用户名: 密码: 验证码:
胸腹器官低频共振及其损伤的生物力学机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一定强度的机械作业振动、汽车振动、声波特别是次声波振动等都会对人体造成生理功能改变,甚至病理性损伤。有研究认为,这些改变和损伤的始动机制与生物共振有关。一定能量的共振可导致器官变形、移位、甚至破裂;另一方面共振刺激躯体感受器,刺激传到人体中枢神经系统相关部位,会引起一系列功能和形态改变,最终影响组织分子结构、生物氧化和能量代谢过程,以至危及性命。
     胸腹腔内包括循环系统、呼吸系统、消化系统、泌尿系统等的重要器官,如心、肺、胃、肝、肾、肠道等,胸腹器官损害直接影响生命体征甚至性命,因此有必要了解胸腹器官的共振及其损伤的生物力学机制,这对研究生物体共振损伤的防护和救治有极其重要的意义。
     研究目的 
     本文首先明确不同种属动物胸腹器官共振频率(resonance frequency,RF)、低频振动特性、影响器官RF的因素以及是否存在种属差异性,然后明确共振导致的生理功能变化和器官损伤,并明确其相关生物力学机制,为胸腹器官共振损伤的防护和救治研究奠定基础。
     主要步骤和方法 
     1.测量大鼠和家兔胸腹器官的RF及低频振动特性
     动物麻醉后,将加速度传感器固定于脏器表面。用锤击法(hammering method,HMM)测量分析大鼠各器官胸背方向的RF和频谱响应,用正弦扫频振动法(sine sweeping-frequency vibration method,SSVM)测量家兔各器官和大鼠肝脏胸背方向的RF和幅频特性。
     2.观察共振致大鼠和家兔生理功能变化和器官损伤情况
     选定两个在胸腹器官RF附近的频率点和一个远离RF的频率点,通过振动台持续施加振动,对比动物在各频率点各时间点的生理功能变化情况,振动6h后解剖动物,取标本作光镜观察,察看器官的损伤情况。
     3.探讨器官损伤的力学机制
     通过测量相邻或相连的胸腹器官振动相位差,以及根据各器官振动幅值,分析器官之间相对运动造成碰撞或牵拉受力情况;根据器官材料力学特性和碰撞挤压情况,通过建立有限元(Finite Element,FE)模型,用计算机仿真分析导致器官损伤的生物力学机制。
     主要结果和结论 
     1.大鼠胃、肾、心、肠、肺、肝的RF分别为7.0Hz、6.6Hz、4.8Hz、3.6Hz、3.2Hz、3.0Hz,家兔胃、肾、心、肠、肺、肝的RF分别为8.0Hz、7.0Hz、6.0Hz、6.0Hz、5.0Hz、7.0Hz;器官在其RF附近的频率范围都会出现振幅激励现象,对每个器官施加频率接近或等于其RF的振动,都能引起较大幅度的共振,都有可能造成器官损伤或功能性损害;大鼠和家兔胸腹器官的RF和MAMP与动物体重、器官质量、器官体积之间无明显相关性;不同种属动物之间相同器官的RF存在差异;可以通过改变器官的约束条件或材料力学特性来改变器官的RF和振幅;胸腹器官发生共振时密度小的器官比密度大的器官振幅大。
     2.共振会引起大鼠和家兔的血压、脉搏、呼吸在振动1min时迅速升高,1~3min达到最大值,之后逐渐下降,30min后低于正常值;共振会造成大鼠和家兔体温调节能力下降;肺是大鼠和家兔胸腹器官共振造成损伤的主要靶器官。
     3.家兔胸背方向以5Hz频率正弦振动时心-肺相位差明显比胃-肠、肝-肠、肾-肠的相位差大;共振时相邻或相连器官的相位差越大,它们发生碰撞挤压或牵拉时相对速度就越大,其相互作用能量就越大,器官就越容易引发损伤;共振时非均质材料器官比均质材料器官更容易引发损伤;共振时器官同时受到碰撞挤压比单纯受到振动更容易引发损伤。因此,共振易引起肺损伤的生物力学机制之一是共振时肺振幅较大,相邻器官的相位差较大,从而造成器官碰撞挤压,同时与肺本身材料非均质性易导致内部毛细血管破裂有一定关系。
     综上所述,生物体胸腹器官共振会引起生物体生理功能改变和器官损伤,损伤的生物力学机制之一是共振时器官振幅较大,相邻器官的相位差较大,从而造成器官碰撞挤压,同时与器官材料特性有一定关系。
The vibration of the machines, automobiles, and infrasound wave, etc. can lead to physiological function change and even pathological injury to human when it reaches some intensity. Some researches showed that the initial mechanism of the change and injury is related to biological resonance. Resonance with some energy can distort, translocate, and even destroy the organs. On the other hand, resonance stimulates the body receptors, through which the stimulation can be transmitted to the central nervous system, which induce some changes in the functions and form followed the influence on the molecular structure, biological oxidation and energy metabolism process of tissue, and in the end, the human lives would be endangered.
