用户名: 密码: 验证码:
PKA催化亚基调控玉米大斑病菌致病性的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米大斑病菌(Setosphaeria turcica)引起的玉米大斑病(Northern Corn Leaf Blight)是威胁玉米生产的一种重要叶部真菌病害,常给玉米生产造成重大经济损失。研究表明,cAMP信号转导途径能够调控病原真菌的生长和发育,并与致病性有关。cAMP途径主要组分包括蛋白激酶A(Protein kinase A,PKA)和腺苷酸环化酶(Adenylyl cyclase,AC)。蛋白激酶A是该途径下游的主要效应分子,与一些病原真菌的致病性有直接关系。
     本研究利用RACE技术对前期所得的玉米大斑病菌的cAMP依赖性蛋白激酶A催化亚基基因(PKA-c)片段进行延伸,获得了PKA-c全长基因。生物信息学分析表明,PKA-c基因与小麦黄斑叶枯病菌(Pyrenophora tritici-repentis)和烟草赤星病菌(Alternaria alternate)的相似性高达97%和92%;比对cDNA和DNA序列后发现,该基因有两个内含子,开放阅读框大小为1524 bp,编码507个氨基酸。本试验还在mRNA水平上研究了PKA-c的表达规律,发现PKA-c参与碳源物质的利用,且受山梨醇高渗胁迫的影响,此外,PKA-c还参与高渗环境下病菌的钠盐渗透胁迫反应,研究结果为进一步明确cAMP信号转导途径在玉米大斑病菌致病过程中的作用提供了理论依据。
     为进一步明确PKA-c基因与玉米大斑病菌致病性的关系,本试验对玉米大斑病菌的PKA-c基因进行了RNA干扰研究。将PKA-c基因的RNAi载体质粒利用PEG介导法转化玉米大斑病菌的原生质体,潮霉素和PCR筛选共获得了5个转化子。通过半定量RT-PCR以及Northern blotting方法,验证转化子M3、M5、M9为突变体。对基因沉默突变体进行生物学性状分析,发现其菌丝生长速度高于野生型,但分生孢子产生能力下降,萌发所需时间变长;转化子的致病性较野生型明显降低,但两者产生HT-粗毒素的能力没有明显差别。试验还发现,在PKA-c基因表达量下降的同时,伴随着黑色素转录因子、木聚糖酶基因和微管蛋白基因表达量的下降。经对菌株产生的木聚糖酶酶活进行了测定,发现突变体的酶活比野生型低。由此得出结论,PKA-c基因参与调控玉米大斑病菌分生孢子的产生及萌发、参与黑色素的合成及木聚糖酶的合成,但与毒素的产生无关。
Setosphaeria turcica, an important fungal pathogen, is the threat of corn production. Lots of researches found that cAMP signal transduction pathway could regulate the growth, development and pathogenesis of pathogenic fungi. The components of cAMP pathway include protein kinase A and adenylyl cyclase, and protein kinase A is the main effector of cAMP signal transduction pathway, which is directly related to the pathogenecity of pathogenic fungi.
     RACE technology was used to obtain the full length sequence of cAMP dependence protein kinases A catalytic subunit gene (PKA-c). The bioinformatic analysis revealed that the deduced amino acid sequence of the PKA-c owned 97% identity with Pyrenophora tritici-repentis (XP_001939935.1) and 92% identity with Alternaria alternate (ABY83137.1).
     The cDNA and DNA sequences of PKA-c were compared by DNAMAN, the ORF (open reading frame), which was interrupted by two introns, was 1524 bp long, and encoded a protein with 507 amino acid residues. The expression of this gene was analyzed on mRNA level; we found PKA-c involving in the utilization for carbon source, influenced by the osmotic stress from sorbitol, and participate in stress reaction of plant pathogenic fungi under hypertonic environment by sodium salt. This research laid a foundation for the functional analysis about cAMP signal transduction pathway in phytopathogenic fungi.
     RNAi (RNA interference) technology has been widely applied in the study of gene function due to its efficiency and economy. To further define the relationship between PKA-c gene and pathogenesis of S. turcica, we used RNAi (knockdown) as a tool for targeting endogenous gene PKA-c in S.turcica. PEG mediated transformation of PKA-c RNAi plasmid into protoplasts of S.turcica. The transformants were screened by hygromycin B and PCR (polymerase chain reaction) with specific primers corresponding to hygromycin. Three mutants M3, M5, M9 were obtained by semi-quantitative RT-PCR and Nouthern bloting analysis performed. Phenotypic analysis of these mutants showed that the extend of mutant hyphae grew faster than the wild isolate, conidia production was reduced, germination required longer periods of time and their pathogenicity significantly reduced, but crude HT-toxin activity between mutant and wild type were not strikingly difference. The decreased expression of PKA-c gene accompanied with melanin transcription factor, xylanase gene and tubulin gene expression decrease, while the xylanase of wild strain and mutant strain were extracted, enzyme activity was measured and the result showed that mutant had low activity. Therefore, It was concluded that PKA-c gene was involved in regulating conidia production and germination of S. turcica, and related to synthesis of melanin and activity of xylanase not directly relate to the activity of HT-toxin.
