用户名: 密码: 验证码:
木质材料间摩擦性能及其对木结构设计的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入21世纪以来,木结构建筑在我国各地得到恢复利用且发展迅速,特别是以民居为主要建造对象的轻型木结构建筑更是来势迅猛,但另一方面,与应用相比木结构相关研究却显滞后,很多领域尚处于空白状态,为了尽快掌握这种现代新型建筑的相关技术,急需进行大量的研究工作。
     本论文以轻型木结构房屋为研究对象,从木材与其它结构用人造板材相接触的表面摩擦、有/无钉连接时木结构构件间摩擦、剪力墙的地梁板和房屋基础面板间摩擦等三个层面,逐步进行了实验研究和仿真模拟分析,研究中对轻型木结构房屋进行了必要的简化,突出了构件间摩擦关系对木结构安全性的影响。
     本论文进行了实体木材试件与各种建筑结构用木质人造板材间的摩擦实验,经过统计分析得到了木材作为结构用材时与其它木质结构材间的实用摩擦系数:木材比重对摩擦系数的影响及相关关系,发现了木材比重与材料间摩擦系数间存在一定的负相关性,即随着木材比重增加,木材与其它材料间摩擦系数呈降低趋势,相关系数在0.7~0.9之间,材料间的摩擦系数在0.2~0.39之间,同一个摩擦副中的动-静摩擦系数比在0.6~0.9之间。本论文进行的实体木材自相交摩擦实验结果表明,在木材-木材摩擦中,木材比重与其摩擦系数的负相关性同样存在,但因为涉及两个不同的木试件,所以需要进行试件比重平均化处理,即木材平均比重与木材间的摩擦系数存在负相关性。
     论文进行了轻型木结构房屋实体模型试验,模型的骨架材料是加拿大产SPF(云杉/松/杉)商品材,覆面板及基础面板是日本国产针叶材胶合板(不同规格),实测的平均摩擦系数为0.285(0.2~0.35间变动),考虑到实际木结构房屋与实验室研究环境的条件差异,在工程设计时可以取值0.25进行计算。摩擦阻尼约占全阻尼的1/3~1/2,在进行设计计算时可以增加考虑构件间摩擦力引起的阻尼衰减,以达到精确构件设计可靠性范围的目的。
     当剪力墙地梁板与基础面板间的摩擦达到稳定的平衡状态以后,使用连接件前与使用后再去除连接件相比,其摩擦状态无明显改变(即小范围的材料表面缺陷对剪力墙-基础间的摩擦状态无影响)。钉连接的单向和反复荷载试验表明其荷载位移曲线具有高度的非线性、捏缩、强度折减和刚度折减等特性。
     本论文根据接触状态下摩擦学原理,建立了轻型木结构构件间的接触摩擦系数数学模型,根据离散单元的思想找到了求解接触摩擦问题的新方法。
     本论文建立了基于ANSYS分析软件的简化轻型木结构房屋三维有限元模型,并对该模型在侧向力作用下地梁板-基础面板节点(木材-不同种类的人造板材)进行了计算机仿真模拟,并将仿真结果与实体实验结果进行比较,发现仿真结果能够与实体模型的实验结果相符合,基于此,我们认为所建立合适的三维有限元模型是有效的,该模型的建立方法可以为以后建立完整轻型木结构分析模型提供依据,进而可以实现有限元的仿真模拟代替实体模型的实验研究。
     本论文实验部分是在日本进行合作研究时完成的,尽管在选材上以日本北海道地区现行主要建筑材料为研究对象,但试验中所使用的方法完全可以对在我国开展类似研究提供参考,所得出的结论对我国,特别是对我国东北地区地产材的利用具有很高的参考价值。此外,本论文的分析研究方法为确定木材与其它材料间不同摩擦系数提供理论计算依据,为轻型木结构房屋的计算设计、安全优化设计提供了依据。
     本论文除了从技术角度研究了木结构研究中的摩擦问题,还从宏观上分析论述了我国发展木结构建筑应当采取的方式策略,提出了在我国发展木结构建筑的一些建议。
In recent years, light wood structure house gradually rise in China, but the correlative research is just beginning, to grasp the new technologies related to the new building structure, it is urgent to learn from the advanced country. In this paper, the solid model of light wood structure house served as the core of study, the author researched the impact of lateral loads on light wood structure house by the methods of testing and simulation analysis from the friction between wood and other structural artificial wood panel, the friction between wood structure components with or without nailing connection, the friction between shear walls and basis of house. Main research contents, methods and conclusions are as follows:
     To carry out experiment of friction between solid timber specimens and a variety of artificial wood panel using architecture structures, the friction coefficient of the timber as structure wood through the test was calculated (coefficient is about 0.7-0.9), impact of timber gravity on the friction coefficient and their correlation was found, the result showed a negative correlation, which the friction coefficient is gradually decreasing with increasing of the wood gravity. The ratio of dynamic-static friction coefficient is about 0.6-0.9.
