用户名: 密码: 验证码:
鄂东南马尾松林枫香林更替过程及其主要影响因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江中下游地区是我国重要的工农业产区,生态环境相对脆弱。马尾松(Pinus massoniana)林和枫香(Liquidambar formosana)林是本地区最主要的植被类型,对于当地的生态安全发挥着不可替代的作用。在人为干扰持续存在甚至不断加强的背景下,如何对其进行科学的经营管理是当前必须面对的问题,而研究森林的演替趋势,分析重要生态因素对森林演替的影响具有重要的作用。本文采用样地调查法研究了马尾松林、枫香林的群落结构及幼苗更新,用“空间代时间”法构建的枫香伐桩序列研究了枫香萌芽更新的规律;在室内采用控制实验,研究了5个主要乔木树种幼苗对光与氮变化的存活、形态、生理及非结构性碳水化合物的响应,并在此基础上分析了马尾松林和枫香林的动态,研究得到如下结果。
     (1)该地区的马尾松林中枫香为一个增长种群,马尾松种群为一个衰退种群;而枫香林中的枫香种群不能实现持续的实生更新。马尾松林的马尾松是一个年龄为25-30年的同生群,而枫香则为一个增长种群;马尾松和枫香呈“J”型加速增长;化香和合欢幼苗的高生长速率分别在大级别幼苗出现拐点。
     (2)枫香的萌芽更新对于枫香种群的维持具有重要意义。本地区的枫香种群由实生更新和萌芽更新的植株共同组成,枫香伐桩具有较高的存活率、其萌芽能够“强自疏”并最终形成1—2杆的萌代主、萌条生长速度远高于实生幼苗的特点,使枫香种群具有较强的萌芽更新能力。
     (3)枫香种子的非休眠特性、冬季低温及林下弱光环境是影响枫香实生更新的限制因子。马尾松林和枫香林下的凋落物和其它环境因子不影响枫香种子的存活和萌发。
     (4)N对5个主要树种的存活、生长及形态生理均没有显著影响,光对树种的存活、生长、形态及生理特征有显著影响;5个树种间的耐荫性具有麻栎(Quercus acutissima)>短柄袍(Quercus serrata var. brevipetiolata)>枫香>马尾松>化香(Platycarya strobilacea)的位序。
     5个树种幼苗相对生长速率RGR (Relative growth rate)在各光强下的位序没有变化,因此不支持“RGR位序变化是群落物种共存机制之一”的假说;5个树种形态对光强的适应不符合“碳捕获速率最大化”假说,耐荫性较强的树种采用低光合低呼吸的策略实现弱光下的碳平衡,暗呼吸速率Rd-mass[Dark respiration rate (mass base)]可以较好地反映植物弱光下碳平衡的能力;植株非结构性碳NSC(Non-structural carbonhydrate)的浓度与物种存活正相关。
The middle and lower reaches of Yangtze-river is one of the most important economic districts of China, which also is recognised as an ecologically degraded and frail area that needs to be restored and conserved. Pine (Pinus massoniana) forest and Formosan swwetgun (Liquidambar formosana) forest are the most important forest of this district. To manage these vegetation effectively, a full understanding of their natural succession was essential. In this paper, a series of field work and control experiments in green house was conducted to study the regeneration and succession of these two forest types. The results indicated that:(1)in Pine forests, the population of P. massonaina was a cohort aged from 25 to 30 years, but the population of Formosan sweetgum was as an increasing population; on the other hand, the Formosan sweetgum population in sweetgum forests was a decreasing population; the shoot growth of Platycarya strobilacea and Albizia julibrissin seedlings decreased earlier than pine and Formosan sweetgum. (2) Seedling regeneration and sprout regeneration were coexisted in sweetgum populations. Higher survival of stumps, higher "self-thinning" of existing sprouts and higher shoot growth rate than seedlings are the characteristics of Formasan sweetgum sprouting. (3) Our experiments suggested that non-dormant seed and seedling shade intolerance were the key factors limiting seedling regeneration of L. formosana. We did not find any litter leachate inhibition effect on seed germination and store. (4)Survival, growth, and morphology of Quercus acutissima, Quercus serrata var. brevipetiolata, L. formasana, P. massoniana, P. strobilacea seedlings were strongly affected by PAR (Photosynthetic active radiation), but nitrogen supply had little effects on these traits. The shade tolerance rank among five species was Quercus acutissima> Quercus serrata var. brevipetiolata>L. formasana>P. massoniana>Platycarya strobilacea. Our results also suggested that there was no RGR (Relative growth rate) rank reversal among PAR gradients. The effects of PAR on seedlings functional traits conferring to RGR were different between Q.acutissima, Q. serrata var. brevipetiolata and shade intolerant species L. formasana, P. massonian and P. strobilacea. Shade tolerant species had a higher RMR, but shade intolerant species showed a higher LMR (Leaf mass ratio), LAR (Leaf area ratio), and SLA (Specific leaf area). According to the data that shade tolerant species possessed a lower mass based Amax (Light-saturated CO2 assimilation rate), mass based Rd (Dark respiration rate) and the results of whole plant gas exchange simulation, we concluded that strategies of shade tolerant species under low light environment were low leaf investment, low carbon capture rate and low respiration rate. Our results also revealed that seedling survival was strongly correlated with the NSC (Non-structural carbon) concentration in root.
