用户名: 密码: 验证码:
脱脂豆粕残余脂质对大豆蛋白分级分离及其结构与功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆蛋白主要由大豆球蛋白和p-伴球蛋白,即11S和7S两个主要组分构成,分别占蛋白总含量的40%与30%左右。大豆蛋白的功能性质也主要是由大豆球蛋白与β-伴球蛋白决定,分级分离11S和7S组分有助于我们更好地理解其各组分在功能性质中所发挥的作用,评价其对营养及结构的影响,为新产品的研发奠定理论基础。
     有关大豆球蛋白和β-伴球蛋白分离纯化方面的工作已有较多的文献报道,但大多直接以低温脱脂豆粕为原料浸提提取。迄今为止,鲜有以低残余脂质豆粕(LRLSF)为原料分级分离大豆蛋白的报道。本论文重点探讨大豆球蛋白和β-伴球蛋白的制备及氧化对大豆蛋白结构及功能性质的影响。
     单因素试验以低残余脂质豆粕为原料,探讨了大豆β-伴球蛋白(7S)分级分离过程中提取条件如还原剂、冷沉时间和pH对蛋白得率及纯度的影响。结果表明,与亚硫酸氢钠(SBS)或二硫苏糖醇(DTT)相比,在浸提液中添加p-巯基乙醇(ME),大豆p-伴球蛋白(7S)的得率与纯度均最高。在蛋白提取液的冷沉阶段,随着冷沉时间的延长,后续分离所得7S组分的得率持续降低,而纯度逐渐提高,当冷沉时间超过12h以后,7S纯度增速放缓,此时在P>0.05水平上,巯基与二硫键总量并无明显差异。在7S组分酸沉阶段,采用pH4.70酸沉时7S组分的得率与纯度均最佳。在单因素试验基础上,通过响应面分析确定了7S组分提取的最佳工艺条件为:巯基乙醇浓度9.5mmol/L,冷沉时间12h,酸沉pH4.86。与传统蛋白制取相比,新工艺制取7S蛋白的得率增加了23.86%,纯度提高了8.64%。
     在分级分离7S组分的同时,以低残余脂质豆粕为原料,探讨了大豆球蛋白(11S)分级分离过程中pH、还原剂和冷沉时间等提取条件对蛋白得率及纯度的影响。试验表明,将浸提液pH由6.2调至6.6时,大豆球蛋白的得率降低了16.7%,而纯度提高了4.60%。随着浸提pH的提高,蛋白质的巯基与二硫键含量增加。与二硫苏糖醇(DTT)或β-巯基乙醇(ME)相比,在pH6.4的浸提液中添加亚硫酸氢钠(SBS),大豆球蛋白的得率最高。上述三种还原剂中,使用DTT时的11S组分得率与纯度最低。在蛋白沉淀阶段,当冷沉时间为10h时,蛋白的得率与纯度最佳,此时巯基与二硫键总量并无显著差异(P>0.05)。随着浸提时间的延长,部分巯基发生氧化形成二硫键,大豆球蛋白游离巯基含量降低。在单因素试验基础上,通过响应面分析确定了11S组分提取的最佳工艺条件为:SBS浓度8.89mmol/L,冷沉时间10h,pH6.32。与传统蛋白制取相比,新工艺制取11S蛋白的得率增加了28.48%,纯度提高了5.58%。
     在优化制备大豆p-伴球蛋白(7S)与大豆球蛋白(11S)工艺条件的基础上,分别以低氧化程度脱脂豆粕即低残余脂质豆粕、低温脱脂豆粕及高氧化程度脱脂豆粕为原料,研究大豆蛋白分级分离过程中脂质氧化与蛋白的相互作用对大豆p-伴球蛋白和大豆球蛋白结构特征、氧化程度以及聚集形态的影响。结果表明:(1)氧化使得β-大豆伴球蛋白和大豆球蛋白羰基值上升,游离巯基、总巯基含量和α-螺旋含量下降。在同等氧化条件下,p-大豆伴球蛋白更易于发生氧化。(2)氧化使得p-大豆伴球蛋白和大豆球蛋白表面疏水性下降,内源荧光强度下降并且λmax发生蓝移,说明蛋白质氧化使得p-大豆伴球蛋白和大豆球蛋白结构发生了变化。在同等氧化条件下,p-大豆伴球蛋白更易于发生氧化,β-大豆伴球蛋白易于发生氧化主要原因可能在于p-大豆伴球蛋白含有较多的脂肪族氨基酸残基侧链基团。(3)氧化使得p-大豆伴球蛋白和大豆球蛋白形成可溶性氧化聚集体,并且在同等氧化应激条件下,氧化β-大豆伴球蛋白聚集程度更高。此外,氧化还使得p-大豆伴球蛋白肽链断裂,使得大豆球蛋白分子解离。
     在结构表征的基础上,进一步研究了蛋白质氧化对大豆p-伴球蛋白和大豆球蛋白溶解性、持水性、吸油性、乳化性、起泡性和凝胶性等功能性质的影响,结果表明:(1)氧化使得p-大豆伴球蛋白和大豆球蛋白溶解性下降,在相同氧化条件下,p·大豆伴球蛋白溶解度下降幅度较大。(2)p-大豆伴球蛋白和大豆球蛋白持水性和吸油性随着蛋白质氧化程度的增大而减小,p-大豆伴球蛋白持水性和吸油性下降幅度较大。(3)氧化使得β-大豆伴球蛋白和大豆球蛋白乳化性、乳化稳定性、起泡性、泡沫稳定性、凝胶硬度以及凝胶强度下降,相比大豆球蛋白,p-大豆伴球蛋白功能特性下降幅度较大。(4)在凝胶形成过程中,蛋白质氧化使得p-大豆伴球蛋白和大豆球蛋白在升温阶段具有较高的初始G.,而在保温和降温阶段,氧化p-大豆伴球蛋白和大豆球蛋白的G'值随着蛋白质氧化程度的增加而减小。β-大豆伴球蛋白和大豆球蛋白凝胶频率扫描图中G'和G"的间距随着蛋白质氧化程度的增大而减小,表明蛋白质氧化使得大豆β-伴球蛋白和大豆球蛋白凝胶强度下降。在相同氧化条件下,氧化对大豆β-伴球蛋白流变性质影响幅度大于大豆球蛋白。
     基于以上实验结果,可以明确的是,原料残余脂质的不同氧化程度将影响终产品7S、11S蛋白的结构和功能性质,而低残余脂质的低变性脱脂豆粕可制备优质的7S、11S蛋白。
Soybean proteins are composed of two major components, glycinin and β-conglycinin, which account for around40%and30%of total proteins, respectively. The glycinin and β-conglycinin, or11S and7S fractions, are primarily responsible for the functional properties of soybean proteins. Fractionation of these proteins is beneficial to better understand their separate contribution to functionality, to evaluate their impact on nutrition and structure, and to identify opportunities for new product development.