     There exists a negative correlation when we carried out the intersection friction experiments (the dynamic-static friction experiment of solid timber specimen and others) during solid woods, but using other materials, the results of experiments isn't significant. The negative correlation became evident, when the specimen gravity was processed by average proportion.
     The average friction coefficient of the bottom beam using SPF commercial timber and plywood using conifers is 0.285 (range of 0.2-0.35), the value of friction coefficient can be 0.25 in project design. Friction damping is about half of the total damping. During the design we should consider that the friction between components brought the damping decay, precisely ascertain scope of component reliability.
     When the friction between the bottom beam of shear wall and the basic panel attained a stable equilibrium, the friction was little effect before and after using the connectors (negligible). One-way and repeated loading tests about nailing connection showed that the load-displacement curves taken on the characteristics of highly nonlinear, the pinching and shrinking as well as intension reduction and stiffness reduction.
     We developed a model for the contact friction coefficient between structure woods based on the friction theory. A novel method was proposed to evaluate the friction coefficient by using the finite element method.
     In this thesis, we used model software and finite element analysis software to construct a 3D model of light wood structure house. The model combine finite element theory and friction theory, it can simulate the results of real experiment. We set the real experiment data as the boundary condition for the model system; the prediction is consistent with the real experiment data, so we believe that this model is proper for the mechanical analyze of light wood structure house. We also found that the precision of material character parameters is very important for a good prediction, so how to measure the parameters is a challenge in this research.
     This experiment is part of collaborative research in Japan, despite the current popular main construction materials in Japan as the research object, but the test method can provide reference for similar studies in China, the conclusions in the paper has a high reference value for timber utilization in our country, especially in northeast district.
     In this paper, except the experiment, the thesis analyzed construction and utilization of the light wooden house in our country and abroad, and to re-launched use of wood, the author put forward views and suggestions.
引文
[1]联合国粮食及农业组织.2009年世界森林状况[R].罗马2009:6~12 22~34
    [2]贾骞.我国木材类产品供需状况及对策[J].木材工业.2002,(05):3~5
    [3]华毓坤.21世纪人造板工业发展趋势[J].南京林业大学学报(自然科学版).2001,(02):6~8
    [4]国家林业局森林资源管理司.第七次全国森林资源清查及森林资源状况[J].林业资源管理.2010,(01):1-8
    [5]王益政.美国木结构住宅成本与效率[J].房材与应用.2002,(01):36~28
    [6]杨鹤筹.人造板在加拿大住宅建筑中的应用[J].建筑人造板.2002,(01):5~7
    [7]刘廷杰等.木结构——北美洲独特的建筑方式[J].时代建筑.1998,(02):68~70
    [8]邢继胜等.美国多层木结构房屋的应用与设计[A];第六届全国现代结构工程学术研讨会论文集[C].2006:1634~1639
    [9]吉英年等.木结构在大跨度建筑中的应用[A].第六届全国现代结构工程学术研讨会论文集[C],2006:367~373
    [10]周定国.我国人造板新产品开发现状与发展趋向[J].林业科技开发.1997,(01):11~13
    [11]吴竹涟.木结构房屋——我国住宅的盲点[J].世界建筑.2000,(05):63~66
    [12]费本华等.我国发展木结构房屋的前景分析[J].木材工业.2002,(05):6~9
    [13]樊承谋.木结构在我国建筑中应用的前景[J].木材工业.2003,(03):4~6
    [14]王寿华.我国木结构工程技术的新进展——新版《建筑施工手册》第15章内容精选[J].建筑技术.1997,(04):243~245
    [15]刘雁等.国外木结构建筑的抗震性能研究[J].世界林业研究,2005,(02):66~69
    [16]刘雁等.现代木结构建筑及其在我国的发展前景初探[J].江苏建筑.2005(3):5~10
    [17]崔艳琦.国外绿色建筑与评估[J].科技管理研究,2008,(9):71-72
    [18]朱颖心.国外绿色建筑面面观[J].科技潮,2005,(6):13~15
    [19]许晓梁等.浅谈轻型木结构在住宅建筑中的应用[J].福建建设科技.2008(2):5~6
    [20]薛刚.木材振动抓具抓取阻力及其振动参数的研究[J].林业科技.1992(1):45~48
    [21]丘湘荣.木材加工的切削速度对切削现象、切削阻力及摩擦系数的影响[J].木工机床.1986(3):15~22
    [22]张盛东.木结构剪力墙抗侧性能研究进展[J].结构工程师.2006,(05):72~77
    [23]胡国玺.不规则木结构剪力墙抗侧性能研究[D].同济大学,2007:6~12
    [24]华晶.轻型木——混凝土混合结构整体有限元分析[D].同济大学,2008:34~56
    [25]张亚欧等.ANSYS7.0有限元分析实用教程[M].北京:清华大学出版社,2004:145~162
    [26]周丽娜.高木剪力墙抗侧性能有限元分析[D].同济大学,2008:38~67
    [27]李翰伯.不对称开门洞轻型木结构房屋抗震试验研究[D].同济大学,2007:36~47
    [28]闫新宇.轻型木结构剪力墙抗侧力性能试验研究与有限元分析[D].哈尔滨工业大学,2007:52~77
    [29]姜国梁等.从单层球面网壳结构的发展演变过程看建筑美学与结构受力统一[A];庆贺刘锡良教授执教五十周年暨第一届全国现代结构工程学术报告会论文集[C];2001:
    [30]罗才松等.古建筑木结构的加固维修方法述评[A];古建筑施工修缮与维护加固技术交流集锦[C];2008:
    [31]冯丽等.基于分形几何的表面微观形貌模拟及粘着弹性接触计算研究[J].润滑与密封,2007,32(6):74~77.