引文
1.毕君,王振亮,黄则舟,赵志诚.采伐季节、伐桩直径、桩高及树龄对刺槐萌芽更新的影响[J].河北林业科技,1993,(4):21-24.
    2.曹春英.植物组织培养[M].北京:中国农业出版社,2006:121.
    3.陈凤毛,高捍东,施季森.枫香种子生物学特性的研究进展[J].种子,2001,(113):33-34.
    4.陈大珂,周晓峰,祝宁,等.天然次生林结构、功能、动态与经营[M].哈尔滨:东北林业大学出版社,1994:20-50.
    5.陈劲松,苏智先.缙云山马尾松种群生物量生殖配置研究[J].植物生态学报,2001,25(6):704-708.
    6.丁圣彦,宋永昌.常绿阔叶林演替过程中马尾松消退的原因[J].植物学报,1998,40(8):755-760.
    7.丁圣彦,卢训令,等.天童国家森林公园常绿阔叶林不同演替阶段群落光环境特征比较[J].生态学报,2005,25(11):2862-2867.
    8.董鸣.缙云山马尾松种群年龄结构初步研究[J].植物生态学与地植物学学报,1987,11(1):50-58.
    9.窦军霞,张一平,等.西双版纳热带次生林林窗辐射特征初步研究[J].热带气象学报,2005,21(3):293-300.
    10.樊后保,臧润国,李德志.蒙古栎种群的天然更新[J].生态学杂志,1996,15(1):15-20.
    11.方炜,彭少麟.鼎湖山马尾松群落演替过程物种变化之研究[J].热带亚热带植物学报,1995,3(4):30-37.
    12.方运霆,莫江明,等.南亚热带森林土壤有效氮含量及其对模拟氮沉降增加的初期响应[J].生态学报,2004,24(11):2353-2359.
    13.高捍东,陈凤毛,施季森.枫香种子成熟期的研究[J].南京林业大学学报,2000,24(1):26-28.
    14.高健,刘令峰,叶镜中.伐桩粗度和高度对杉木萌芽更新的影响[J].安徽农业大学学报,1995,22(2):145-149.
    15.高贤明,王巍,等.北京山区辽东栎林的径级结构、种群起源及生态学意义[J].植物生态学报,2001,25(6):673-678.
    16.郭学民,徐兴友,等.合欢种子硬实与萌发特性及种皮微形态与结构特征的研究[J].内蒙古农业大学学报,2006,27(3):13-18.
    17.郭建钢,周新年.不同采集方式对马尾松林天然更新的影响[J].福建林学院学报,2000,20(4):302-305.
    18.贵州森林编委会.贵州森林[M].贵阳/北京:贵州科技出版社/中国林业出版社,1992:142-163.
    19.韩海荣,姜玉龙.栓皮栎人工林光环境特征的研究[J].北京林业大学学报,2000,22(4):92-96.
    20.黄世能,郑海水,赖汉兴.热带薪材树种的天然更新[J].林业实用技术,1990,(12):3-7.
    21.黄世能,王伯荪.热带次生林群落动态研究:回顾与展望[J].世界林业研究,2000,13(6):7-13.
    22.湖北省浠水县志编纂委员会.浠水县志[M].北京:中国文史出版社,1992:1-10.
    23.湖南森林编委会编.湖南森林[M].长沙/北京:湖南科技出版社/中国林业出版社,1991:158-168.
    24.陈灵芝,陈伟烈主编.中国退化生态系统研究[M].北京:中国科学技术出版社,1995:61-93.
