用户名: 密码: 验证码:
声学层析成像反问题求解及温度场重建算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声学层析成像(Acoustic computer tomography)温度场检测技术根据多路径声波传播时间数据,推算被测区域的温度分布,属于“由效果反求原因”的逆问题研究,具有非接触不干扰被测温场、测温范围广(0℃~2000℃)、测量对象空间范围大(数十米)、可在线测量等优点。声学高温计是该技术在工业炉温度场监测中的典型应用。而应用该技术监测大气温度分布、深海热液温度分布、仓储粮食温度分布,则是探索中的新的应用领域。本文对声学层析成像反问题求解及温度场重建算法等问题,进行了较深入的理论分析和实验研究,主要完成了以下工作:
     分析了影响声学层析成像温度场测量精度的主要原因,针对现有声学层析成像温度场重建算法普遍存在的问题,即:被测区域网格划分数须小于系统可获得的有效声波路径数,原始像素数量有限,重建温度场空间分辨率低。提出一种基于Markov径向基函数与Tikhonov正则化的三维温度场重建算法---3DMTR(Markov radial basic function andTikhonov Regularization)算法。该算法被测区域划分的网格数可远多于声波路径数,更适合复杂温度场重建。
     声波收发器阵列设计的合理性,直接影响声学层析成像温度场检测实验系统的测量实时性及温度场重建精度。为实现储粮温度分布声学层析成像法监测,对围绕圆筒形仓布置的声波收发器的数量、布局和有效声波路径选择等参数进行了计算机仿真设计。三种典型的三维模型温度场重建结果表明:剔除仓壁上同一母线上的声波路径,可降低温度场重建误差。增加同一层面上收发器的数目或收发器布置的层数,都能减小重建误差。但若设置过多的声波收发器,会增大系数矩阵的条件数,加大重建误差。通过对声波收发器阵列的仿真设计,可优化收发器阵列各参数,提高声学层析成像温度场检测实验系统的性能和温度场重建精度。
     声学层析成像温度场重建是不适定的逆问题。正则化参数的选取对重建精度有重要影响。提出被测区域划分的像素数可远多于声波路径数、正则化参数自适应选取的二维温度场重建算法2DMTR-A(MTR withAdaptive Regularization Parameter)和三维温度场重建算法3DMTR-A。它们采用一种新的、称为最小变化法的正则化参数选取法,自适应地选取正则化参数,兼顾温度场细节重建和噪声抑制。仿真与实验重建结果表明,与常用的L曲线法相比,最小变化法确定的正则化参数对应着更小的温度场重建误差,具有较广泛的适应性。因此2DMTR-A和3DMTR-A算法具有良好的实用性。
     声波在非均匀温度场中传播时其路径会因折射而弯曲。尤其对于温度梯度较大的复杂温度场,将声波路径近似为直线会给重建带来较大的误差。为提高非均匀温度场声学层析成像重建精度,提出考虑声波弯曲的二维/三维温度场重建算法。首先用二维/三维重建算法获得一个不考虑声线弯曲的二维/三维重建温度场,然后用打靶--插值法确定本征声线出射角,以三角形/正四面体前向展开法追踪声线,并建立本征声线上声波传播时间与温度分布间的关系,进而实现考虑声线弯曲的二维/三维温度场重建。仿真实验结果表明考虑声线弯曲效应后,能明显提高非均匀温度场重建精度。温度场的温度梯度越大,改善的效果越明显。
     采用以虚拟仪器LABVIEW为软件平台的声学层析成像温度场检测实验系统,以本文所提出的温度场重建算法,对空气中的二维温度场、三维温度场和仓储大豆中的二维温度场进行重建,实验验证了本文所提温度场重建算法的有效性和正确性。
Temperature field measurement of acoustic computer tomography calculates temperaturedistributions of the measurement region based on multi-path acoustic travel-times data, whichis classified as the "reverse results into effects" study of inverse problems, has the advantagesof non-contact without interfering temperature fields, wide temperature range (0℃~2000℃),large range of measured object space (dozens of meters) and on-line measurement, etc.Acoustic pyrometer is one of the typical applications of the technique in the furnacetemperature field monitoring. While temperature distribution monitors of atmosphere anddeep-sea hydrothermal and stored grain are new application areas of acoustic computertomography in exploration. In this paper, solution of inverse problem for the acousticcomputer tomography, reconstruction algorithm of temperature field and other issues areanalyzed theoretically and experimental studied deeply, The main work is completed asfollows:
     Major causes that affects acoustic computer tomography measurement precision intemperature field are analyzed in this paper. Aiming at those existing problems in acousticcomputer tomography reconstruction algorithm on temperature distribution, i. e.: the gridnumber of measured region division has to be less than number of effective sound wave pathswhich limits the original number of pixels, and results in low spatial resolution of thereconstructed temperature field, a3D temperature field reconstruction algorithm based onMarkov radial basic function and Tikhonov regularization---3DMTR (Markov radial basicfunction and Tikhonov Regularization) is proposed. The number of partition grids in measuredarea can be much greater than number of sound wave paths by using this algorithm, which ismuch more suitable for complex temperature field reconstruction.