     Many methods have been reported in the literature for purifying the glycinin and β-conglycinin fraction. However, few data have been reported on the fractionation of soybean glycinin and β-conglycinin isolated from lower Residual lipids soybean flour (LRLSF). This dissertation focuses on the preparation of soybean glycinin and β-conglycinin, and the effect of oxidation on the structure and functionality of soybean proteins during the fractionation.
     Processing conditions such as reducing agent, store time and pH on yields and purity of β-conglycinin (7S) were evaluated in the fractionation of soybean β-conglycinin with LRLSF. Compared with sodium bisulfite (SBS) or dithiothreitol (DTT) reducing agent, the yield and purity of β-conglycinin was the highest when P-mercaptoethanol (ME) was added to the protein extract. Prolonging store time in the precipitate stage (protein extract), the yield of β-conglycinin decreased continuously, but the purity of the protein increased by degrees in the experiment. When store time exceeded12hours, the velocity increment of7S purity slowed, while there was no significant difference at P≥0.05for total sulfhydryl and disulfide content. The yield and purity of β-conglycinin was the best when the pH of3#protein extract was adjusted to4.7. Based on the single-factor experiments, the optimized extraction conditions of7S by response surface methoclology (RSM) were determined as ME concentration of9.5mmol/L, cryoprecipitation time of12h, and pH4.86. The yield and purity of β-conglycinin were23.86%and8.64%higher than traditional preparation, respectively.
     Processing conditions such as pH, reducing agent and store time on yields and purity of glycinin (11S) were also evaluated in the fractionation of soybean glycinin with LRLSF.. Adjusting the pH of protein extract from6.2to6.6, the yield of glycinin decreased by16.71%, while the purity of the protein increased by4.60%. Sulfhydryl and disulfide content of proteins increased by degrees with intensifying pH. Compared with dithiothreitol (DTT) or β-mercaptoethanol (ME) reducing agent, the yield of glycinin was the highest when sodium bisulfite (SBS) was added to the protein extract at pH6.4. The effect of DTT on yields of glycinin was the lowest of three kinds of reducing agent. It was similar to the purity of glycinin when three kinds of reducing agent were used. Prolonging store time in the precipitate stage,10h was the best for yields and purity of glycinin in the experiment, while there was no significant difference at P>0.05for total sulfhydryl and disulfide content. The decreased free sulfhydryl content of glycinin indicated that the oxidation of free sulfhydryl and the formation of disulfide bond while extract time prolonged. Based on the single-factor experiments, the optimized extraction conditions of11S by response surface methoclology (RSM) were determined as SBS concentration of8.89mmol/L, cryoprecipitation time of10h, and pH6.32. The yield and purity of glycinin were28.48%and5.58%higher than traditional preparation, respectively.
     Based the optimum condition, soybean glycinin and P-conglycinin were prepared from thee kinds of material, namely, lowly oxidative soybean flour, fresh low temperature defatted soybean flour and low temperature defatted soybean flour treated with high temperature. And the effects of interaction between lipid oxidation and protein on oxidation extent, structural characteristics, and aggregation morphology of P-conglycinin and glycinin were investigated during the fractionation of the protein. The results showed that oxidation resulted in an increase of protein carbonyl content of β-conglycinin and glycinin, a decrease of free sulfhydryl, total sulfhydryl, and the α-helix content. Compared to soybean glycinin, β-conglycinin was more susceptible to oxidation in the same oxidation condition. Oxidation led to a decrease of surface hydrophobicity of β-conglycinin and glycinin as well as maximum tryptophan fluorescence intensity, and blue-shifted wavelength of the maximum emission, indicating that protein oxidation resulted in aggregation of β-conglycinin and glycinin. β-conglycinin was more sensitive to oxidation than glycinin because β-conglycinin contains more amino acid residues with aliphatic side chain groups which could be easily oxidative attacked. Oxidation also caused formation of soluble oxidative aggregates, aggregation extent of β-conglycinin was higher than glycinin in the same oxidative stress environment. In addition, oxidation resulted in backbone fragmentation of β-conglycinin molecule as well as dissociation of glycinin.
     Effect of protein oxidation on solubility, water holding capacity, oil-absorbing capacity, emulsifying properties, foaming properties, and gelation was also investigated in the paper. Oxidation resulted in a decrease of β-conglycinin and glycinin solubility. Decline of β-conglycinin solubility was more significant than glycinin in the same oxidation conditions. Water holding capacity and oil-absorbing capacity of β-conglycinin and glycinin decreased as oxidation extent of protein increased, and decrease extent of β-conglycinin water holding capacity and oil-absorbing capacity was more significant. Oxidation led to a decrease of emulsifying properties, emulsifying stability, foaming properties, foaming stability, gel hardness, and gel strength of β-conglycinin and glycinin. Compared to glycinin, decrease extent of β-conglycinin functional properties was more obvious. Protein oxidation resulted in an increase of initial of G' value in heating period in the process of gel formation. In the holding temperature and cooling period, G'of β-conglycinin and glycinin decreased as protein oxidation extent increased. The gap between curves of G' and G" gradually decreased as extent of oxidation of β-conglycinin and glycinin increased, indicating that protein oxidation led to a decrease of gel strength of β-conglycinin and glycinin. In the same oxidation conditions, effect of oxidation on rheological properties of β-conglycinin was much more significant than glycinin.
     Based on the obtained facts, we can conclude that structure and functionality of7S and11S will be affected by different degree oxidation of the lipid remained in material, and high quality7S and11S can be prepared with lower lipid-remaied and lowly denaturalized soybean flour.