     The organs in thorax and abdomen such as heart, lung, stomach, liver, kidney, intestine and so on are very important to circulatory system, respiratory system, digestive system, urinary system, ect. The injuries of the organs in thorax and abdomen directly influence the vital signs and even life. Thus, it is necessary to know the resonance and its injury biomechanism of the organs in the thorax and abdomen. This is very important to research the prevention and treatment of organism resonance injury.
     Objective:
     Firstly to explore the resonance frequencies (RF) and vibration characteristics at low frequency of the organs of different kinds of animals in the thorax and abdomen, the factors affecting organs’RF, and if the difference exists between different kinds of animals. And then to observe the changes in the physiological function and the difference in the organs’injuries caused by resonance. Lastly to observe the mechanism of organs’injury caused by resonance. These should be the base of the prevention, diagnosis and treatment research of organ resonance injury in the thorax and abdomen.
     Method:
     1. To measure the RF and vibration characteristics at low frequency of the organs of the rat and the rabbit in the thorax and abdomen The acceleration sensors were pasted on the surface of the organs after the animals had been anaesthetized. The RF and spectral responses of the rat organs from back to chest were measured by hammering method (HMM), and the RF and amplitude-frequency characteristics of the rabbit organs and rat liver from back to chest were measured by sine sweeping-frequency vibration method (SSVM).
     2. To observe the changes in the physiological function and organs injuries of rat and rabbit caused by resonance
     The animals were vibrated continuously at two frequencies near the RF and one frequency far away from the RF of organs in the thorax and abdomen. The changes in the physiological function at prescribed time were compared among these frequencies. After six hours’vibration, the animals were anatomized to observe the injury and the specimens were taken for optical observation.
     3. To discuss the mechanism of organ resonance injury
     The strength caused by crash or pulling between organs was analyzed by measuring amplitude and phase difference between organs. And the biomechanism of organs resonance injuries was analyzed by computer emulation through establishing the finite elements (FE) based on the organs material characteristic and crash.
     Results and Conclusions:
     1. The RF of rat stomach, kidney, heart, intestine, lung and liver are separately at 7.0Hz, 6.6Hz, 4.8Hz, 3.6Hz, 3.2Hz and 3.0Hz. The RF of rabbit stomach, kidney, heart, intestine, lung and liver are separately at 8.0Hz, 7.0Hz, 6.0Hz, 6.0Hz, 5.0Hz and 7.0Hz. The organs have high amplitudes near their RF, and the organs may be injured or functionally injured when they are vibrated near or equal to their RF. The RF and MAMP of rat and rabbit organs in the thorax and abdomen are not statistically related to body weight, organs mass or organs volume. The same organs of different kinds of animals have different RF. The organs RF and amplitude can be altered by changing their restriction conditions or material mechanics characteristics. When the organs in the thorax and abdomen resonate, the organs with light density have higher amplitude than those with heavy density.
     2. The blood pressure, pulse and breath of rat and rabbit ascended rapidly when the resonance lasted 1 minute. And all of these physiologic indexes reached maxima in 1 to 3 minutes and then descended gradually. These physiologic indexes were lower than normal values after the resonance lasted 30 minutes. Resonance can reduce the body temperature conditioning ability of rat and rabbit. Among the organs in the thorax and abdomen of the rat and the rabbit, the lung was the main target organ injured by resonance.