    25.贺庆棠,袁嘉祖.气候变化对马尾松和云南松分布的可能影响[J].北京林业大学学报,1996,18(1):22-28.
    26.荆涛,马万里,等.水曲柳萌芽更新的研究[J].北京林业大学学报,2002,24(1):12-15.
    27.李景文,刘世英,等.三江平原低山丘陵区水曲柳无性更新研究[J].植物研究,2000,20(2):215-220.
    28.李景文,聂绍荃,安滨河.东北东部林区次生林主要阔叶树种的萌芽更新规律[J].林业科学,2005,41(6):72-77.
    29.李根前,唐德瑞,等.陕南马尾松种群结构与动态的初步研究[J].西北植物学报,1994,14(4):307-313.
    30.李飙,咎启杰,等.黑石顶森林中次生裸地上的群落演替进程研究[J].热带亚热带植物学报,1997,5(3):16-21.
    3].李俊清,李景文,崔国发.保护生物学[M].北京:中国林业出版社,2002:1-20.
    32.梁建萍,王爱民.干扰与森林更新[J].林业科学研究,2002,15(4):490-498.
    33.刘就,刘和平,等.枫香种子性状研究进展[J].福建林业科技,2007,34(2):190-192,201.
    34.骆宗诗,温佐吾.马尾松次生林研究现状和展望[J].贵州林业科技,2004,32(3):47-55.
    35.李庆康,马克平.植物群落演替过程中植物生理生态学特性及其主要环境因子的变化.植物生态学报[J],2002,26(增刊):9-19.
    36.马友平.鄂西南天然马尾松林枯损模型的研究[J].林业科技通讯,2000,(3):21-22.
    37.彭少麟.鼎湖山人工马尾松第1代与自然更新代生长动态比较[J].应用生态学报,1995,6(1):11-13.
    38.彭少麟,方炜.鼎湖山植被演替过程中椎栗和荷木种群的动态[J].植物生态学报,1995,19(4):311-318
    39.彭镇华,江泽慧.长江中下游低丘滩地综合治理与开发研究[M].北京:中国林业出版社,1996:1-5.
    40.任宪友.生态恢复研究进展与展望[J].世界科技研究与发展,2005,27(5):79-83.
    41.孙雪峰,陈灵芝.暖温带落叶阔叶林辐射能量环境初步研究[J].生态学报,1995,15(3):278-286.
    42.唐守正,刘世荣.我国天然林保护与可持续经营[J].中国农业科技导报,2000,2(1):42-46.
    43.谭景焱,班继德,王增学.湖北植被区划[J].华中师院学报,1982,(3):102-127.
    44.王伯荪,彭少麟.鼎湖山森林群落分析——群落演替的线性系统与预测[J].中山大学学报,1985,(4):75-80.
    45.王映明.湖北植被区划(下)[J].武汉植物学研究,1985,3(1):165-176.
    46.王映明.湖北大别山植被[J].武汉植物学研究1989,7(1):29-38.
    47.王荣,郭志华.不同光环境下枫香幼苗的叶片解剖结构[J].生态学杂志,2007,26(11):1719-1724.
    48.王本洋,余世孝,王永繁.植被演替过程中种群格局动态的分形分析[J].植物生态学报,2006,30(6):924-93.
    49.王献溥,蒋高明.广西马尾松林分类、分布和演替的研究[J].植物研究,2002,22(2):151-155.
    50.韦朝领,孙启祥,等(2003).江淮分水岭落叶阔叶林林窗光环境特征及其对绞股蓝生长特性的影响[J].应用生态学报,2003,14(5):665-670.
    51.吴征镒,王献溥,等编.中国植被[M].北京:科学技术出版社,1979:749-759.
    52.董鸣,王义凤编.陆地生物群落调查观测与分析[M].北京:中国标准出版社,1996:13-23.
    53.王迪海,唐德瑞.马尾松次生林的经营技术[J].江西林业科技,1995,(4):52-54.
    54.王得祥,刘淑明.秦岭华山松群落能量环境及光能利用率研究[J].西北林学院学报,2003,18(4):5-8.
    55.谢会成,姜志林,叶镜中.麻栎光合作用的特性及其对C02倍增的响应[J].南京林业大学学报,2002,26(4):67-70.
    56.谢会成,宋金斗,等.栓皮栎林内的光照分布及植物的光合特性研究[J].福建林学院学报,2004,24(1):21-24.