引文
1. Nagano T, Fukuda Y, Akasaka T. Dynamic viscoelastic study on the gelation properties of β-conglycin-rich and glycinin-rich soybean proein isolates. J Agric Food Chem,1996,44(11): 3484-3488.
    2. Thiering R, Hofland G, Foster N, et al. Fractionation of soybean proteins with pressurized carbon dioxide as a volatile electrolyte. Biotechnol Bioeng,2001,73(1):1-11.
    3. Bazinet L, Ippersiel D, Labrecque R, et al. Effect of temperature on the separation of soybean 11S and 7S protein fractions during bipolar membrane electroacidification. Biotechnol Prog,2000,16(2): 292-295.
    4. Nielsen N S. Structure of soy proteins. In:New Protein Foods, Vol.5. Altschul A M, Wilcke H L, editors. New York:Academic Press,1985.27-64.
    5. Yuan Y J, Velev O D, Chen Ken. et al. Effect of pH and Ca2+ induced associations of soybean proteins. Journal of Agricultural and Food Chemistry,2002,50(17):4953-4958.
    6. Wolf W J. Edible soybean protein products, In:Handbook of Processing and Utilization in Agriculture. Wolff IA editor. Florida:CRC Press,1983.23-41.
    7. Zhang G, Hayashi Y, Matsumoto S, et al. Molecular species of glycinin in some soybean cultivars. Phytochem,2002,60(7):675-681.
    8. Fehr W R, Hoeck J A, Johnson S L, et al. Genotype and environment influence on protein components of soybeans. Crop Sci,2003,43:511-514.
    9. Yagasaki K, Takagi T, Sakai M, et al. Biochemical characterization of soybean protein consisting of different subunits of glycinin. J Agric Food Chem,1997,45(3):656-660.
    10. Wu Y V, Inglet G E. Denaturation of plant proteins related to functionality and food applications. J Food Sci,1974,39(2):218-225.
    11. Hirano H, Kagawa H. Kamata Y, et al. Structural homology among the major 7-S globulin subunits of soybean seed storage proteins. Phytochemistry,1987,26:41-45.
    12. Koshiyama I, Fukushima D. Purification and some properties of a-Conglycinin in soybean seeds. Phytochernistry,1976,15:161-164.
    13. Yamauchi F, Yamagishi T, Iwabuchi S. Molecular understanding of heat-induced phenomena of soybean protein. Food Reviews International,1991,7(3):283-322.
    14. Utsumi S, Matsumura Y, Mori T. Structure-function relationships of soy proteins. In:Food Proteins and Their Applications, Damodaran S, Paraf A, editors. New York:Marcel Dekker Inc,1997. 257-291.
    15. Koshiyama I. Isolation of a glycopeptide from a 7-S protein in soybean globulin's. Arch Biochem Biophys,1969,130:370-373.
    16. Lewis B A, Chen J H. Effect of conformation and structure changes induced by solvent and limited enzyme modification on the functionality of soy proteins. In:Functionality and Protein Structure, Pour-EI A, editor. Washington, D C,1979.27-35.
    17. Thanh V H, Shibasaki K. Major proteins of soybean seeds:subunit structure of β-conglycinin. Journal of Agricultural and Food Chemistry,1978,26(3):692-695.
    18. Sathe S K Isolation and characterization of the protein that co-purifies with soybean (glycine max L.) glycinin. J Food Biochem,1991,15(1):33-49.
    19. Thanh V H, Shibasaki K. Beta-conglycinin from soybean proteins. Isolation and immunological and physicochemical properties of the monomeric forms. Biochimica et Biophysica Acta (BBA)-Protein Structure,1977,490(2):370-384.
    20. Sathe S K, Lilley G G, Mason A C, et al. High-resolution sodium dodecyl sulfate polyacrylamide gel electrophoresis of soybean (glycine max L.) seed proteins. Cereal Chem,1987,64:380-384.
    21. Yamauchi F, Kawase M, Kanbe M, et al. Separation of the β-Aspartamido-Carbohydrate fractions from soybean 7-S protein:Protein-Carbohydrate linkage. Agric Biol Chem 1975,39:873-878.
    22. Kilara A, Sharkasi T Y. Effects of temperature of food proteins and its implications on functional properties. CRC Crit Rev Food Sci Nutr,1986,23(4):323-395.
    23. Thanh V H, Shibasaki K. Major proteins of soybean seeds. A straightforward fractionation and their characterization. Journal of Agricultural and Food Chemistry,1976,24(6):1117-1121.
    24. Brooks J R, Morr C V. Current aspects of soy protein fractionation and nomenclature. Journal of the American Oil Chemists' Society,1985,62(9):1347-1354.
    25.杨国龙.酶解-膜分离制备改性大豆蛋白的研究[D]:[博士学位论文].广州:华南理工大学轻工与食品学院,2005.
    26. Coates J B, Medeiros J S, Thanh V H, et al. Characterization of the subunits of β-conglycinin. Arch Biochem Biophys,1985,243(1):184-194.
    27. Liu K. Chemistry and nutritional value of soybean components. In:Soybeans Chemistry, Technology, and Utilization. New York:Chapman and Hall,1997.25-173.
    28. Zarins Z M, Marshall W E. Thermal denaturation of soy glycinin in the presence of 2-Mercaptoethanol studied by differential scanning calorimetry. Cereal Chemistry,1990,67:35-38.
    29. Petruccelli S, Anon M C. Soy protein isolate components and their interactions. Journal of Agricultural and Food Chemistry,1995,43(7):1762-1767.
    30. Wolf W J, Briggs D R. Purification and characterization of the 11-S component of soybean proteins. Arch Biochem Biophys,1959,85(1):186-199.
    31. Koshiyama I. Purification and physico-chemical properties of 11S globulin in soybean. In J Peptide Protein Res,1972,4(3):167-176.
    32. Badley R A, Atkinson D, Hauser H, et al. The structure, physical, and chemical properties of the soybean protein glycinin. Biochem Biophys Acta.1975,412(2):214-228.
    33. Kitamura K, Shibasaki K. Isolation and some physico-chemical properties of the acidic subunits of soybean 11-S globulin. Agric Biol Chem,1975,39:945-951.