     3. When the rabbits were vibrated by sine wave at 5Hz from back to chest the phase difference between heart and lung was significantly larger than that between stomach and intestine, between liver and intestine, or between kidney and intestine. The larger the phase difference between organs in resonance, the higher the speed and energy of organs crashing or pulling, and the more the organs injury. The organs with non-homogeneous material can be injured more easily in resonance than that with homogeneous material. The organs being crashed in resonance can be injured more easily than that being simply vibrated. So, one of the biomechanism of lung resonance injury is related to crash between organs caused by lung’s large amplitude and large phase difference between heart and lung, and is related to non-homogeneous material characteristic of lung which may make inner capillary vessel destroy easily.
     In conclusion, the resonance of organs in the thorax and abdomen will cause the changes in the physiological function of animal, and even the injuries of organs. One of the biomechanism of injury is related to the crash among organs caused by their large amplitudes and large phase difference between organs, and is also related to material characteristic of organs.
引文
1.李昊,李世军.浅谈振动的危害及其预防[J].中国个体防护装备,1997,5(4): 36-40.
    2.庄志强,裴兆辉,陈景藻.次声生物学效应的相关机制[J].疾病控制杂志,2005,9(4): 328-330.
    3.陈景藻.次声的存在及其基本生物效应和研究意义[J].中华物理医学与康复杂志,1999,21(3): 131-133.
    4.杜宝东,刘淑芳.次声对人体及动物影响的研究进展[J].国外医学,2001,25(2):99-102.
    5. Boyer KA, Nigg BM. Quantification of the input signal for soft tissue vibration during running[J]. J Biomech, 2007, 40(8):1877-80.
    6. Slonim A R. Biodynamic response of subhuman primates to vibration[J]. Physiologist, 1987, 30(1 Suppl): S19-22.
    7. Conza NE, Rixen DJ, Plomp S. Vibration testing of a fresh-frozen human pelvis: the role of the pelvic ligaments [J]. J Biomech, 2007, 40(7):1599-605.
    8.汪芳子,戴诗亮,由广兴.家狗随机振动响应及非线性特性的试验研究[J].航天医学与医学工程,1990,3(4): 277-281,301.
    9.汪芳子,崔健,倪永臣等.家兔对振动的动力学响应[J].医用生物力学,1992,7(1): 18-24.
    10.戴诗亮,汪芳子,崔健等.猴体振动特性的实验研究[J].生物医学工程学杂志,1996,13(3): 230-234.
    11. Sumners DP, Green DA, Mileva KN, et al. Increases in inspiratory neural drive in response to rapid oscillating airflow braking forces (vibration)[J]. Respir Physiol Neurobiol, 2008, 160(3):350-2.
    12. Vogt HL, Coermann RR, Fust HD. Mechanical impedance of the sitting human under sustained acceleration[J]. Aerosp Med, 1968, 39(7):675-679.
    13. Mertens H. Nonlinear behavior of sitting humans under increasing gravity[J]. Aviat Space Environ Med., 1978, 49(1 Pt. 2): 287-298.
    14. Aldien Y, Marcotte P, Rakheja S, et al. Mechanical impedance and absorbed power ofhand-arm under x(h)-axis vibration and role of hand forces and posture[J]. Ind Health, 2005, 43(3):495-508.
    15. Dong RG, Dong JH, Wu JZ, et al. Modeling of biodynamic responses distributed at the fingers and the palm of the human hand-arm system [J]. J Biomech, 2007, 40(10):2335-40.
    16. Kiiski J, Heinonen A, J?rvinen T, et al. Transmission of vertical whole body vibration to the human body [J]. J Bone Miner Res, 2008, 23(3): 869-73.
    17. Wigley RD, de Groot JA, Walls C. Contribution of vibration to musculoskeletal disorders in New Zealand[J]. Intern Med J. 2007 Dec;37(12):822-5.
    18.杨光瑜,周继红,张良,等.大鼠肝脏共振频率研究[J].医用生物力学,2007,22(4): 398-402.
    19. Meister A, Brauer D, Kurerov N N, et al. Evaluation of responses to broad-band whole-body vibration[J]. Ergonomics, 1984, 27(9): 959-980.
    20. Hjortsberg U, Rosen I, Orbaek P, et al. Finger receptor dysfunction in dental technicians exposed to high-frequency vibration[J]. Scand J Work Environ Health, 1989, 15(5): 339-344.