    57.熊利民,钟章成.四川缙云山森林群落的同期发生演替及其模型预测[J].生态学报,1991,11(3):49-53.
    58.熊小刚,熊高明,谢宗强.神农架地区常绿落叶阔叶马尾松林树种更新研究[J].生态学报,2002,22(11):2001-2005.
    59.熊文愈,骆林川.植物群落演替研究概述[J].生态学进展,1989,6(4):229-235.
    60.伊力塔,韩海荣.山西灵空山林区辽东栎萌芽更新规律研究[J].林业资源管理,2007,(4):57-61.
    61.杨小波,文洪波.海南中部山区次生林优势种枫香发育规律研究[J].海南大学学报,2000,18(1):54-58.
    62.杨小波,文洪波,等.海南岛中部山区次生林生态特征研究[J].海南大学学报自然科学版,1999,17(4):344-346.
    63.杨清培,李鸣光,李仁伟.广东黑石顶自然保护区马尾松群落演替过程中的材积和生物量动态[J].广西植物,2001,21(4):295-299.
    64.杨心兵,覃逸明.武汉市马鞍山森林公园马尾松年龄种群结构与分布格局[J].华中师范大学学报(自然科学版),2001,35(2):209-213.
    65.《中国森林》编辑委员会.《中国森林》(Ⅲ)[M].北京:林业出版社,1997:1431-1434.
    66.曾慧卿,刘琪景,等.红壤丘陵区林下灌木生物量估算模型的建立及其应用[J].应用生态学报,2007,18:2185—2190.
    67.詹承雄.杉木萌芽更新数量特征的初步研究[J].福建林学院学报,2008,28(3):281-284.
    68.周厚诚,彭少麟,等.广东南奥岛马尾松林的群落结构[J].热带亚热带植物学报,1998,6(3):203-208.
    69.张佩昌,王庆礼.中国天然林保护工程[M].北京:中国林业出版社,2000:11-26.
    70.张一平,窦军霞.西双版纳热带季节雨林太阳辐射特征研究[J].北京林业大学学报,2005,27(5):17-25.
    71.张志良,瞿伟菁编.植物生理学实验指导[M].北京:高等教育出版社,2002:67.
    72.章家恩,徐琪.恢复生态学研究的一些基本问题探讨[J].应用生态学报,1999,10(1):109-113.
    73.周政贤编著.中国马尾松[M].北京:中国林业出版社,2000.
    74.朱守谦,汤莉.马尾松幼龄种群的分布格局[J].山地农业生物学报,1999,18(6):364-369.
    75.朱教君.次生林经营基础研究进展[J].应用生态学报,2002,13(12):1689-1694.
    76.邹士玉,马方励.苯酚-硫酸法测定“润和津露”的粗多糖含量[J].中药材,2007,30(11):1470-1472.
    77. Aber J. D., McDowellw and Nadelhoffer K. J.. Nitrogen saturation in Northern forest ecosystems, hypotheses revisited [J],Bioscience,1998,48(11):921-934.
    78. Ahmed R., Hoque A. T. M. R. and Hossain M. K.. Allelopathic effects of leaf litters of Eucalyptus camaldulensis on some forest and agricultural crops [J]. Journal of Forestry Research,2008,19(1):19-24.
    79. Al-Humaid A. I. and Warrag M. O. A.. Allelopathic effects of mesquite (Prosopis juliflora) foliage on seed germination and seedling growth of bermudagrass (Cynodon dactylon) [J]. Journal of Arid Environments,1998,38(2):237-243.
    80. Anders J. D., Zackrisson O. and Nilsson M. C.. Effects of bilberry (Vaccinium myrtillus L.) litter on seed germination and early seedling growth of four boreal tree species [J]. Journal of Chemical Ecology,1996,22(5):973-986.
    81. Augspurger C. K.. Seedling survival of tropical tree species, interactions on dispersal
    distance, light gaps, and pathogens [J]. Ecology,1984,65(6):1705-1712.
    82. Baltzer J. L. and Thomas S. C.. Determinants of whole-plant light requirements in Bornean rain forest tree saplings [J]. Journal of Ecology,2007,95(6):1208-1221.
    83. Baskin C. C. and Baskin J. M.. Physiology of dormancy and germination in relation to seed bank ecology. In:Leck, M.A., Parker, V.T. and Simpson, R.L.Ecology of Soil Seed Banks [M]. San Diego:Academic Press,1989:53-66.