    34. Peng I C, Quass D W, Dayton W R. The physicochemical and functional properties of soybean 11-S globulin. Cereal Chemistry,1984,61:480-490.
    35. Ochiai-Yanagi S, Takagi T, Kitamura K, et al. Reevaluation of the subunit molecular weights of soybean 11-S globulin. Agric Biol Chem,1977,41:647-653.
    36. Draper M, Catsimpoolas N. Isolation of the acidic and the basic subunits of glycinin. Phytochemistry,1977,16(1):25-27.
    37. Moreira A M, Hermodson M A, Larkins B A, et al. Partial characterization of the acidic and basic polypeptides of glycinin. J Biol Chem,1979,19:9921-9926.
    38. Kinsella J E. Functional properties of soy proteins. Journal of the American Oil Chemists' Society, 1979,56(3):242-258.
    39. Catsimpoolas N, Rogers D A, Circle S J, et al. Purification and structural studies of the 11-S component of soybean proteins. Cereal Chem,1967,44:631-637.
    40. Fukushima D. Recent progress of sobean protein foods:Chemistry, technology, and nutrition. Food Reviews International,1991,7 (3):323-351.
    41. Argos P, Narayana S V L, Nielsen N C. Structural similarity between legumin and vicilin storage proteins from legumes. EMEO J,1985,4:1111-1117.
    42. Abbott T P, Nabetani H, Sessa D J, et al. Effects of bound water on FTIR spectra of glycinin. J Agric Food Chem,1996,44:2220-2224.
    43. Dev S B, Keller J T, Rha C K. Secondary structure of 11S globulin in aqueous solution investigated by FT-IR derivative spectroscopy. Biochimica Biophsica Acta,1988,957(2):272-280.
    44. Ishino K, Kudo S. Conformational transition of alkaline-denaturated soybean 7S and 11S globulins by ethanol. Agric Biol Chem,1980,44:537-543.
    45. Yamauchi F, Ono H, Kamata Y, et al. Acetylation of amino groups and its effect on the structure of soybean glycinin. Agric Biol Chem,1979,43(6):1309-1315.
    46. Marcone M F. Biochemical and biophysical properties of plant proteins:a current understanding with emphasis on 11S seed globulins. Food Res Inter,1999,32(2):79-92.
    47. Marcone M F, Yada R Y. Structural analysis of globulin isolated genetically from different Amaranthus hybrid lines. Food Chem,1998,61(3):319-326.
    48. Mancone M F, Yada R Y. Evidence of the phosphorylation and glycosylation of the amaranth 11S globulin. J Food Biochem,1997,21(2):341-369.
    49. Rhee C K. Functionality of soy proteins. In:Protein Functionality in Food System, Hettiarachch N S, Zieegler G R, editors. New York:Marcel Dekker, Inc,1994.311-324.
    50. Staswick P E, Hermodson M A, Nielsen N C. Identification of the cysteines which link the acidic and the basic components of the glycinin subunits. J Biol Chem 1984,259:13431-13435.
    51. Riblett A L, Herald T J, Schmidt K A, et al. Characterization of β-conglycinin and glycinin soy protein fractions from four selected soybean genotypes. J Agric Food Chem,2001,49(10): 4983-4989.
    52. Kitamura K, Takagi T, Shibasaki K. Subunit structure of soybean 11S globulin. Agric Biol Chem, 1976,40(9):1837-1844.
    53. Mori T, Utsumi S, Inada H. Interaction involving disulfide bridges between subunits of soybean seed globulin and between subunits of soybeans and sesame seed alobulins. Agric Biol Chem 1979, 43:2317-2322.
    54. Staswick P E, Hermodson M A, Nielsen N C. Identification of the acidic and basic subunit complexes of glycinin. J Biol Chem,1981,256:8752-8755.
    55. Kinsella J E, Damodaran S, German B. Physicochemical and functional properties of oilseed proteins with emphasis on soy proteins. in New Protein Foods. Volume 5. Seed Storage Proteins. Altschul A M, Wilcke H L, editors. Florida:Academic Press Inc.,1985.107.
    56. Catsimpoolas N, Campbell T G, Meyer E W. Association-dissociation phenomena in glycinin. Arch. Biochem. Biophys.1969,131(2):577-586.
    57. Appurao A G, Narasinga Rao M S. Binding of Ca(II) by the 11S fraction of soybean proteins. Cereal Chem.1975,52:21.
    58. Grynspan F, Cheryan M. Phytate-calcium interactions with soy protein. JAOCS 1989,66:93-97.
    59. Kroll R D. Effect of pH on the binding of calcium ions by soybean proteins. Cereal Chem.1984,61: 490.
    60. Sakakibara M, Noguchi H. Interaction of 11S fraction of soybean protein with calcium ion. Agric, Biol. Chem.1977,41(9):1575-1580.
    61. Torikata Y, Ishihara J, Yano T. Protein coagulation through reversible and irreversible bindings of calcium. Agric. Biol. Chem.1987,51(3):707.
    62. Appurao A G, Narasinga Rao M S. Binding of Mg(II) by the 11S fraction of soybean proteins. Cereal Chem.1975,23(4):657-661.
    63. Khan A, Weaver C M, Sathe S. Association of zinc with soy proteins as affected by heat and pH. J. Food Sci.1990,55(1):263.
    64. Nosworthy N, Caldwell R A. The zinc(II) binding sites of soya bean glycinin. J. Sci. Food Agric. 1987,41(1):55.
    65. Schnepf M I, Satterlee L D. Partial characterization of an iron soy protein complex. Nutr. Rep. Intl. 1985,31(2):371-380.
    66. Hermansson A M. Physico-chemical aspects of soy proteins structure formation. J. Tex. Stud.1978, 9(1-2):33.
    67. German B, Damodaran S, Kinsella J E. Thermal dissociation and association behavior of soy proteins. J. Agric. Food Chem.1982,30(5):807-811.
    68. Babajimopoulos M, Damodaran S, Rizvi S S H, et al. Effects of various anions on the rheological and gelling behavior of soy proteins:thermodynamic observations. J Agric Food Chem 1983,31(6): 1270-1275.
    69. Baldwin R L. Temperature dependence of the hydrophobic interaction in protein folding. Proc Natl Acad Sci USA,1986,83(21):8069-8072.