引文
[1]周永力, Tanaka C, Matsus H S, et al.玉米大斑病菌(Exserohilum turcicum)原生质体的分离及转化[J].生物工程学报, 2003,19 (3): 364-367.
    [2]李春霞,苏俊,龚士琛,等.黑龙江省玉米大斑病菌生理小种的研究[J].玉米科学, 2000, 8 (2): 89-91.
    [3]Dong J G, Fan Y S, Gui X M, et al. Geographic distribution and genetic analysis of physiological races of Setosphaeria turcica in Northern China[J]. American Journal of Agricultural and Biological Sciences, 2008, 3(1): 389-398.
    [4]董金皋.农业植物病理学(北方本)[M].北京:中国农业出版社, 2001.
    [5]侯晓强,范永山,董金皋,等.玉米大斑病菌有性杂交F1代菌株的生理小种鉴定和AFLP分析[J].植物保护学报, 2006, 33(3): 257-262.
    [6]Dean R A. Signal pathways and appressorium morphogenesis[J]. Annual Review of Phytopathology, 1997, 35: 211-234.
    [7]范永山,曹志艳,谷守芹,等.不同诱导因素对玉米大斑病菌附着胞产生的影响[J].中国农业科学, 2004, 37 (5): 769-772.
    [8]Neves S R, Ram P T, Iyengar R. G protein pathways[J]. Science, 2002, 296: 1636-1639.
    [9]姜俏,林琳,汪天虹.丝状真菌细胞凋亡研究进展[J].微生物学报, 2008, 48(4): 551-555.
    [10]Choi W B, Kang S H, Lee Y W, et al. cAMP restores appressorium formation inhibited by polyamines in Magnaporthe grisea[J]. Phytopathology 1998, 88(1): 58-62.
    [11]Lee Y H, Dean R A. cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea[J]. Plant Cell, 1993, 5(6): 693-700.
    [12]Lengeler K B, Davidson R C, Dsouza C, et al. Signal transduction cascades regulating fungal development and virulence [J]. Microbiology and Molecular Biology Reviews, 2000, 64:746-785.
    [13]Toda T, Cameron S, Sass P, et al. Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase [J]. Cell, 1987, 50 (2): 277-287.
    [14]Klimpe1 A, Gronover S, Williamson C, et al. The adenylate cyclase (BAC) in Botrytis cinerea is required for full pathogenicity [J]. Molecular Plant Pathology, 2002, 3: 439-450.
    [15]Christina G, Thorsten H, Olaf K. et al. Protein kinase A regulates growth, sporulation, and pigment formation in Aspergillus fumigatus[J]. Applied and Environmental Microbiology, 2008, (8): 4923-4933.
    [16]Mitchell T K, Dean R A. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea [J]. PlantCell, 1995, 7 (11): 1869-1878.
    [17]Rahim M, Gert H J K. Protein kinase A subunits of the ascomycete pathogen Mycosphaerella graminicola regulate asexual fructification, filamentation, melanization and osmosensing[J]. Molecular Plant Pathology, 2006, 7(6): 565-577.
    [18]Nobusuke S, Masato M, Takeo O, et al. Suppression of cadmium -induced JNK/p38 activation and HSP70 family gene expression by LL-Z1640-2 in NIH3T3 cells[J]. Toxicology and Applied Pharmacology, 2004, 196: 206-214.
    [19]Zheng X, Li X, Zhang B, et al. cDNA microarray analysis of differential gene expression and regulation in clinically drug-resistant isolates of Candida albicans from bone marrow transplanted patients[J]. International Journal of Medical Microbiology, 2006, 296: 421-434.
    [20]Barbosa A M R B, Sandra A F, Jo?o B P, et al. Disruption of the kinin B1 receptor gene affects potentiating effect of captopril on BK-induced contraction in mice stomach fundus [J]. Peptides, 2006, 27(12): 3377-3382.
    [21]Takagaki M, Kaku K. Mechanism of resistance to carpropamid in Magnaporthe grisea[J]. Pest Managment Science, 2004, 60(9): 921-916.