    84. Baskin C. C. and Baskin J. M.. Seeds:Ecology, Biogeography and Evolution of Dormancy and Germination [M]. San Diego:Academic Press,1998:666.
    85. Bellingham P.J., Sparrow A..D.. Resprouting as a life history strategy in woody plant communities [J]. Oikos,2000,89(2):409-416.
    86. Bazzaz F. A. and Wayne P. M.. Coping with environmental heterogeneity:the physiological ecology of tree seedling regeneration across the gap-understory continuum.In Caldwell M. M. and Pearcy R. W. (eds). Exploitation of environmental heterogeneity by plants: ecophysiological processes above- and belowground [M]. San Diego California, USA: Academic Press,1994:349-390.
    87. Bonner F. T.. Maturation of sweet gum and American Sycamore seeds [J]. Forest Science, 1972,18(3):223-231.
    88. Bonner F. T.. Collection and care of sweet gum seed [J]. New Forest,1987, 1(3):207-214.
    89. Bloom A. J., Chapin F. S. et al.. Resource limitation in plants:an economic analogy [J]. Annual Reviews of Ecology and Systematics,1985,16:363-392.
    90. Bradshaw A. D.. Ecological significance of genetic variation between populations. In:D irzo R, Sarukhan J (eds). Perspectives on Plant Population Ecology [M]. Sunderland:Sinauer, 1984:213-228.
    91. Brouwer R.. Nutritive influences on the distribution of dry matter in the plant [J]. Netherlands J. Agric. Sci.,1962,10:361-376.
    92. Burtern P. J. and Bazzaz F. A.. Tree seedling emergence on interactive temperature and moisture gradients and in patchs of old-field vegetation [J]. American Journal of Botany, 1991,78(1):131-149.
    93. Boukcima H., Page's L. C. and Mousain D.. Local NO3- or NH4+ supply modify the root system architecture of Cedrus atlantica seedlings grown in a split-root device [J]. Journal of Plant Physiology,2006,163(12):1293-1304.
    94. Cao B., Dang Q.-L., Yu X. and Zhang S.. Effects of [CO2] and nitrogen on morphological and biomass traits of white birch (Betula papyrifera) seedlings [J]. Forest Ecology and Management,2008,254(2):217-224.
    95. Catovsky S. and Bazzaz F. A.. NItrogen availability influences regeneration of temperate tree species in the understory seedling bank [J]. Ecological Applications,2002,12(4):1056-1070.
    96. Catovsky S., Kobe R. K. and Bazzazl F. A.. Nitrogen-induced changes in seedling regeneration and dynamics of mixed conifer-broad-leaved forests [J]. Ecological Applications,2002,12(6):1611-1625.
    97. Cavieres L. A., Chaco'n P., Pen~aloza A., et al.. Leaf litter of Kageneckia angustifolia D. Don (Rosaceae) inhibits seed germination in sclerophyllous montane woodlands of central Chile [J]. Plant Ecology,2007,190:13-22.
    98. Cardillo E. and Bernal C. J.. Morphological response and growth of cork oak(Quercus suber L.) seedlings at different shade levels [J]. Forest Ecology and Management,2006,222(2): 296-301.
    99. Chang S.X. Seedling sweetgum (Liquidambar styrua L.) half sib family response to N and P fertilization:growth, leaf area, net photosynthesis and nutrient uptake [J]. Forest Ecology and Management,2003,173:281-291.
    100. Climent J. M., Alonso, I. A., et al.. Developmental constraints limit the response of Canary Island pine seedlings to combined shade and drought [J]. Forest Ecology and Management, 2006,231(3):164-168.
    101. Cook R.. The biology of seeds in the soil. In:Solbrig, O.T. (eds). Demography and Evolution in Plant Populations [M]. New York:Blackwell Scientific Publications,1980:107-129.
    102. Cornelissen J. H. Castro-Diez, C. P., et al. Variation in relative growth rate among woody species. In:Lambers, H., Poorter, H. and Van Vuuren, M.M.I. (eds). Inherent Variation in Plant Growth [M]. Leiden:Backhuys Publishers,1998:363-392.
    103. Chapman C. A., Kitajima K., Zanne A. E.,et al.. A 10-year evaluation of the functional basis for regeneration habitat preference of trees in an African evergreen forest [J]. Forest Ecology and Management,2008,255(11):3790-3796.
    104. Dalling J. W., Winter K., et al..The unusual life history of Alesis blackiana:a shade-persistent pioneer tree [J]. Ecology,2001,82:933-945.