     The rationality of the sound Transceivers array design directly affects the real-timemeasurement of acoustic computer tomography experimental system and the accuracy oftemperature field reconstruction. In order to monitor temperature distribution in stored grainby the method of acoustic computer tomography, the parameters such as the number of soundtransceivers arranged around the cylindrical granary, the layout and the effective sound pathselection are designed by computer simulation. The temperature field reconstruction results of three typical three-dimensional model show that removal on the silo wall sound paths in thesame bus can reduce the temperature field reconstruction error. Increasing the number of thetransceivers on one layer or the number of the layers transceivers arranged, are able to reducethe reconstruction error. But setting a plethora of sound transceivers may increase thecondition number of the coefficient matrix, and then increase the reconstruction error. Throughthe simulation design of sound transceiver array, transceiver array parameters can beoptimized, and the performance of acoustic computer tomography experimental system can beimproved as well as the reconstruction precision of temperature field.
     Temperature field reconstruction by acoustic computer tomography is an ill-posedproblem. The choice of regularization parameter has an important influence on the accuracy ofreconstruction. The temperature field reconstruction algorithm of the2DMTR-A (MTR withAdaptive Regularization Parameter) and the3DMTR-A on measured area raised number ofpixels can be far more sound wave paths, selection of adaptive regularization parameter isproposed. They use a novel adaptive regularization parameter selection method, named asminimum change criterion, to determine a proper regularization parameter, which can make agood compromise between de-noise and detail reconstruction of temperature field. Thereconstruction results of simulation and experimental show that the regularization parametersselected by the minimum change criterion is superior to those selected by the common L-curvemethod because they produce lower reconstruction errors, with a wide range of adaptability.Therefore,2DMTR-A and3DMTR-A algorithm has good practicality.
     When sound wave propagates in un-uniform temperature fields, its path is bent due torefraction. Approximately sound wave paths as straight line will cause great errors, especiallyfor temperature field whose temperature gradient is steep. In order to improve thereconstruction accuracy of un-uniform temperature fields by acoustic computer tomography,the2D/3D reconstruction algorithm is proposed in which the bending of sound wave paths isconsidered. Firstly, reconstruct the2D/3D temperature field without considering the bendingof sound wave paths by using2D/3D reconstruction algorithm. Secondly, find the eigenrays inthe reconstruction field by using the triangular/tetrahedron forward deployment method forsound ray tracing after evaluating the emergent angle of eigenrays by usingshooting-interpolation method. Thirdly, establish the relationship between the acoustictravel-times over the eigenrays and the temperature distribution. Lastly, reconstruct the2D/3D temperature field with consideration of sound wave paths bending. The reconstruction resultsshow that the reconstruction accuracy can be improved obviously by considering the bendingof sound wave paths. The larger the temperature gradient of temperature field is the moreobviously the improvement effect.