    70. Yamagishi T, Takahashi N, Yamauchi F. Covalent polymerization of acidic subunits on heat-induced gelation of soybean glycinin. Cereal Chem.1987,64(4):207-212.
    71. Damodaran S, Kinsella J E. Effect of conglycinin on the thermal aggregation of glycinin. J. Agric. Food Chem.1982,30(5):812-817.
    72. Utsumi S, Damodaran S, Kinsella J E. Heat-induced interaction between soybean proteins. J. Agric. Food Chem.1984,32(6):1402.
    73. Utsumi S, Damodaran S, Kinsella J E. Heat-induced interactions between soybean proteins: preferential association of 11S basic subunits and β subunits of 7S. J. Agric. Food Chem.1984, 32(6):1406.
    74. Utsumi S, Kinsella J E. Structure-function relationships in food proteins:subunit interactions in heat-induced gelation of 7S,11S, and soy isolate proteins. J. Agric. Food Chem.1985,33(2):297.
    75. Hashizume K, Nakamura N, Watanabe T. Influence of ionic strength on conformation changes of soybean proteins caused by heating, and relationship of its conformation changes to gel formation. Agric Biol. Chem.1975,39(7):1339-1347.
    76. Vojdani F. Solubility. In:Methods of testing protein functionality. Hall G M, editor. New York: Blackie Academics & Professional,1996.11-60.
    77. Khatib K A, Herald T J, Aramouni F M, et al. Characterization and functional properties of soy β-conglycinin and glycinin of selected genotypes. J Food Sci 2002,67(8):2923-2929.
    78. Lakemond C M M, De Jongh H H J, Hessing M, et al. Soy glycinin:influence of pH and ionic strength on solubility and molecular structure at ambient temperatures. Journal of Agricultural and Food Chemistry,2000,48(6):1985-1990.
    79. Matsumura Y, Mori T. Gelation. In:Methods of testing protein functionality. Halt G M, editor. New York:Blackie Academics & Professional,1996.77-109.
    80. Tombs M P. Gelation of globular proteins. Faraday Discuss Chem Soc 1974.57(0):158-164.
    81. Puppo M C, Anon M C. Soybean protein dispersions at acid pH. Thermal and rheological properties. Journal of Food Science,1999,64(1):50-56.
    82. Sorgentini D A, Wagner J R, Anon M C. Effects of thermal treatment of soy protein isolate on characteristics and structure-function relationship of soluble and insoluble fractions. J Agric Food Chem 1995,43(9):2471-2479.
    83. Nakamura T, Utsumi S, Mori T. Interactions during heat-induced gelation in a mixed system of soybean 7S and 11S globulins. Agric Biol Chem,1986,50(10):2429.
    84. Wang C H, Damodaran S. Thermal gelation of globular proteins:Influence of protein conformation on gel strength. J Agric Food Chem.1991,39(3):434-438.
    85. Saio K, Watanabe T. Differences in functional properties of 7S and 1 IS soybean proteins. J, Texture Stud.1978,9(1-2):135-157.
    86. Ning L, Villota R. Influence of 7S and 11S globulins on the extrusion performance of soy protein concentrates. J. Food Proc. Tech.1994,18(5):421-436.
    87. Mori T, NaKamura T, Utsumi S. Gelation mechanism of soybean 11S globulin, Formation of soluble aggregates transient intermediates. J Food Sci 1982,47(1):26-30.
    88. Iwabuchi S, Yamauchi F. Effects of heat and ionic strength upon dissociation-association of soybean protein fractions. J Food Sci 1984,49(5):1289-1294.
    89. Nakamura T, Utsumi S, Morri T. Mechanisms of heat-induced gelation and gel properties of soybean 7S globulin. Agric Biol Chem 1986,50(5):1287-1293.
    90. Stanley D W, Yada R Y. Physical consequences of thermal reactions in food protein systems. In: Physical Chemistry of Foods, Schwartzberg H G, Hartel R W, editors. New York:Marcel Dekker Inc,1992.669-733.
    91. Damodaran S. Molecular and Functional properties of food protein. In:Food Proteins, Kinsella J E, Soucie W G, editors. American Oil Chemists Society, Champaign,IL,1989.21-51.
    92. Utsumi S, Kinsella J. Forces involved in soy protein gelation:effects of various reagents on the formation, hardness and solubility of heat-induced gels made from 7S,11S, and soy isolate. J Food Sci,1985,50(5):1278-1282.
    93. Nakamura T, Utsumi S, Mori T. Network structure in thermally induced gelation of glycinin. J Agric Food Chem 1984,32(2):349-352.
    94. Saio K, Sato I, Watanabe T. Food use of soybean 7S and 11S proteins. High temperature expansion characteristics of gels. J Food Sci 1974,39(4):777-782.
    95. Maruyama N, Satoh R, Wada Y, et al. Structure-physicochemical function relationships of soybean β-conglycinin constituent subunits. J Agric Food Chem 1999,47(12):5278-5284.
    96. Maruyama N, Salleh M R M, Takahashi K, et al. Structure-physicochemical function relationships of soybean β-conglycinin heterotrimers. J Agric Food Chem 2002,50(15):4323-4326.
    97. Wu W U, Hettiarchchy N S, Qi M. Hydrophobicity, solubility, and emulsifying properties of soy protein peptides preparod by papain modification and ultrafiltration. J Am Oil Chem Soc 1998, 75(7):845-849.
    98. Chove B E, Grandison A S, Lewis M J. Emulsifying properties of soy protein isolate fractions obtained by isoelectric precipitation. J Sci Food Agric.2001,81(8):759-763.
    99. Liu M, Lee D S, Damodaran S. Emulsifying properties of acidic subunits of soy 11S globulin. J Agric Food Chem 1999,47(12):4970-4975.
    100. Wagner J R, Gueguen J. Surface functional properties of native, acid-treated, and reduced soy glycinin.1. Foaming properties. J Agric Food Chem 1999,47(6):2173-2180.
    101. Nakai S, Li-Chan E. Arteaga G E. Measurement of surface hydrophobicity. In:Methods of testing protein functionality. Hall G M, editor. New York:Blackie Academics & Professional,1996. 152-185.
    102. Wu Shaowen, Murphy P A, Johnson L A, et al. Pilot-plant fractionation of soybean glycinin and β-conglycinin. Journal of the American Oil Chemists' Society,1999,76(3):285-293.