    105. Daniel T. W., Helms J. A., et al.. Principles of Silviculture, McGraw-Hill [M]. New York: 1979:500.
    106. Dupuy J. M. and Chazdon R. L.. Interacting effects of canopy gap, understory vegetation and leaf litter on tree seedling recruitment and composition in tropical secondary forests [J]. Forest Ecology and Management,2008,255:3716-3725.
    107. Everham E. M., Brokaw N. V. L.. Forest damage and recovery from catastrophic wind [J]. Botany Review,1996,62(2):113-185.
    108. Ellis R. H. and Robert E. H.. Improved Equations for the Prediction of Seed Longevity [J]. Amu Bot.,1980,45(1):13-30.
    109. Fenner M.. Seedlings [J]. New Phytologist,1987,106 (Suppl.):35-47.
    110. Funes G., Basconcelo S., et al.. Seed size and shape are good predictors of seed persistence in soil in temperate mountain grasslands of Argentina [J]. Seed Science Research,1999,9: 341-345.
    111. Garwood N. C.. Functional morphology of tropical tree seedlings. In:Swaine, M. D. (eds). The Ecology of Tropical Forest Tree Seedlings [M]. Carnforth:Parthenon,1996:59-129.
    112. Givnish T. J.. Adaptation to sun and shade:a wholeplant perspective [J]. Australian Journal of Plant Physiology,1998,15(1):63-92.
    113. Grime J. P., Hillier S. H.. The contribution of seedling regeneration to the structure and dynamics of plant communities and larger units of landscape. In:Fenner M. (eds). Seeds-the Ecology of Regeneration in Plant Communities [M]. Wallingford:C.A.B International,1992: 349-364.
    114. Grubb P.. The maintenance of species richness in plant communities:the importance of the regeneration niche [J]. Biology Review,1977,52(1):107-145.
    115. Hadar Y., Harman G. E. and Taylor A. G.. Evaluation of Trichoderma koningii and T. harzianum from New York Soils for Biological Control of Seed Rot Caused by Pythium spp [J]. Phytopathology,1984,74(1):106-110.
    116. Hanley M. E. and Fenner M.. Seedling growth of four fire-following Mediterranean plant species deprived of single mineral nutrients [J]. Functional Ecology,1997,11:398-405.
    117. Harms K. E., Dalling J. W., et al.. Regeneration from cotyledons in Gustavia superba (Lecythidaceae) [J]. Biotropica,1997,29(2):234-237.
    118. Haywood J. D.. Seed Viability of selected tree, shrub and vine species stored in the field [J]. New Forests,1994,8(2):143-154.
    119. Hendry G. A. F., Thompson K., et al.. Seed persistence:a correlation between seed longevity in the soil and ortho-dihydroxyphenol concentration [J]. Functional Ecology,1994,8: 658-664.
    120. Holland E.A., Dentene F. J. R. and Braswell B. H.. Contemporary and Pre-industrial Global Reactive Nitrogen Budgets [J]. Biogeochemistry,1999,46(1-3):7-43.
    121. Jankowska-Blaszczuk M. and Grubb P. J.. Soil seed banks in primary and secondary deciduous forest in Bialowieza, Poland [J]. Seed Science Research,1997,7:281-292.
    122. Joesting H. M., McCarthy B. C., et al.. Determining the shade tolerance of American chestnut using morphological and physiological leaf parameters [J]. Forest Ecology and Management, 2009,257(1):280-286.
    123. Kimmins J. P.. Forest Ecology [M]. Pearson Education,2004:323.
    124. Kochy M. and Wilson S. D.. Nitrogen deposition and forest expansion in the northern Great Plains [J]. Journal of Ecology,2001,89:807-817.
    125. Kitajima K.. Relationship between photosynthesis and thickness of cotyledons for tropical tree species [J]. Functional Ecology,1992,6:582-589.
    126. Kitajima K. and Bolker B. M.. Testing performance rank reversals among coexisting species:crossover point irradiance analysis by Sack & Grubb (2001) and alternatives [J]. Functional Ecology,2003,17:276-287.
    127. Kitajima K.. Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees [J]. Oecologia,1994,98(3-4):419-428.
    128. Kitajima K. and Fenner M.. Ecology of Seedling Regeneration. In:Fenner M. (eds). Seeds: The Ecology of Regeneration in Plant Communities (2nd Edition) [M]. CABI Publishing, 2000:331.