     By adopting acoustic computer tomography experimental system based on virtualinstrument of LABVIEW, temperature field reconstruction algorithm proposed in this paperreconstructs the air2D/3D and stored soybean2D temperature fields, experimental resultverifies the effectiveness and reasonableness of the temperature field reconstruction algorithmpresented in this paper.
引文
[1]张世平,安连锁,李庚生等.伪随机序列声源信号在电站锅炉声学测温中的应用[J].动力工程学报,2012,32(5):378-382.
    [2]李庚生,安连锁,张世平等.基于声学测温的电站锅炉水冷壁壁温实时监测系统研究[J].电站系统工程,2012,28(1):5-8+12.
    [3]张世平,沈国清,安连锁等.基于声学测温的电站锅炉水冷壁局部灰污监测研究[J].热能动力工程,2013,28(4):409-414+440.
    [4]张世平,安连锁,李庚生等.基于声学测温的水冷壁局部超温监测研究[J].动力工程学报,2012,32(4):302-307.
    [5] Ziemann A, Arnold K, Raabe A. Acoustic tomography in the atmospheric surface layer[J]. AnnalesGeophysicae,1999,17(1):149-157.
    [6] Ziemann A, Arnold K, Raabe A. Acoustic travel time tomography–a method for remote sensing of theatmospheric surface layer[J]. Meteorology and Atmospheric Physics,1999,71(1):43-51.
    [7] Fan W, Chen Y, Pan H C, et al. Experimental study on underwater acoustic imaging of2d temperaturedistribution around hot springs on floor of lake qiezishan china[J]. Experimental Thermal and FluidScience,2010,34(8):1334-1345.
    [8]毛洁,吴友凤,樊炜等.声学法深海热液温度场测量及重建算法研究[J].仪器仪表学报,2010,31(10):2339-2344.
    [9]蔡勇,潘宏,周艳等.海底热液口温度场高精度声学测量方法研究[J].仪器仪表学报,2012,33(3):649-654.
    [10]颜华,陈冠男,杨奇等.声学CT复杂温度场重建研究[J].声学学报,2012,37(4):370-377.
    [11] Yan H, Chen G, Zhou Y G, et al. Primary study of temperature distribution measurement in storedgrain based on acoustic tomography[J]. Experimental Thermal and Fluid Science,2012,42(10):55-63.
    [12]颜华,陈冠男,刘丽钧等.声层析成像仓储粮食温度监测方法[J].沈阳工业大学学报,2013,35(5):541-547.
    [13]祝虹媛,赵辉,周一龙等.DS18B20温度传感器在我国现代粮情监控系统中的设计及实现[J].科技致富向导,2011(11):80+75.
    [14]张炼冬,汪秉文.无线传感器网络在粮情测控系统中的应用[J].计算机工程与科学,2010,32(4):114-118.
    [15] Hickling R, Wei W. Sound transmission in stored grain[J]. Applied Acoustics,1995,45(1):1-8.
    [16] Hickling R, Wei W, Hagstrum D W. Studies of sound transmission in various types of stored grain foracoustic detection of insects[J]. Applied Acoustics,1997,50(4):263-278.
    [17]刘浩.浅谈热电偶测温原理及应用[J].科技与企业,2014(2):258.
    [18]戚新波,范峥,田效伍.检测技术与智能仪器[M].北京:电子工业出版社,2005.
    [19]任作为.由MSP430单片机和DS1820构成的小型测温系统[J].科技视界,2013(3):89-91.
    [20]姜忠良,陈秀云.温度的测量与控制[M].北京:清华大学出版社,2005.
    [21]彭利军.光学测温技术中的物理原理[J].物理测试,2006,24(5):46-48.
    [22]李云红,孙晓刚,廉继红.红外热像测温技术及其应用研究[J].现代电子技术,2009(1):112-115.
    [23]李云红.基于红外热像仪的温度测量技术及其应用研究[D].哈尔滨:哈尔滨工业大学,2010.
