Bezdicek D F, Stewart B A (Eds.), Defining Soil Quality for a SustainableEnvironment. Madison: Soil Science Society of America Special Publication
    Dyck W J, Cole D W.1994. Strategy for determining consequences of harvesting and associated practices onlong-term productivity. In: Dyck W J, Cole D W, Comerford N B (Eds.), Impacts of Forest Harvestingon Long-term Site Productivity. London: Chapman and Hall
    Eckstein R L, Karlsson P S.1997. Above-ground growth and nutrient use by plants in a subarcticenvironment:effects of habitat, life-form and species. Oikos,79:311~324
    Elser J J, Acharya K, Kyle M, et al..2003. Growth rate-stoichiometry couplings in diverse biota. EcologyLetters,6(10):936~943
    Elser J J, Dobberfuhl D, MacKay N A, et al..1996. Organism size, life history, and N:P stoichiometry:towards a unified view of cellular and ecosystem processes. BioScience,46(9):674~684
    Elser J J, Urabe J.1999. The stoichiometry of consumer-driven nutrient recycling: theory, observations, andconsequences. Ecology,80,735~751
    FAO(Food and Agriculture Organization of the United Nations).1971. Land Degradation. Rome: FAO
    FAO, UNEP, UNESCO.1979. A provisional methodology for soil degradation assessment. Rome: FAO
    Fitter A H.2005. Darkness visible: reflections on underground ecology. Journal of Eeology,93:231~243
    Fuller J, Foster D R, McLachlan F, et al..1998. Impact of human activity on regional forest composition anddynamics in central New England. Ecosystems,1:76~95
    Gaudinski J B, Trumbore S E, Davidson E A, et al..2000. Soil carbon cycling in a temperate forest:radiocarbon-based estimates of residence times, sequestration rates, and partitioning of fluxesBiogeochemistry,51:33~69
    Grunzweig J M, Sparrow S D, Chapin FS III,2003. Impact of forest conversion to agriculture on carbon andnitrogen mineralization in subarctic Alaska. Biogeochemistry,64:271~296
    Gunes A, Inal A, Alpaslan M, et al..1999. Effect of salinity on phosphorus induced zinc deficiency in pepper(Capsicum annuum L.) plant. Tr. J. of Agriculture and Forestry,23:459~464
    Guo D L, Mitchell R J, Hendricks J J.2004. Fine root branch orders respond differentially to carbonsource-sink manipulations in a longleaf pine forest. Oecologia,140(3):450~457
    Guo J F, Xie J S, Lu H L, et al..2004. Carbon return and dynamics of litter fall in natural forest andmonoculture plantation of Castanopsis kawakamii in subtropical China. Forestry Studies in China,6(1):33~36
    Guo L B, Sims R E H.1999. Litter production and nutrient return in New Zealand eucalypt short-rotationforests: Implications for land management. Agriculture, Ecosystems and Environment,73(1):93~100
    Güsewell S.2004. N:P ratios in terrestrial plants: variation and functional significance. New Phytologist,164:243~266
    Harrington R A, Fownes J H, Vitousek P M.2001. Production and resource use efficiencies in N-andP-limited tropical forests: a comparison of responses to long-term fertilization. Ecosystems,4:646~657
    Harris G.2003. Book review: ecological stoichiometry: biology of elements from molecules to the biosphere.Journal of Plankton Research,25:1183
    Harris W F, Kinerson R S, Edwards N T.1977. Comparison of belowground biomass of naturaldeciduous forest and loblolly pine plantations. Pedobiologia,17(6):369~381
    Helmisaari H. S.1992. Nutrient retranslocation within the foliage of Pinus sylvestris. Tree Physiology,10(1):45~58
    Hessen D O, gren G I, Anderson T R, el al.2004. Carbon sequestration in ecosystems: the role ofstoichiometry. Ecology,85(5):1179~1192
    Holscher D, Ludwig B, Moller R F, et al..1997. Dynamics of soil chemical parameters in shifting cultivationagriculture in the eastern Amazon. Agriculture Ecosystem Environment,66:153~163
    Hooper D U and Vitousek P M.1997. The effects of plant composition and diversity on ecosystem processes.Science,277:1302~1305
    Jobbagy E G, Jackson R B.2000. The vertical distribution of soil organic carbon and its relation to climateand vegetation.Ecological Applications,147:3~12
    Johnson D L, Lewis L A.1995. Land degradation: creation and destruction. Cambridge, MA and Oxford:Blackwell Scientific Publishers
    Jones D L, Edwards A C.1998. Influence of sorption on the biological utilization of two simple carbonsubstrates. Soil Biology and Biochemistry,30:1895~1902
    Julie C D, David R H, Stephen S J.2008. Characterizing nitrogen use efficiency in natural and agriculturalecosystems to improve the performance of cereal crops in low-input and organic agricultural systems.Field Crops Research,107(2):89~101
    Jurgensen M F, Harvey A E, Graham R T, et al..1997. Impacts of timber harvesting on soil organic matter,nitrogen, productivity, and health of inland northwest forests. Forest Science,43(2):234~251