    [22]Souad E B, Nicole B, Odile C. The role of melanin in the antagonistic interaction between the apple scab pathogen Venturia inaequalis and Microsphaeropsis ochracea[J]. Canadian Journal of Microbiology, 2002, 48(4): 349-358.
    [23]劳荃蘅,黄锡霞,田可川,等.用半定量RT-PCR法检测BⅢB4基因在绵羊皮肤组织中的mRNA表达[J].新疆农业科学, 2009 ,46 (2): 443-448.
    [24]Susumu O, Masaru S, Yasuyuki K, et al. Inhibitory effect of aflastatin A on melanin biosynthesis by Colletotrichum lagenarium[J]. Microbiology, 2001, 147(9): 2623-2628.
    [25]Wang H L, Breuil C. A Second reductase gene involved in melanin biosynthesis in the sap-staining fungus Ophiostoma floccosum[J]. Molecular Genetics and Genomics, 2002, 267(5): 557-563.
    [26]Kihara J, Moriwaki A, Ito M, et al. Expression of THR, a 1,3,8-Trihydroxynaphthalene reductase gene involved in melanin biosynthesis in the phytopathogenic fungus Bipolaris oryzae, is enhanced by Near-Ultraviolet radiation[J]. Pigment Cell Research, 2004, 17: 15-23.
    [27]Tea L R, Michael H W. Melanin biosynthesis in the fungus Curvularia lunata (teleomorph: Cochliobolus lunatus)[J]. Canadian Journal of Microbiology, 2003, 49(2): 110-119.
    [28]Goldoni M, Azzalin G, Macino G, et al. Efficient gene silencing by expression of double stranded RNA in Neurospora crassa[J]. Fungal Genetics and Biology, 2004, 41: 1016-1024.
    [29]Kadotani N, Nakayashiki H, Tosa Y, et al. RNA silencing in the phytopathogenic fungusMagnaporthe oryzae[J]. Molecular Plant-Microbe Interact, 2003, 16: 769-776.
    [30]Nakayashiki H, Hanada S, Quoc N B, et al. RNA silencing as a tool for exploring gene function in ascomycete fungi[J]. Fungal Genetics and Biology, 2005, 42: 275-283.
    [31]Fitzgerald A, van K J, Plummer K M. Simultaneous silencing of multiple genes in the apple scab fungus, Venturia inaequalis, by expression of RNA with chimeric inverted repeats[J]. Fungal Genetics and Biology, 2004, 41: 963-971.
    [32]McDonald T, Brown D, Keller N P, et al. RNA silencing of mycotoxin production in Aspergillus and Fusarium species[J]. Molecular Plant-Microbe Interaction, 2005, 18: 539-545.
    [33]Hamada W, Spanu P D. Co-suppression of the hydrophobin gene HCf-1 is correlated with antisense RNA biosynthesis in Cladosporium fulvum[J]. Molecular and General Genetics, 1998, 259: 630-638.
    [34]W?lti M A,Villalba C,Buser R M, et al. Targeted gene silencing in the model mushroom Coprinopsis cinerea (Coprinus cinereus) by expression of homologous hairpin RNAs[J]. Eukaryotic Cell, 2006, 5: 732-744.
    [35]Latijnhouwers M, Ligterink W, Vleeshouwers V G A A, et al. A galpha subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans[J]. Molecular Microbiology, 2004, 51(4): 925-936.
    [36]安鑫龙,董金皋,韩建民,等.玉米大斑病菌的RAPD分析I.应用CTAB法提取玉米大斑病菌DNA[J].河北农业大学学报, 2001, 24(1): 38-41.
    [37]刘丽华.限制性内切酶介导(REMI)玉米大斑病菌的遗传转化及其转化子表型分析[D].保定:河北农业大学硕士学位论文, 2007.
    [38]谷守芹.调控玉米大斑病菌生长发育和致病性的STK基因的克隆与功能分析[D].保定:河北农业大学博士学位论文, 2007.
    [39]Fang W G, Bidochka M J. Expression of genes involved in germination, conidiogenesis and pathogenesis in Metarhizium anisopliae using quantitative real-time RT-PCR[J]. Mycological Research, 2006, 110: 1165-1171.
    [40]Yeshitila D, Richard F S, Nisse K. Purification and partial characterization of xylanase from the fungal maize pathogen Helminthosporium turcicum[J]. European Journal of Plant Pathology, 1995, 101: 291-299.
    [41]黄辉,李富伟,汤海鸥,等.应用琼脂扩散法测定饲料中木聚糖酶含量[J].中国饲料, 2008, 2: 25-27.