    [24]张杰.红外热成像测温技术及其应用研究[D].成都:电子科技大学,2011.
    [25] Yan H, Chen G, Zhou Y G, et al. Experimental study of sound travel-time estimation method in storedgrain[J]. Journal of Computers,2012,7(4):947-953.
    [26]赵俭,常蕾.基于声学法测温的声波飞渡时间研究[J].计测技术,2013,33(6):31-34.
    [27] Holstein P, Raabe A, Müller R, et al. Acoustic tomography on the basis of travel-timemeasurement[J]. Measurement Science and Technology,2004,15(7):1420-1428.
    [28] Barth M, Raabe A. Acoustic tomographic imaging of temperature and flow fields in air[J].Measurement Science and Technology,2011,22(3):1-13.
    [29] Srinivasan K, Sundararajan T, Narayanan S, et al. Acoustic pyrometry in flames[J]. Measurement,2013,46(1):315-323.
    [30]田丰,邵富群,王福利.声学法工业炉温度场检测的现状与关键技术[J].煤炭科学技术,2002,30(6):50-52.
    [31] Bramanti M, Salerno E A, Tonazzini A, et al. An acoustic pyrometer system for tomographic thermalimaging in power plant boilers[J]. IEEE Transactions on Instrumentation and Measurement,1996,45(1):159-161.
    [32]杨彩虹.基于粮食安全视角的粮食供应链优化与管理研究[J].改革与战略,2013,29(12):47-51.
    [33]刘永丰,黄世杰,陆燕江等.浅论进口粮食与中国粮食安全[J].科技与企业,2014(1):32.
    [34]波李.中央经济工作会议:粮食安全首提循环农业[J].黑龙江粮食,2014(1):6.
    [35]郑振堂,刘忠强,陈明峰等.大豆安全储藏工艺与技术[J].粮食加工,2011,36(2):70-74.
    [36]程小丽,武传欣,刘俊明等.储粮害虫防治的研究进展[J].粮食加工,2011,36(5):70-73.
    [37]李峰,郁宏兵,卓磊等.高大平房仓控温储粮原理、方法及其发展[J].粮油仓储科技通讯,2012(1):16-21.
    [38]杨广靖,任云虹,贾金元等.我国粮食储藏的现状及发展趋势[J].粮食加工,2012,37(1):60-63.
    [39]徐恺,晏书明,付鹏程.接种霉菌的高水分玉米自然发热试验[J].粮食储藏,2000,29(2):20-26.
    [40]李林轩.无公害储粮初探[J].粮食流通技术,2006(1):43-45.
    [41]王立根,王贵甫.粮情测控技术及其发展[J].计算机应用与软件,2010,27(5):152-154+171.
    [42]徐碧.全数字式粮情测控系统的应用[J].粮油仓储科技通讯,2006(2):31-32+37.
    [43]孟彬,刘强,汪福友等.多功能粮情测控系统实仓试验[J].粮食加工,2011,36(4):80-83.
    [44] Manickavasagan A, Jayas D S, White N D G. Thermal imaging to detect infestation by cryptolestesferrugineus inside wheat kernels[J]. Journal of Stored Products Research,2008,44(2):186-192.
    [45]陈冠男.声学法仓储粮食温度检测关键技术的研究[D].沈阳:沈阳工业大学,2012.
    [46]马大猷.现代声学理论基础[M].北京:科学出版社,2004.
    [47] Hedrich A L, Pardue D R. Sound velocity as a measurement of gas temperature[J]. TemperatureMeasurement and Control in Science and Industry,1955,11:383.
    [48] Wu S Q, Ching P C. Signal waveform restoration by wavelet denoising[C]. Proceedings of theIEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, Paris, France,1996:89-92.
    [49] Furnio l, Masayasu S. Fundamental studies of acoustic measurement and reconstruction combustiontemperature in large boilers[J]. Trans Japan Soc Mech Engin,1985,53(489):1610-1614.
    [50] Kleppe J A. Engineering application of acoustics[M]. New York: Artech House,1989.