    129. Klooster S. H., Thomas E. J. P., et al.. Explaining interspecific differences in sapling growth and shade tolerance in temperate forests [J]. Journal of Ecology,2007,95:1250-1260.
    130. Kneeshaw D., Kobe D.R.K., et al.. Sapling size influences shade tolerance ranking among southern boreal tree species [J]. Journal of Ecology,2006,94:471-480.
    131. Lusk C. H.. Leaf area and growth of juvenile temperate evergreens in low light, species of contrasting shade tolerance change rank during ontogeny [J]. Functional Ecology,2004,18: 820-828.
    132. Lusk C.H. and Warton D.I.. Global meta-analysis shows that relationships of leaf mass per area with species shade tolerance depend on leaf habit and ontogeny [J]. New Phytologist, 2007,176:764-774.
    133. Li M., Lieberman M., et al. Seedling demography in undisturbed tropical wet forest in Costa Rica. In:Swain, M.D. (eds). The Ecology of Tropical Forest Tree Seedlings [M]. Carnforth: Parthenon,1996:285-314.
    134. Latham R. E.. Co-occurring tree species change rank in seedling performance with resources varied experimentally [J]. Ecology,1992,73(6):2129-2144.
    135. Marquis R. J., Newell E. A., et al.. Non-structural carbohydrate accumulation and use in an understorey rain-forest shrub and relevance for the impact of leaf herbivory [J]. Functional Ecology,1997,11:636-643.
    136. Magill A. H., Aber J. D. and Berntson G. M.. Long-term nitrogen additions and nitrogen saturation in two temperate forests [J]. Ecosystems,2000,3(3):238-253.
    137. Marks P. L. and Gardescu S.. A case study of sugar maple (Acer saccharum) as a forest seedling bank species [J]. Journal of the Torrey Botanical Society,1998,125(4):287-296.
    138. Messier C. and Nikinmaa E.. Effects of light availability and sapling size on the growth, biomass allocation, and crown morphology of understory sugar maple, yellow birch, and beech [J]. Ecoscience,2000,7(3):345-356.
    139. Murdoch A. J. and Ellis R. H.. Dormancy, Viability and Longevity. In:Fenner M. (eds). Seeds:The Ecology of Regeneration in Plant Communities (2nd Edition) [M]. CABI Publishing,2000:183.
    140. Myers J. A., Kitajima K.. Carbohydrate storage enhances seedling shade and stress tolerance in a neo-tropical forest [J]. Journal of Ecology,2007,95:383-395.
    141.Niinemets U.. The controversy over traits conferring shade-tolerance in trees:ontogenetic changes revisited [J]. Journal of Ecology,2006,94:464-470.
    142. Ozturk M., C,elik A., Gu'vensen A., et al.. Ecology of tertiary relict endemic Liquidambar orientalis Mill.forests [J]. Forest Ecology and Management,2008,256(4):510-518.
    143.Potvin C.. ANOVA:Experiment Design and Analysis. In:Scheiner S. M. & Gurevitch J. (eds). Design and Analysis of Ecological Experiment (2nd edition) [M]. Oxford University Press,2000:47.
    144. Paquette A., Bouchard A., Cogliastro A.. Morphological plasticity in seedlings of three deciduous species under shelterwood under-planting management does not correspond to shade tolerance ranks [J]. Forest Ecology and Management,2007,241(2):278-287.
    145. Pooter L.. Growth responses of 15 rain-forest tree species to a light gradient:the relative importance of morphological and physiological traits [J]. Functional Ecology,1999,13: 396-410.
    146. Poorter H. E.. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area [J]. Oecologia, 1998,116(1):26-37.
    147. Rey A., Petsikos C., Jarvis P. G. and Grace J.. Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions [J]. European Journal of Soil Science,2005,56(5):589-599.
    148. Rees M.. Trade-offs among dispersal strategies in the British flora [J]. Nature,1993,366: 150-152.
    149. Rees M.. Delayed germination of seeds:a look at the effects of adult longevity, the timing of reproduction, and population age/stage structure [J]. American Naturalist,1994,144(1): 43-64.
    150. Rice K. J., Gordon D. R., Hardison J. L., et al.. Phenotypic variation in seedlings of keystone-tree species (Quercus douglasii):the interactive effects of acorn source and competitive environment [J]. Oecologia (Berl),1993,96:537-547.