    21. Annino G, Padua E, Castagna C, et al. Effect of whole body vibration training on lower limb performance in selected high-level ballet students[J]. J Strength Cond Res, 2007, 21(4):1072-6.
    22. Takahashi Y, Kanada K, Yonekawa Y, et al. A study on the relationship between subjective unpleasantness and body surface vibrations induced by high-level low-frequency pure tones[J]. Ind Health, 2005, 43(3):580-7.
    23. Iwamoto J, Takeda T, Sato Y, et al. Effect of whole-body vibration exercise on lumbar bone mineral density, bone turnover, and chronic back pain in post-menopausal osteoporotic women treated with alendronate[J]. Aging Clin Exp Res, 2005, 17(2): 157-63.
    24. Abercromby AF, Amonette WE, Layne CS, et al. Vibration exposure and biodynamic responses during whole-body vibration training[J]. Med Sci Sports Exerc, 2007, 39(10):1794-800.
    25.朱伯相,汪迪光.全身振动对卡车司机消化系统危害调查研究[J].工业卫生与职业病,1998, 24 (1): 13-l5.
    26.段骊,张样春,程宏等.全身振动对人全肾脏位置的影响[J].中国公共卫生学报,1996, 15(1): 37-38.
    27.李赛.振动病患者的心脏损害[J].世界劳动安全卫生动态,1992, (3): 23-25.
    28.张群朝,周德林,何佩珠等.全身振动对人体神经、视觉和心血管系统不良影响的研究[J].中国工业医学杂志,1991, 4 (1): 13-15.
    29. Donati P, Grosjean A, Mistrot P, et al. The subjective equivalence of sinusoidal and random whole-body vibration in the sitting position (an experimental study using the "floating reference vibration" method) [J]. Ergonomics, 1983, 26(3): 251-73.
    30.陈亚明,王溪玲,周德林.全身振动对家兔不良影响的实验研究[J].工业卫生与职业病,1992, 18(3): 146-149.
    31. Guo LX, Zhang M, Wang ZW, et al. Influence of anteroposterior shifting of trunk mass centroid on vibrational configuration of human spine[J]. Comput Biol Med, 2008, 38(1):146-51.
    32. Rubin C, Pope M, Fritton JC, et al. Transmissibility of 15-hertz to 35-hertz vibrations to the human hip and lumbar spine: determining the physiologic feasibility of delivering low-level anabolic mechanical stimuli to skeletal regions at greatest risk of fracture because of osteoporosis[J]. Spine, 2003, 28(23):2621-7.
    33.潘晓勇,周德林,何佩珠等.全身振动对机体不良影响的职业流行病学研究[J].工业卫生与职业病,1992,(l8)3: 142-145.
    34.孙玉华,何素芬,华邵东等.全身振动对脊柱骨关节损伤的调查研究及防护措施探讨[J].中国工业医学杂志,1993, 6(1): 41-44.
    35.邵洪,王宝光.全身振动对石油工人腰椎损伤的调查[J].中国公共卫生,2001, 17(1): 35.
    36.吴进校.应如何定义共振[J].物理通报,2003(9): 12-13.