    [32]孙崇咪.现代木结构建筑之墙体构造研究[D].南京林业大学,2007:35~41
    [33]刘晶波等.低层轻型木结构建筑体系整体性能研究[A].第16届全国结构工程学术会议论文集(第Ⅰ册)[C].2007:Ⅰ-302~Ⅰ-308
    [34]颜铭.轻型木结构齿板连接的结构性能研究[D].南京林业大学,2006:3~9
    [35]我国建设部.GB/T50361-2005《木骨架组合墙体技术规范》.北京:我国标准出版社,2005
    [36]我国建设部.GB/50005-2003《木结构设计规范》.北京:我国标准出版社,2003
    [37]王建娥.轻型木结构中齿板连接木桁架的研究[D].河北理工大学,2005:
    [38]王毅红等.木结构房屋的抗震性能及保护措施[J];工程抗震与加固改造.2004(5):47~51
    [39]温诗铸.摩擦学原理[M].北京:清华大学出版社,1990:1-36
    [40]D.F.摩尔.摩擦学原理和应用[M].黄文治等译.北京:机械工业出版社,1982:33~35
    [41]日本国土交通省:平成16年度建筑着工统计调查报告.2004
    [42]日本国土交通省:平成17年度建筑着工统计调查报告.2005
    [43]日本国土交通省:平成18年度建筑着工统计调查报告.2006
    [44]日本国土交通省:平成19年度建筑着工统计调查报告.2007
    [45]平井卓郎.木结构的研究课题.木材学会志(日)[J].2007(3):117-126
    [49]栗崎宏等.廃食油用油铜石鹸処理木材や各种铺装材。步行摩擦[J].木材学会志(日).2006(4):114~116
    [54]横地秀行等.树种による工具摩耗の相违[J].木材工业(日).2006(2):72~78
    [56]日本建筑学会.木质构造设计规准·同解说.东京:东洋出版社,2002,(27):50~56
    [61]日本建筑学会.建筑物荷重指针·同解说.东京:东洋出版社,2004:551-554
    [71]青井秀树等.各种厚物面材の钉接合部せん断性能[J].Journal of timber Engineering. 2004,17(2):27~33
    [72](财)日本建筑技术者指导センタ一,国土交通省住宅局建筑指导课.基准建筑关系法令集(告示编)平成19年版.东京,霞ク关出版社,2007:545~562
    [73](社)日本建筑协会.1998年(?)组壁工法建筑物北米型住宅设计の手引[M].东京:霞ク关出版社,1998:65~82
    [74](财)日本建筑中心.(?)组壁工法技术基准·同解说[M],东京:东洋书店,1990:41-46
    [75](财)日本建筑中心.丸太组构法技术基准·同解说[M],东京:东洋书店,1990:41-46
    [76]平井卓郎等.木质构造(日)[M].东京:东洋书店,2004:2~25 67 82~83 168~173
    [77]G.Mckenzie et al.固体の摩擦と润滑[M].曾田范宗訳,丸善,东京,1997:95~99
    [78](财)日本住宅·木材技术中心.枠组壁工法耐力壁及びその倍率性能评(?)业务方法书[M].东京:东洋出版社,2004:23~31
    [79](财)日本住宅·木材技术中心.优良木质建材等论证AQ~144-E2~1东京:东洋出版社,2004:12~15
    [80](社)日本建筑学会.木构造设计基准·同解说许用应力度·许用耐力设计法[M].东京.东洋出版社,2008:56~64 123~131
    [81]Ming He et al. Cyclic Performance of Perforated Wood Shear Walls with Oversize OSB Panels[J].Journal of Structural Engineering.1999,125(1):10~18
    [82]Abu-Zahra et al.Tool chatter monitoring in turning operations using wavelet analysis of ultrasound waves[J]. Int. J. Adv. Manuf. Technol.2002,20:248~254
    [83]Peter J.Blau.The significance and use of the friction coefficient[J]. Tribology International. 2001,34(9):585~591
    [84]W.M.Mckenzie et al.The frictional Behavior of wood[J]. Wood Science and Technology. 1998,2(2),139~152
    [85]Hirai Takura et al. Proc.8th World Conference on timber Engineering Vol.1, Lahti, Finland. 2004:153~158
    [86]Awaludin A. Proc.10th World Conference on Timber Engineering, Miyazaki, Japan, June 2008 (CD-ROM).