    103. Messina M J. Soyfoods:their role in disease prevention and treatment. In:Soybeans:Chemistry, Technology, and Utilization.2nd ed. Liu K, editor. Gaithersburg MD:Chapman & Hall,1999. 442-477.
    104. Wolf W J.1956. Physical and chemical studies on soybean proteins. Thesis. University of Minnesota, Minneapolis, MN.
    105. Roberts R C, Briggs D R Isolation and characterization of the 7S component of soybean globulins. Cereal Chem 1965,42:71-85.
    106. Wolf W J, Sly D A. Cryoprecipitation of soybean 11S protein. Cereal Chemistry,1967,44(9): 653-668.
    107. Eldrige A C, Wolf W J. Purification of the 11S component of soybean protein. Cereal Chem 1967, 44:645-652.
    108. Koshiyama I. Purification of the 7S component of soybean proteins. Agric Biol Chem 1965,29: 885-887.
    109. Koshiyama I. Chemical and physical properties of a 7S protein in soybean globulins. Cereal Chemistry,1968,45(5):394-404.
    110. Koshiyama I. Chromatographic and sedimentation behavior of a purified 7S protein in soybean globulins. Cereal Chem 1968,45:405-412.
    111. Koshiyama I. A newer method for isolation of the 7S globulin in soybean seeds. Agric Biol Chem 1972,36:2255-2257.
    112. Saio K, Watanabe T. Food use of soybean 7S and 11S proteins/Extraction and functional properties of their fractions. J Food Sci 1973,38(7):1139-1144.
    113. Saio K, Terashima M, Watanabe T. Food use of soybean 7S and 11S proteins/Heat denaturation of soybean proteins at high temperature. J Food Sci 1975,40(3):537-540.
    114. Saio K, Terashima M, Tanabe T. Food use of soybean 7S and 11S proteins, change in basic groups of soybean proteins by high temperature heating. J Food Sci 1975,40(3):541-544.
    115. Nagano T, Hirotsuka M, Mori H, et al. Dynamic viscoelastic study on the gelation of 7S globulin from soybeans. Journal of Agricultural and Food chemistry,1992,40(6):941-944.
    116. Rickert D A, Johnson L A, Murphy P A. Improved fractionation of glycinin and β-congiycinin and partitioning of phytochemicals. J Agric. Food Chem.2004,52(6):1726-1734.
    117. Rickert D A, Johnson L A, Murphy P A. Functional properties of improved glycinin and (3-conglycinin fractions. J Food Sci 2004,69(4):303-311.
    118. Wu Shaowen, Murphy P A, Johnson L A, et al. Simplified process for soybean glycinin and β-conglycinin fractionation. Journal of Agricultural and Food Chemistry,2000,48(7):2702-2708.
    119. Saito T, Kohno M, Tsumura K, et al. Novel method using phytase for separating soybean β-conglycinin and Glycinin. Biosci Biotechnol Biochem 2001,65(4):884-887.
    120. Khorshid N, Hossain M M, Farid M M. Precipitation of food protein using high pressure carbon dioxide. J Food Eng 2007,79(4):1214-1220.
    121. Deak N A, Johnson L A. Novel vegetable protein fractionization process and compositions. U. S. patent application,2008/0095914 A1.2008-04-24.
    122. Deak N A, Murphy P A, J ohnson L A. Fractionating soybean storage proteins using Ca2+ and NaHSO3. J Food Sci 2006,71(7):C413-C424.
    123. Deak N A, Murphy P A, Johnson L A. Characterization of fractionated soy proteins produced by a new simplified procedure. Journal of the American Oil Chemists' Society,2007,84(2):137-149.
    124. Davidson R M, Sand R E, Johnson R E. Method for processing soy protein and composition of matter. U.S. patent,4172828.1979-10-30.
    125. Howard P A, Lehnhardt W F, Orthoefer F T. 7S and 11S vegetable protein fractionation and isolation. U. S. patent,4368151.1983-01-11.
    126. Lehnhardt W F, Gibson P W, Orthoefer F T. Fractionation and isolation of 7S and 11S protein from isoelectrically precipitated vegetable protein mixtures. U.S. Patent,4370267.1983-01-25.
    127. Hirotsuka M, Terashima M, Taniguchi H. Method for fractionation of vegetable proteins by reduction. U. S. patent,4771126.1988-09-13.
    128. Samoto M, Akasaka T, Mori H. Process for preparing fractionated soybean protein and foods using the same. U. S. Patent,5597607.1997-01-28.
    129. Samoto M, Akasaka T, Mori H. Process for preparing fractionated soybean proteins and foods using the same. European Patent, EP0666034.2000-05-31.
    130. Savolainen J. Method for isolation and modification of proteins. U. S. Patent,6797810 B1. 2004-09-28.
    131. Ishikawa M, Kohno M, Nagao Y, et al. Fractionated soybean protein and process for producing the same. European Patent, EP1323353.2009-04-01.
    132. Bringe N A, Charles S. High Beta-conglycinin products and their use. U.S. Patent,6171640 B1. 2001-01-09.
    133.竺尚武.挤压后大豆蛋白溶解性能与脂肪氧化酶活性的研究.食品科学,1995,16(11):9-12.
    134.黄友如,华欲飞,裘爱泳.脂质氧化诱导的大豆蛋白质聚集机理的研究.中国粮油学报.2006,21(1):80-87.
    135.黄友如,华欲飞,卢祥云,等.脂肪氧合酶催化亚油酸氧化与大豆蛋白相互作用的荧光光谱分析. 食品科学.2008,29(5):134-139.
    136.黄友如,华欲飞,顾建华,等.脂肪氧合酶催化亚油酸氧化与大豆蛋白相互作用过程中自由基迁移的电子顺磁共振研究(1)自由基的检测.食品科学.2008,29(3):87-93.
    137.黄友如,华欲飞,王雪峰,等.脂肪氧合酶催化亚油酸氧化与大豆蛋白相互作用过程中自由基迁移的电子顺磁共振研究(Ⅱ)自由基类型的确定.食品科学.2008,29(4):41-45.