    37.赵凯华,罗蔚茵.新概念物理教程(力学)[M].北京:高等教育出版社,1995: 273-277
    38.温熙森,陈循,唐丙阳.机械系统动态分析理论与应用[M].长沙:国防科技大学出版社,1998: 311-312
    39.陈主初,吴端生.实验动物学[M].长沙:湖南科学技术出版社,2003: 265
    40.孙敬方.动物实验方法学[M].北京:人民卫生出版社,2001: 84
    41.龚曙光. ANSYS基础应用及范例解析[M].北京:机械工业出版社,2003
    42.叶先磊,史亚杰. ANSYS工程分析软件应用实例[M].北京:清华大学出版社,2003
    43. ANSYS, Inc. ANSYS structural analysis guide release 6.0. First edition, 2001
    44. TNO, Inc. MADYMO human models manual. Version 6.2, 2004: 58
    45.周之桢.材料力学[M].长沙:国防科技大学出版社,1987
    46.刘思汉,马安禧.工程力学[M].北京:高等教育出版社,1997
    1.韩文成.振动的危害及预防.劳动保护,2000,43(3): 38-39
    2.姜琳.振动与健康.家庭中医药,2002,10(5): 30
    3.李昊,李世军.浅谈振动的危害及其预防.中国个体防护装备,1997,5(4): 36-40
    4.陈景藻.次声的产生及生物学效应.国外医学·物理医学与康复学分册,1999,19(1): 9-14
    5.汤家骥.次声的损伤效应.解放军医学情报,1995,9(5): 262-264
    6.徐新喜.全身振动对人体的影响与防护.医疗卫生装备,1993,14(3): 9-12
    7. Slonim A R. Comparative biodynamic response of two primate species to the same vibrational environment. Aviat Space Environ Med, 1985, 56(10): 945-955
    8. Slonim A R. Biodynamic response of subhuman primates to vibration. Physiologist, 1987, 30(1 Suppl): S19-22
    9. Quandieu P, Pellieux L, Lienhard F. Effects of the ablation of the nucleus pulposus on the vibrational behavior of the lumbosacral hinge. J Biomech, 1983, 16(10):777-784
    10.汪芳子,戴诗亮,由广兴.家狗随机振动响应及非线性特性的试验研究.航天医学与医学工程,1990,3(4): 277-281,301
    11.汪芳子,崔健,倪永臣等.家兔对振动的动力学响应.医用生物力学,1992,7(1): 18-24
    12.戴诗亮,汪芳子,崔健等.猴体振动特性的实验研究.生物医学工程学杂志,1996,13(3): 230-234
    13. Vykukal HC. Dynamic response of the human body to vibration when combined with various magnitudes of linear acceleration. Aerosp Med, 1968, 39(11): 1163-1166
    14. Vogt HL, Coermann RR, Fust HD. Mechanical impedance of the sitting human under sustained acceleration. Aerosp Med, 1968, 39(7):675-679
    15. Mertens H. Nonlinear behavior of sitting humans under increasing gravity. Aviat Space Environ Med., 1978, 49(1 Pt. 2): 287-298
    16. Andersson G. B. J. et al. In Vivo Measurements of Vibration Transmission in Human Spine. AGARD-CP-A171226
    17. Sandover J. Modeling of Human Responses to Vibration. ASEM, 1979, 49(1): 335-339
    18. M. J. Griffin. Vertical Vibration of Seated Subjects Effects of Posture Vibration Leveland Frequency. ASEM, l975, 46: 869
    19. Shoenberger RW. An investigation of human information processing during whole-body vibration. Aerosp Med, 1974 , 45(2): 143-153
    20. Matsumoto Y, Griffin MJ. Non-linear characteristics in the dynamic responses of seated subjects exposed to vertical whole-body vibration. J Biomech Eng., 2002, 124(5): 527-532
    21. Fard MA, Ishihara T, Inooka H. Dynamics of the head-neck complex in response to the trunk horizontal vibration: modeling and identification. J Biomech Eng., 2003, 125(4): 533-539
    22. Izambert O, Mitton D, Thourot M, et al. Dynamic stiffness and damping of human intervertebral disc using axial oscillatory displacement under a free mass system. Eur Spine J, 2003, 12(6): 562-566
    23. Yoshimura T, Nakai K, Tamaoki G. Multi-body dynamics modelling of seated human body under exposure to whole-body vibration. Ind Health, 2005, 43(3): 441-447.