    [87]Gupta A K. Behavior of Wood-Framed Shear Walls[J].Journal of Structural Engineering. 1985,111(8):1722~1733
    [88]Tower B.First Report on Frietion Experiments[J].Proe Inst Meeh Eng,1983,34(1):632-666
    [89]Tower B.Seeond Report on Frietion Experiments[J].Proe Inst Meeh Eng,1985,36(2):58~70
    [90]Choi Y A et al.Tool wear monitoring in ramp cuts in end milling using the wavelet transform[J]. Adv. Manuf. Technol.2004(23):419~428
    [91]Andre Filiatrault et al. Performance-Based Seismic Design of Wood Framed Buildings[J]. Journal of Structural Engineering.2002,128(1):39~47
    [92]ATC,NEHRP. guidelines for the seismic rehabilitation of buildings.FEMA Report.1997: 272~274
    [93]Mi, H. Behavior of Unblocked Wood Shearwalls[M].Forestry and Environmental Management. The University of New Brunswick,2004:12~14
    [94]Johnn, P.J. Analysis Modeling of Wood-Frame Shear Walls and Diaphragms [D]. Bringham Young University,2005:30~36
    [95]Leichti, R. Sheathing Nail Bending-Yield Strength-Role in Shearwall Performance.WCTE 2006 9th World Conference on Timber Engineering. Portland, OR, USA.2006:6-10
    [96]Folz B.et al. Cyclic analysis of wood shear walls Journal of Structural Engineering.2001, 127(4):433~441
    [97]Itani, R.Y, R.LTuomiand W.J. McCutcheon. METHODOLOGY TO EVALUATE RACKING RESISTANCE OF NAILED WALLS.1982,32 (1):30~36
    [98]He Ming. Numeric Modeling of Three-Dimensional Light Wood-framed Building. Department of Wood Science. University of British Columbia,2002:12~17
    [99]Judd, J.Pet al. Analytical model for sheathing-to-framing connections in wood shear walls and diaphragms Journal of Structural Engineering,2005,131 (2):345~352
    [100]Judd, J.P et al. Strength and behavior of hybrid diaphragms Journal of Composites for Construction,2002,6 (4):215~223
    [101]Bryan, F,F. Andre. SAWS Version 1.0 A Computer Program for Seismic Analysis of Wood Frame Structures.Division of Structural Engineering, University of California, Califoria, USA,2001:124~127
    [102]Van De Lindt.et al.Evolution of wood shear wall testing[J].modeling, and reliability analysis,2002,6(4):215~223
    [103]Dolan J.D et al.Sequential Phased Displacement Cyclic Test of Wood-Frame Shear Alls With Corners [R] Report for NAHB Research Center Inc. Washington:1997:4~11
    [104]Takuro Hirai.Effect of Frictional Resistance on Lateral Resistance of Bolted Timber-Joints with Steel Side-Webs. Journal of Wood Science.1991,37(6):517~522
    [105]Teranishi Masataka.Evaluation of quality indexes of bending performance and hardness for hardwoods[J],Journal of Wood Science.2008,54(5):423-428
    [106]Hirai Takuro et al. Proc.8th World Conference on timber Engineering Vol. I, Lahti, Finland,2004:153~158
    [107]Johns K C.Lacroix S Composite Reinforcement of Timber in Bending [J].Can. J. Civ. Eng.2000.27(5):899~906
    [108]Lam, F.et al.Reliability of trusses and roof systems. Research report, ForintekCanada Corporation, Vancouver, B.C., Canada.1988:114~121
    [109]Mtenga P.V. et al.System Factors for Light-frame Wood Truss Assemblies[J]. Journal of Structural Engineering,1995,121(2):290~300
    [110]Li, Z.et al.Practical Approach to Modeling of Wood Truss Roof Assemblies. Practice Periodical on Structural Design and Construction [J],19983 (3):119~124
    [111]Song XiaoBo.Stability and reliability analysis of metal plate connected wood truss assemblies[D]. The University of British Columbia, Canada,2009:11~15
    [112]Foschi R. O.Analysis of wood diaphragms and trusses, part Ⅱ:Truss-plate connections. Canadian Journal of Civil Engineering,1977(4):353-363.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700