    Kimmins J P.1997. Evaluation of consequences for future tree productivity of the loss of nutrients inwhole-tree harvesting. Forest Ecology and Management,(1):169~183
    Knops J M H, Bradley K, Wedni D A.2002. Mechanism of Plant species impacts on ecosystem nitrogencycling. Ecology Letters,5:454~466
    Koerselman W, Meuleman A F M.1996. The vegetation N:P ratio: a new tool to detect the nature of nutrientlimitation. Journal of Applied Ecology,33:1441~1450
    Kost J A, Boerner R E J.1985. Foliar nutrient dynamics and nutrient use efficiency in Cornus florida.Oecologia,66(4):602~606
    Larson W E, Pierce F J.1994. The dynamics of soil quality as measure of sustainable management. SoilScience of America Journal,(2):37~51
    Liu C J, Carl J W, Bj rn B, et al..2004. Variation in litterfall climate relationships between coniferous andbroadleaf forests in Eurasia. Global Ecology and Biogeography,13:105~114
    Luo Y Q, Su B, Currie W S, et al..2004. Progressive nitrogen limition of ecosystem responses to risingatmospheric carbon dioxide. BioScience,54:731~739
    Majda H, Ohrvik J.2004. Interactive effects of soil warming and fertilization on root production, mortality,and longevity in a Norway spruce stand in Northern Sweden. Global Change Biology,10(2):182~188
    Marten G G.1988. Productivity, stability, sustainability, equitability and autonomy as properties for agroecosystem Assessment. Agricultural Ecosystems,26:296~316
    McCalla T M, Haskins F A.1964. Phytotoxic substances from soil microorganism and crop residues.Bacteriological Reviews,28(2):181~207
    McClaugherty C A, Aber J D, Melillo J M.1982. The role of fine roots in the organic matter and nitrogenbudgets of two forested ecosystems. Ecology,63:1481~1490
    McGroddy M E, Daufresne T, Hedin L O.2004. Scaling of C:N:P stoichiometry in forests worldwide:implications of terrestrial Redfield-type ratios. Ecology,85,2390~2401
    Mendez M, Karlsson P S.2005. Nutrient stoiehiometry in Pinguieula vulgaris: nutrient availability, plantsize, and reproductive status. Ecology,86:982~991
    Michaels A F.2003. The ratios of life. Science,300:906~907
    Middleton N J, Thomas D S G.2002. World Atlas of Desertification.2nd edition. London: Edward Amold,1998
    Morgan J A.2002. Looking beneath the surface. Science,298:1903~1904
    Nadeloffer K J.2000. The potential effects of nitrogen deposition on fine-root production in forestecosystems. New Phytologist,147:131~139
    Nasholm T, Ekblad A, Nordin A, et al..1998. Boreal forest plants take up organic nitrogen. Nature,392:914~916
    Neill C, Piccolo M C, Cerri C C, et al..1997. Net nitrogen mineralization and net nitrification rates in soilsfollowing deforestation for pasture across the southwestern Brazilian Amazon Basin landscape.Oecologia,110:243~252
    Okey B W.1996. System approaches and properties, and agroecosystem health. Journal of EnvironmentalManagement,48:187~199
    Orgeas J, Ourcival J, Bonin G.2003. Seasonal and spatial patterns of foliar nutrients in cork oak (Quercussuber L.) growing on siliceous soils in Provence (France). Plant Ecology,164(2):201~211
    Power R F, Tiarks A E, Boyle J R.1998. Assessing soil quality: practicable standards for sustainable forestproductivity in the United States. Soil Science Society of America Journal,(54):53~80
    Powers G S.2004. Changes in soil carbon and nitrogen after contrasting land-use transitions in northeasternCosta Rica. Ecosystems,7:134~146
    Pregitzer K S, King J S, Burton A J, et al..2000. Responses of tree fine roots to temperature. NewPhytologist,147:105~115
    Pugnaire F I, Chapin FS III.1993. Controls over nutrient resorption from leaves of evergreen Mediterraneanspecies. Ecology,74:124~129
    Raven K P, Loeppert R H.1997. Trace element composition of fertilizers and soil amendments. Journal ofEnvironmental Quality,26:551~557
    Redfield A C.1958. The biological control of chemical factors in the environment. American Scientist,46:205~211
    Reich P B, Hobbie S E, Lee T, et al..2006. Nitrogen limitation constrains sustainability of ecosystemresponse to CO2. Nature,400:922~925
    Ross D S, Bartlett R J.1996. Field-extracted spodosol, solutions and soils: aluminum, organic carbon, andpH interrelationships. Soil Science Society of America Journal,60:589~595
    Ruess R W, Hendrick R L, Burton A J, et al..2003. Coupling fine root dynamics with ecosystem carboncycling in black spruce forests of interior Alaska. Ecological Monographs,73(4):643~662
    Sainju U M, Good D E.1993. Vertical root distribution in relation to soil properties in New Jersey Pinelandforests. Plant and Soil,150(1):87~97