    24.汪芳子,宣渝峡,王志等.不同方向随机振动下人体动态响应特性的研究.航天医学与医学工程,1991,4(2): 136-144
    25. PENG Shao ping, LI Ying zhong, HAN Yi bao, et al. A Frequency Weighting Contour for Chinese Young Males. Space Medicine & Medical Engineering, 2000, 13(3): 162-165
    26.高利,陈荫三.卧姿人体承受全身振动的试验方法研究.客车技术与研究,1998, 20(2): 38-45
    27.丁艺,黄键.卧姿人体振动响应测量仪的研究.农业机械学报,2004, 35(3): 28-30
    28. LIU Bing kun, WANG Xian min, WANG Yu lan. Characteristics of Human Body Dynamic Response to Landing Impact in Supine Position. Space Medicine & Medical Engineering, 2003, 16(1): 5-9
    29.赵六奇,贺启林.人体对1.0Hz以下低频振动的响应.汽车工程,1992, 14(2): 65-69,80
    30.靳晓雄,丁玉兰.人体受振时生理信号变化趋势研究.同济大学学报,1997, 25(4): 482-486
    31.林立,张凯,张强等.振动负荷试验对健康人心率变异性的影响.济宁医学院学报,1997, 20(4): 15-17
    32. Griffin MJ. The validation of biodynamic models. Clin Biomech (Bristol, Avon), 2001, 16 Suppl 1:S81-92
    33. Kayarian LE, von Gierke HE. The validation of biodynamic models. AD-A073811, Nov. 1978
    34. Nigam SP, Malik M. A study on a vibratory model of a human body. J Biomech Eng, 1987, 109(2): 148-153
    35. Yue Z, Mester J. A model analysis of internal loads, energetics, and effects of wobbling mass during the whole-body vibration. J Biomech, 2002 , 35(5): 639-647
    36. Smith SD. Modeling differences in the vibration response characteristics of the human body. J Biomech, 2000, 33(11): 1513-1516
    37. Rosen J, Arcan M. Modeling the human body/seat system in a vibration environment. J Biomech Eng, 2003, 125(2): 223-231
    38. Matsumoto Y, Griffin MJ. Modeling the dynamic mechanisms associated with the principal resonance of the seated human body. Clin Biomech (Bristol, Avon), 2001, 16 Suppl 1: S31-44
    39. Qassem W, Jarrah M, Othman M. Heart response to horizontal impulse. J Med Eng Technol, 1998, 22(2): 82-90
    40. Sun J G, Niu F, Qi J C, et al. A vertical vibration model of human body in supine position. Space Med Med Eng, 2002, 15(6): 428-432
    41. Fritz M. Simulating the response of a standing operator to vibration stress by means of a biomechanical model. J Biomech, 2000, 33(7): 795-802
    42.汪芳子,戴诗亮.人体振动响应的数学模型.航天医学与医学工程,1994,7(1): 1-7
    43.汪芳子,戴诗亮,徐迟等.振动条件下生物动力学响应的实验研究.航天医学与医学工程,1997,10(3): 163-167
    44.徐国宇,梅雪松,吴序堂.人体上体系统振动生物力学模型研究.应用力学学报,2000, 17(1): 127-131
    45. Meister A, Brauer D, Kurerov N N, et al. Evaluation of responses to broad-band whole-body vibration. Ergonomics, 1984, 27(9): 959-980
    46. Hjortsberg U, Rosen I, Orbaek P, et al. Finger receptor dysfunction in dental technicians exposed to high-frequency vibration. Scand J Work Environ Health, 1989, 15(5): 339-344
    47. Iyer E M, Dikshit M B, Suryanarayana S. Effect of exposure to heat, hypoxia, cold, acceleration, and vibration stress on the total blood sulfhydryl groups in human subjects. Aviat Space Environ Med, 1985, 56(11): 1097-1101
    48. Griffin M J, Parsons K C, Whitham E M. Vibration and comfort. IV. Application of experimental results. Ergonomics, 1982, 25(8): 721-739
    49. Shoenberger R W. Subjective effects of combined-axis vibration: III. Comparison of Y-axis and Y-plus-yaw vibrations. Aviat Space Environ Med, 1986, 57(11): 1075-1081
    50.蔡东联.全身振动对机体的影响.国外医学军事医学分册,1990, 10(4): 158-161
    51. Griffin M J. Human Response to Vibration. Noise and Vibration (White Ed), pp827-853, New York, 1982