    138.黄友如,华欲飞,张根华,等.重水环境下的氧化大豆蛋白傅立叶变换红外(FT-IR)分析.中国粮油学报.2010,25(5):19-23,29.
    139.黄友如,华欲飞,吴金男,等.脂肪氧合酶催化亚油酸氧化对酸沉大豆蛋白理化性质的影响——Ⅰ聚集体的形态学分析.中国粮油学报.2008,23(4):50-55.
    140.黄友如,华欲飞,韩曜平,等.脂肪氧合酶催化亚油酸氧化对酸沉大豆蛋白理化性质的影响(Ⅱ)——聚集体的相对分子质量分布.中国粮油学报.2008,23(5):38-41.
    141.吴伟,林亲录,华欲飞.13-氢过氧化-顺-9,反-11-十八碳二烯酸氧化修饰对大豆蛋白凝胶性质的影响.食品与发酵工业,2011,37(1):42-46.
    142.吴伟,吴晓娟,林亲录,等.丙烯醛氧化修饰对大豆蛋白凝胶性质的影响.中国食品学报,2011,11(8):59-64.
    143.吴伟,林亲录,华欲飞.脂质氢过氧化物氧化修饰对大豆蛋白去折叠和复折叠性质的影响.中国粮油学报,2011,26(7):17-21,52.
    144.吴伟,林亲录,华欲飞.亚油酸氢过氧化物氧化修饰对大豆蛋白热变性和聚集的影响.中国油脂,2011,36(5):16-20.
    145.吴伟,林亲录,华欲飞.丙二醛氧化修饰对大豆蛋白热变性影响.粮食与油脂,2012,(10):9-11.
    146. Beckwith A C. Interaction of phosphotidylcholine vesicles with soybean 7S and 11S globulin proteins. J. Agric. Food Chem,1984,32(6):1397-1402.
    147. Kamat V B, Graham G E, Davis A F. Vegetable protein:Lipid interactions. Cereal Chem,1978, 55(3):295-307.
    148. McClements D J. Food Emulsions:Principles, Practice and Techniques, New York:CRC Press, 1999.127-184.
    149. Huang Y R, Hua Y F, Qiu A Y. Soybean protein aggregation induced by lipoxygenase catalyzed linoleic acid oxidation. Food Research International,2006,39(2):240-249.
    150. Huang Y R, Yu D, Hua Y F, et al. Detection of free radical transfer in lipoxygenase I-B-catalyzed linoleic acid-soybean proteins interaction by electron spin resonance spectroscopy (ESR). J Agric Food Chem,2006,54 (24):9216-9220.
    151. Kong X Z, Li X H, Wang H J, et al. Effect of lipoxygenase activity in defatted soybean flour on the gelling properties of soybean protein isolate. Food Chemistry,2008,106 (3):1093-1099.
    152. Wu W, Zhang C M, Kong X Z, et al. Oxidative modification of soy protein by peroxyl radicals. Food Chemistry,2009,116(1):295-301.
    153. Wu W, Hou L, Zhang C M, et al. Structural modification of soy protein by 13-hydroperoxyoctadecadienoic acid. European Food Research and Technology,2009,229(5): 771-778.
    154. Wu W, Zhang C M, Hua Y F. Structural modification of soy protein by the lipid peroxidation product malondialdehyde. Journal of the Science of Food and Agriculture,2009,89(8):1416-1423.
    155. Wu W, Wu X J, Hua Y F. Structural modification of soy protein by the lipid peroxidation product acrolein. LWT-Food Science and Technology,2010,43(1):133-140.
    156. Deng K Q, Huang Y R, Hua Y F. Isolation of glycinin (11s) from lipid-reduced soybean flour: Effect of processing conditions on yields and purity. Molecules,2012,17(3):2968-2979.
    157. Utsumi S, Maruyama N, Satoh R, et al. Structure-function relationships of soybean proteins revealed by using recombinant systems. Enzyme and Microbial Technology.2002,30(3):284-288.
    158. Deak N A, Murphy P A, Johnson L A. Effects of NaCl concentration on salting-in and dilution during salting-out on soy protein fractionation. Journal of Food Science,2006,71(4):C247-C254.
    159. Teng Zi, Liu Chong, Yang Xiaoquan, et al. Fractionation of soybean globulins using Ca2+ and Mg2+ A comparative analysis. Journal of the American Oil Chemists'Society,2009,86(5):409-417.
    160. O'Keefe S F, Wilson L A, Resurreccion A P, et al. Determination of the binding of hexanal to soy glycinin and betaconglycinin in an aqueous model system using a headspace technique. Journal of Agricultural and Food Chemistry,1991,39(6):1022-1028.
    161. Liu Chun, Wang Hongling, Cui Zhumei, et al. Optimization of extraction and isolation for 11S and 7S globulins of soybean seed storage protein. Food Chemistry,2007,102(4):1310-1316.
    162. Deak N A, Murphy P A, Johnson L A. Effects of reducing agent concentration on soy protein fractionation and functionality. Journal of Food Science,2006,71(3):C200-208.
    163. Deak N A, Murphy P A, Johnson L A. Characterization of fractionated soy proteins produced by a new simplified procedure. Journal of the American Oil Chemists' Society,2007,84(2):137-149.
    164. Hou D H, Chang S K. Structural characteristics of purified glycinin from soybeans stored under various conditions. Journal of Agricultural and Food Chemistry,2004,52(12):3792-3800.
    165. Hou H J, Chang K C. Structural characteristics of purified β-conglycinin from soybeans stored under four conditions. Journal of Agricultural and Food Chemistry,2004,52(26):7931-7937.
    166. Fukushima D. Structures of plant storage proteins and their functions. Food Reviews International, 1991,7(3):353-381.
    167. Delwiche S R, Pordesimo L O, Panthee D R, et al. Assessing glycinin (11S) and β-conglycinin (7S) fractions of soybean storage protein by near-infrared spectroscopy. Journal of the American Oil Chemists' Society,2007,84(12):1107-1115.
    168. Fukushima D. Recent progress in research and technology on soybeans. Food Science and Technology Research,2001,7(1):8-16.
    169.郭尧军.蛋白质电泳实验技术[M].北京:科学出版社,1999:123-160.
    170. Lui D Y M, White E T, Litster J D. Dissolution behavior of soy proteins and effect of initial concentration. Journal of Agricultural and Food Chemistry,2007,55(6):2467-2473.