    151. Sack L. and Grubb P. J.. Why do species of woody seedlings change rank in relative growth rate between low and high irradiance? [J]. Functional Ecology,2001,15:145-154.
    152. Sack L. and Grubb P. J.. Crossovers in seedling relative growth rates between low and high irradiance:analyses and ecological potential (reply to Kitajima & Bolker 2003) [J]. Functional Ecology,2003,17:281-287.
    153. Sinsabaugh R. L., Saiya-Cork K., Longb T., et al.. Soil microbial activity in a Liquidambar plantation unresponsive to CO2-driven increases in primary production [J]. Applied Soil Ecology,2003,24(3):263-271.
    154. Sattin M. and Sartorato I.. Role of seedling growth on weed-crop competition. In:Praczyk, T.(eds). Proceedings of the 10th EWRS Symposium, Poznan, Poland [M]. Poznan:European Weed Research Society,1997:3-12.
    155. Scotta D. A., Burgerb J. A., et al.. Growth and nutrition response of young sweetgum plantations to repeated nitrogen fertilization on two site types [J]. Biomass and Bioenergy, 2004,27(4):313-325.
    156. Skoglund J. and Verwijst T.. Age structure of woody species populations in relation to seed rain, germination and establishment along the river Dalalven, Sweden [J]. Vegetation,1989, 82(1):25-34.
    157. Spurr J. E. and Barnes B. V.. Forest Ecology [M]. New York:John Wiley and Sons,1980: 687.
    158. Staaf H., Jonsson M., et al.. Buried germinative seeds in mature beech forests with different herbaceous vegetation and soil types [J]. Holarctic Ecology,1987,10(4):268-277.
    159. Thompson K., Bakker J. P., et al.. The Soil Seed Banks of North West Europe:Methodology, Density and Longevity [M]. Cambridge:Cambridge University Press,1997:276.
    160. ToHey L. C. and Strain B. R.. Effects of CO2 enrichment and water stress on gas exchange of Liquidambar styraciflua and Pinus taeda seedlings grown under different irradiance levels [J]. Oecologia,1985,65(2):166-172.
    161. Valladares F., Wright S. J., et al.. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest [J]. Ecology,2000,81(7):1925-1936.
    162. Veneklaas E. J. and Poorter L.. Growth and carbon partitioning of tropical tree seedlings in contrasting light environments. In H. Lambers, H. Poorter & M.M.I. Van Vuuren (eds.). Physiological Mechanisms and Ecological Consequences [M]. Leiden, the Netherlands: Bakhuys Publishers,1988:337-361.
    163. Walters M. B. and Reich P. B.. Are shade tolerance, survival and growth linked? Low light and nitrogen effects on hardwood seedlings [J]. Ecology,1996,77(3):841-853.
    164. Walters M. B. and Reich P. B.. Low-light carbon balance and shade tolerance in the seedlings of woody plants:do winter deciduous and broad-leaved evergreen species differ? [J]. New Phytol,1999,143:143-154.
    165. Waters M. B. and Reich P. B.. Seed size, nitrogen supply, and growth rate affect tree seedling survival in deep shade [J]. Ecology,2000,81(7):1887-1901.
    166. Wang G. G. and Kemball K. J.. Balsam fir and white spruce seedling recruitment in response to under story release, seedbed type, and litter exclusion in trembling aspen stands [J]. Canadian Journal of Forest Research,2000,35(3):667-673.
    167. Waller D. M.. Plant morphology and reproduction. In:Lovett Doust, J. and Lovett Doust, L. (eds). Plant Reproductive Ecology:Patterns and Strategies [M]. New York:Oxford University Press,1988:203-227.
    168. Westoby M., Leishman M. R., et al. Comparative ecology of seed size and dispersal [J]. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 1996,351:1309-1317.
    169. Williams K., Percival F., et al. Estimation of tissue construction cost from heat of combustion and organic nitrogen content [J]. Plant Cell and Environment,1987,10(9): 725-734.
    170. William J. B., Midgley J. J.. Ecology of sprouting in woody plants:the persistence niche [J]. Trends in Ecology & Evolution,2001,16(1):45-51.
    171.Winstead J. E.. Populational Differences on Seed Germination and Stratification Requirements of sweetgum [J]. Forest Science,1971,17(1):1,34-36.
    172. Wurth M. K. R., ez-Riedl S. P., Wright S. J., et al.. Non-structural carbohydrate pools in a tropical forest [J]. Oecologia,2005,143(1):11-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700