    52. Wikstrom B O, Kjellberg A, Landstrom U. Health effects of long-term occupational exposure to whole-body vibration: A review. Inter J Indus Ergon, 1994, 14: 273-292
    53. Seidel H, Heide R. Long-term effects of whole-body vibration: a critical survey of the literature. Int Arch Occup Environ Health, 1986, 58(1): 1-26
    54. Albery W B. The effect of sustained acceleration and noise on workload in human operators. Aviation Space & Environmental Medicine, 1989, 60(10): 943-948
    55. Carlsoo S. The effect of vibration on the skeleton, joints and muscles. A review of the literature. Applied Ergonomics, 1982, 13(4):251-258
    56.中村裕之.日本卫生学杂志,1968, 43:872
    57. Manninen O. Studies of combined effects of sinusoidal whole body vibrations and noise of varying bandwidths and intensities on TTS2 in men. International Archives of Occupational & Environmental Health, 1983, 51(3): 273-288
    58.朱伯相,汪迪光.全身振动对卡车司机消化系统危害调查研究.工业卫生与职业病,1998, 24 (1): 13-l5
    59.段骊,张样春,程宏等.全身振动对人全肾脏位置的影响.中国公共卫生学报,1996, 15(1): 37-38
    60.李德培.铁路守车噪声振动对运转车长健康的影响.工业卫生与职业病,1986, 12: 213
    61.李赛.振动病患者的心脏损害.世界劳动安全卫生动态,1992, (3): 23-25
    62.张群朝,周德林,何佩珠等.全身振动对人体神经、视觉和心血管系统不良影响的研究.中国工业医学杂志,1991, 4 (1): 13-15
    63. Donati P, Grosjean A, Mistrot P, et al. The subjective equivalence of sinusoidal and random whole-body vibration in the sitting position (an experimental study using the "floating reference vibration" method). Ergonomics, 1983, 26(3): 251-73
    64.陈亚明,王溪玲,周德林.全身振动对家兔不良影响的实验研究.工业卫生与职业病,1992, 18(3): 146-149
    65.姚安子等.全身振动对机体的影响.卫生研究,1987, 16: 1l-13
    66.陈亚明等.全身振动对机件不良影响的研究.中华物理因素职业危害劳动生理及工效学专题学术会议,1997, P1-6
    67. Dupuis H, Zerlett G. Whole-body vibration and disorders of the spine. Int Arch Occup Environ Health, 1987, 59(4): 323-336
    68.潘晓勇,周德林,何佩珠等.全身振动对机体不良影响的职业流行病学研究.工业卫生与职业病,1992,(l8)3: 142-145
    69.孙玉华,何素芬,华邵东等.全身振动对脊柱骨关节损伤的调查研究及防护措施探讨.中国工业医学杂志,1993, 6(1): 41-44
    70.邵洪,王宝光.全身振动对石油工人腰椎损伤的调查.中国公共卫生,2001, 17(1): 35
    71. Seidel H, Bluethner R, Hinz B. Effects of sinusoidal whole-body vibration on the lumbar spine: the stress-strain relationship. Int Arch Occup Environ Health, 1986, 57(3): 207-223
    72.许庆元译.暴露于低频噪声和振动中工人的淋巴细胞中的姐妹染色体互换.航空军医,1997, 25(1): 44
    73.江建明,孙炜,吴一民等.低频振动对人成骨细胞生物学特性影响的研究.中国矫形外科杂志,2003, 11(19、20): 1358-1360
    74.江建明,孙炜,吴一民等.低频振动下成人成骨细胞动力学响应的研究.中华物理医学与康复杂志,2002, 24(10): 613-616
    75.刘昭前,谢嘉平,黄穗红等.从频率因素分析振动对小白鼠体内125I-碘化钠的分布影响.中国医学物理学杂志,1994, l1(4): 7-11
    76.彭春政,危小焰.振动刺激与肌肉力量.中国运动医学杂志,2004, 23(6): 708-710, 691
    77. Issurin V B, Tenenbaum G. Acute and residual effects of vibratory stimulation on explosive strength in elite and amateur athletes. J-Sports-Sci, 1999, 17(3): 177-182
    78. Armstrong T J, Fine L J, Radwin R G, et al. Ergonomics and the effects of vibration in hand-intensive work. Scand J Work Environ Health, 1987, 13(4): 286-289
    79. Fox E L, Hatthews D K. The physiological basis of physical education and athletics. Philadelphia, P A: Sau Nders College Publishers, 1981, 49: 123-128
    80.高惠,周笃强,黄端生等.低频随机振动和正弦振动对汉语清晰度的影响.应用声学,2001, 20(1): 30-33
    81.姚永杰,韩厉萍,吴兴裕等.全身Z轴低频振动对人计算能力的影响.第四军医大学学报,1997, 18(1): 86-87
    82.李盈忠,夏群生,韩宜宝等.超低频振动对人体影响的研究.航天医学与医学工程,1994, 7(4): 242-250

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700