    171. Wolf W J. Sulfhydryl content of glycinin:Effect of reducing agents. Journal of Agricultural and Food Chemistry,1993,41(2):168-176.
    172.王璋.食品酶学[M].北京:轻工业出版社,1994,279.
    173.王洪晶.脂肪氧合酶对大豆分离蛋白凝胶性质影响研究[D]:[硕士学位论文].无锡:江南大学食品学院,2006.
    174. Gardner H W. Lipid hydroperoxide reactivity with proteins and amino acids:A review. Journal of Agricultural and Food Chemistry,1979,27(2):220-229.
    175. Hua Y F, Huang Y R, Qiu A Y et al. Properties of soy protein isolate prepared from aqueous alcohol washed soy flakes. Food Research International,2005,38:273-279.
    176. Shacter E. Quantification and significance of protein oxidation in biological samples. Drug Metabolism Reviews,2000,32(3-4):307-326.
    177. Xiong Y L. Protein oxidation and implications for muscle food quality. In Antioxiants in Muscle Foods; Decker E A, Faustman C L, Lopez-Bote C J, editors, New York:John Wiley & Sons Inc, 2000.85-111.
    178. Roubal W T, Tappel A L. Polymerization of proteins induced by free-radical lipid peroxidation. Archives of Biochemistry and Biophysics,1966,113(1):150-155.
    179. AOAC. (1970). Official methods of analysis (11th ed). Washington, DC:Association of Official Analytical Chemists.
    180.宁正祥主编.食品成分分析手册[M].北京:中国轻工业出版社,1998,147-148.
    181. Kato A, Nakai S. Hydrophobicity determined by a fluorescence probe methods and its correlation with surface properties of proteins. Biochimica et Biophysica Acta,1980,624(1):13-20.
    182. Stadtman E R, Levine R L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins.Amino Acids,2003,25(3-4):207-218.
    183. Little C, O'Brien P J. Products of oxidation of a protein thiol group after reaction with various oxidizing agents. Archives of Biochemistry and Biophysics.1967,122(3):406-410.
    184.黄友如.脂质氧合酶催化亚油酸诱导大豆蛋白聚集机理的研究[D]:[博士学位论文].无锡:江南大学食品学院,2006.
    185. Sreerama N, Venyaminov S Y U, Woody R W. Estimation of the number of a-helical and β-strand segments in proteins using circular dichroism spectroscopy. Protein Science,1999,8(2):370-380.
    186. Boatright W L, Hettiarachchy S. Soy protein isolate solubility and surface hydrophobicity as affected by antioxidants. Journal of Food Science,1995,60(4):798-800.
    187. Liang J H. Fluorescence due to interactions of oxidizing soybean oil and soy proteins. Food Chemistry,1999,66(1):103-108.
    188.吴伟.蛋白质氧化对大豆蛋白结构和凝胶性质的影响[D]:[博士学位论文].无锡:江南大学食品学院,2010.
    189. Yuan D B, Yang X Q, Tang C H, et al. Physicochemical and functional properties of acidic and basic polypeptides of soy glycinin. Food Research International,2009,42(5-6):700-706.
    190. Vivian J T, Callis P R. Mechanisms of tryptophan fluorescence shifts in proteins. Biophysical Journal,2001,80(5):2093-2109.
    191.李玉珍,肖怀秋,等.大豆分离蛋白功能特性及其在食品工业中的应用[J].中国食品添加剂,2008,(1):121-125.
    192.李里特.大豆加工与利用[M].北京:化学工业出版社,2003.
    193. Cobb B F III, Hyder K. Development of a process for preparing a fish protein concentrate with rehydration and emulsifying capacities. Journal of Food Science,1972,37(5):743-750.
    194. Haque Z U, Mozaffar Z. Casein hydrolysate. Ⅱ. Functional properties of peptides. Food hydrocolloids,1992,66(5):559-571.
    195. Molina E, Papadopoulou A, Ledward D A. Emulsifying properties of high pressure treated soy protein isolate and 7S and 11S globulins. Food hydrocolloids,2001,15(3):263-269.
    196. Watanabe M, Shimada A, Araj S. Enzymatic modification of protein functionality:implantation of potent amphiphilicity to succinylated proteins by covalent attachment of leucine alkyl esters. Agricultural and Biological Chemistry,1981,45(7):1621-1625.
    197.段春红,孙婉,姚晓琳,等Thanh法提取7S、11S球蛋白功能特性的研究[J].食品工业科技,2011,32(7):79-82.
    198.罗东辉.均质改性大豆蛋白功能特性研究[D]:[博士学位论文].广州:华南理工大学轻工食品学院,2010.
    199. Haykawa S, Nakai S. Relationships of hydrophobicity and net charge to the solubility of milk and soy proteins. Journal of Food Science,1985,50:486-491.
    200. Aoki H, Taneyama O, Inami M. Emulsifying Properties of Soy Protein:Characteristics of 7S and 11S Proteins. Journal of Food Science,1980, (45):534-538.
    201. Jorge R W, Jacques G. Surface functional proper ties of native, acid-treated, and reduced soy glycinin.1. Foaming properties. Journal of Agricultural Food Chemistry,1999,47(6):2173-2180.
    202.黄丽华.大豆种子贮藏蛋白11S和7S组分的变异以及与功能性关系的研究[D]:[硕士学位论文].长沙:湖南农业大学食品科技学院,2003.
    203.刘翀.大豆蛋白分级分离机理的研究[D]:[博士学位论文].广州:华南理工大学轻工与食品学院,2009.
    204. Wu W, Hua Y F, Lin Q L. Effects of oxidative modification on thermal aggregation and gel properties of soy protein by malondialdehyde. Journal of Food Science and Technology,2011, DOI: 10.1007/s13197-011-0533-7.
    205. Wu W, Hua Y F, Lin Q L, Xiao H X. Effects of oxidative modification on thermal aggregation and gel properties of soy protein by peroxyl radicals. International Journal of Food Science & Technology,2011,46(9):1891-1897.
    206. Winter H H, Chambon F. Analysis of linear viscoelaticity of a crosslinking polymer at the gel point. Journal of Rheology,1986,30(2):367-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700