    [42]张利辉.玉米大斑病菌2号小种毒素的分离与纯化研究[D].保定:河北农业大学硕士学位论文, 2001.
    [43]Kyte J, Doolittle R F. A simple method for displaying the hydropathic character of a protein[J]. Journal of Molecular Biology, 1982, 157(1): 105-132.
    [44]Combet C, Blanchet C, Geourjon C, et al. NPS: Network protein sequence analysis[J]. Trends in Biochemical Sciences, 2000, 291(25): 147-150.
    [45]Mathias C, Martine B, Anne V C. A semi-quantitative RT-PCR method to readily compare expression levels within Botrytis cinerea multigenicfamilies in vitro and in planta[J]. Current Genetics, 2003, 43 (1): 303-309.
    [46]Rolland V G. Semi-quantitative analysis of gene expression incultured chondrocytes by RT– PCR [J] .Methods in Molecular Medicine, 2004, 100 (1): 69-78.
    [47]Kuddus R H, Lee T H, Valdivea L A. A semi-quantitative PCR technique for detecting chimerism in hamster to rat bone marrow xenotransplantation[J]. Journal of Immunological Methods, 2004, 285 (1): 245-251.
    [48]Fellenr M D, Durand K, Correa M. A semi quantitative PCR method (SQ-PCR) to measure Epstein-Barr virus (EBV) load: its application intransplant patients[J]. Biotechniques, 1997, 22 (1):630-634, 636.
    [49]张翔,王寒正,龚岳亭,等. RT-PCR测定mRNA的荧光定量分析[J].生物化学与生物物理学报, 1998, 30(1): 70-73.
    [50]Chen D, Klebe R J. Controls forvalidation ofrelative reverse transcription polymerase chain reaction assays[J]. PCR methods and Applications, 1993, 3(2): 127-129.
    [51]王苗苗.玉米大斑病菌cAMP依赖性蛋白激酶A基因的克隆与功能分析[D].保定:河北农业大学硕士学位论文, 2009.
    [52]Yang Z, Dickman M B. Colletotrichum trifolii mutants disrupted in the catalytic subunit of cAMP-dependent protein kinase are nonpathogenic[J]. Molecular Plant-Microbe Interactions, 1999, 12(5): 430-439.
    [53]Lemaire K, Van de Velde S,Van D P M, et al. Glucose and sucrose act as agonist and mannose as antagonist ligands of the G-protein coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae[J]. Molecular Cell, 2004, 16: 293-299.
    [54]Van de Velde S, Johan M T. Cyclic AMP-protein kinase A and Snf1 signaling mechanisms underlie the superior potency of sucrose for induction of filamentation in Saccharomyces cerevisiae[J]. Eukaryotic Cell, 2008, 7(2): 286-293.
    [55]Doehlemann G, Berndt P, Hahn M. Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea[J]. Microbiology, 2006, 152 (9): 2 625-2634.
    [56]张立秋,陈艳秋.不同碳、氮源及无机盐对桦褐孔菌菌丝培养特性的影响[J].延边大学农学学报, 2006, 28 (1): 41-45.
    [57]周维,黄翠琴,王寿昆,等. RACE:一种研究新基因的有效方法[J].热带医学杂志, 2007, 7(4): 386-389.
    [58]Sergiy O G, Michail Y L, Oxana V G. To be folded or to be unfolded [J]. Protein Society, 2004, 13(11): 2871-2877.
    [59]陈润生.生物信息学[J].生物物理学报, 1999, 15(1): 5-12.
    [60]Mendgen K, Hahn M, Deising H. Morphogenesis and mechanisms of penetration by plant pathogenic fungi[J]. Annual Reviews of Phytopathology, 1996, 34: 367-386.
    [61]Kiichi A, John E H. Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea[J]. The Plant Cell, 1998, 10(8): 1361-1373.
    [62]Joseph E, Flahertya, Larry D. Identification and expression analysis of regulatory genes induced during conidiation in Exserohilum turcicum[J]. Fungal Genetics and Biology, 2005, 42(5): 471-481.
    [63]Weiguo F, Monica P, Sibao W, et al. Protein kinase A regulates production of virulence determinants by the entomopathogenic fungus, Metarhizium anisopliae[J]. Fungal Genetics and Biology, 2009, 46: 277-285.
    [64]徐春兰,汪以真.半定量RT-PCR法分析猪肌肉组织细胞谷胱甘肽过氧化物酶mRNA表达水平[J].中国兽药杂志, 2005, 39(8): 3-6.
    [65]Kwon Y H, Hoch H C, Staples R C. Cytoskeletal organization in Uromyces urediospore germling apices during appressorium formation[J]. Protoplasma, 1991, 165: 37-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700