    Santantonio D, Hermann R K, Overton W S.1997. Root biomass studies in forest ecosystems. Pedobiologia,17:1~31
    Schimel D S.2003. All life is chemical. BioScience,53:521~524
    Singh J S, Gupta S R.1997. Plant decomposition and soil respiration in terrestrial ecosystem. BotanicalReview,43(4):449~528
    Soule J D, Piper J K.1992. Farming in nature's image: An ecological approach to agriculture. Washington:Island Press
    Sterner R W, Elser J J.2002. Ecological stoichiometry: the biology of elements from molecules to biosphere.Princeton: Princeton University Press
    Stone E L.1990. Boron deficiency and excess in forest trees: A review. Forest Ecology and Management,37:49~75
    Swanton C J, Murphy S D.1996. Weed science beyond the weeds: the role of integrated weed management(IWM) in agroecosystem health. Weed Science,44(2):437~445
    Tamm C O.1995. Towards an understanding of the relations between tree nutrition, nutrient cycling andenvironment. Plant and Soil,168/169(1):21~27
    Taylor B R, Parkinson D, Parsons W F J.1989. Nitrogen and lignin content as predictors of litter decay rates:a microcosm test. Ecology,70(1):97~104
    Tessier J T, Raynald J.2003. Use of nitrogen to phosphorusratios in plant tissue as an indicator of nutrientlimitation and nitrogen saturation. Journal of Applied Ecology,40(3):523~534
    Thomas G W.1988. Beyond exchangeable aluminum: Another ride on the merry-go-round. Communicationsin Soil Science and Plant Analysis,19(7-12):833~856
    Townsend A R, Cleveland C C, Asner G P, el al.2007. Controls over foliar N:P ratios in tropical rain forests.Ecology,88(1):107~118
    Turco R F, Kennedy A C, Jawson M D.1994. Microbial indicators of soil quality. In: Doran J W, Coleman DC, Bezdicek D F, Stewart B A (Eds.), Defining Soil Quality for a Sustainable Environment. Madison:Soil Science Society of America Special Publication
    Turvey N D, Grant B R.1990. Copper deficiency in coniferous trees. Forest Ecology and Management,37:95~122
    Valladares F, Martinez-Ferri E, Balaguer L, et al..2000. Low leaf-level response to light and nutrients inMediterranean evergreen oaks: a conservative resource-use strategy?. New Phytologist,148:79~91
    Van Heerwaarden L M, Toet S, Aerts R.2003. Current measures of nutrient resorption efficiency lead to asubstantial underestimation of real resorption efficiency: facts and solutions. Oikos,101(3):664~669
    Vanni M J, Flecker A S, Hood J M, et al..2002. Stoichiometry of nutrient recycling by vertebrates in atropical stream: linking biodiversity and ecosystem function. Ecology Letters,5:285~293
    Vendramini F, Diaz S, Gurvich D E, et al..2002. Leaf traits as indicators of resource-use strategy in floraswith succulent species. New Phytologist,154:147~157
    Verheyen K, Bossuyt B, Hermy M, et al..1999. The land use history (1278~1990) of a mixed hardwoodforest in western Belgium and its relationship with chemical soil characteristics. Journal ofBiogeography,26:1115~1128
    Verhoeven J T A, Koerselman W, Meuleman A F M.1996. Nitrogen-or phosphorus-limited growth inherbaceous, wet vegetation: relations with atmospheric inputs and management regimes. Trends inEcology&Evolution,11(12):494~497
    Vitousek P M.1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology,65:285~298
    Vogt K A, Vogt D J, Bloomfield J.1998. Analysis of some direct and indirect methods for estimating rootbiomass and production. Plant and Soil,200:71~89
    Vogt K A, Vogt D J, Palmiotto P A, el al.1995. Review of root dynamics in forest ecosystems grouped byclimate, climatic forest type and species. Plant and Soil,187(2):159~219
    Wang X J, Gong Z T, Wang X J, et al..1998. Assessment and analysis of soil quality changes after elevenyears of reclamation in subtropical China. Geoderma,81(3-4):339~355
    Warkentin B P.1995. The change concept of soil quality. Journal of Soil and Water Conservation,50:226~228
    Wright I J, Westoby M.2003. Nutrient concentration, resorption and lifespan: leaf traits of Australiansclerophyll species. Functional Ecology,17:10~19
    Yiridoe E K, Weersink A.1997. A review and evaluation of agroecosystem health analysis: the role ofeconomics. Agricultural systems,55(4):601~626
    Yu Q, Chen Q S, Elser J J, et al..2010. Linking stoichiometric homoeostasis with ecosystem structure,functioning and stability. Ecology Letters,13:1390~1399
    Zak D R, Holmes W E, White D C, et al..2003. Plant diversity, soil microbial communities, and ecosystemfunction: are thereany links? Ecology,84:2042~2050
    Zhang L X, Bai Y F, Han X G.2003. Application of N: P Stoichiometry to Ecology Studies. Acta BotanicaSinica,45(9):1009~1018

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700