    [51] Kleppe J A. Adapt acoustic pyrometer to measure flue-gas flow[J]. Power (New York),1995,139(8):46-47.
    [52] Muzio L J, Eskinazi D, Green S F. Acoustic pyrometer: a new diagnostic tool[J]. Power Engineering,1989,93(11):49-52.
    [53] Lu J, Wakai K, Takahashi S, et al. Acoustic computer tomographic pyrometry for two-dimensionalmeasurement of gases taking into account the effect of refraction of sound wave paths[J].Measurement Science and Technology,2000,11(6):692-697.
    [54] Ohyama S, Takayama J, Oshima K. Acoustic ct System for temperature distribution and windvelocity vector measurement[C]. Proceedings of the2008Congress on Image and Signal Processing.Sanya, Hainan,2008:13-17.
    [55] Ostashev V E, Vecherin S N, Wilson K D, et al. Recent progress in acoustic travel-time tomographyof the atmospheric surface layer[J]. Meteorologische Zeitschrift,2009,18(2):125-133.
    [56]邵富群,吴建云.声学法复杂温度场的重组测量[J].控制与决策,1999,14(2):24-28.
    [57]黄庆康.声学炉内温度场实时监测系统[J].电站系统工程,2000,16(4):221-223.
    [58]田丰,邵富群,王福利等.基于弯曲路径的复杂温度场重建算法仿真研究[J].系统仿真学报,2003,15(5):621-623+645.
    [59]田丰,邵富群,王福利.基于正则方法与迭代技术相结合的复杂温度场重建算法[J].东北大学学报,2003,24(4):307-310.
    [60]田丰,孙小平,邵富群等.基于高斯函数与正则化法的复杂温度场图像重建算法研究[J].中国电机工程学报,2004,24(5):212-220+215.
    [61]田丰,刘再胜,孙小平等.基于RBF神经网络的温度场重建算法研究[J].仪器仪表学报,2006,27(11):1460-1464.
    [62]王交峰,田丰,田金光.基于声学CT重建航空发动机燃烧室出口温度场的仿真研究[J].沈阳航空工业学院学报,2009,26(2):38-42.
    [63]沈国清,安连锁,姜根山.炉膛烟气温度声学测量方法的研究与进展[J].仪器仪表学报,2003,24(4):555-558.
    [64]姜根山,安连锁,杨昆.温度梯度场中声线传播路径数值研究[J].中国电机工程学报,2004,24(10):210-214.
    [65]沈国清,安连锁,张波等.声学法重建炉内温度场的算法研究[J].锅炉技术,2005,36(6):52-55.
    [66]沈国清,安连锁,姜根山等.基于声学CT重建炉膛二维温度场的仿真研究[J].中国电机工程学报,2007,27(2):11-14.
    [67]李芝兰,颜华,陈冠男.基于修正Landweber迭代的声学温度场重建算法[J].沈阳工业大学学报,2008,30(1):90-93.
    [68]颜华,崔柯鑫,续颖.基于少量声波飞行时间数据的温度场重建[J].仪器仪表学报,2010,31(2):470-475.
    [69]颜华,王金,陈冠男.16通道声波飞行时间测量系统[J].沈阳工业大学学报,2010,32(1):70-74.
    [70]韦雪青,温俊宝,赵源吉等.害虫声音监测技术研究进展[J].林业科学,2010,46(5):147-154.
    [71] Mankin R W, Shuman D, Coffelt J A. Acoustic counting of adult insects with differing rates andintensities of sound production in stored wheat[J]. Journal of Economic Entomology,1997,90(4):1032-1038.
    [72]郭敏,尚志远,白雅.储粮害虫微弱声信号特征提取与分析[J].云南大学学报(自然科学版),2006,28(6):497-503.
    [73]郭敏,尚志远,石焕文.粮食吸声谱特性的实验研究[J].应用科学学报,2003,21(2):111-116.
    [74]郭敏,尚志远,石焕文.多种粮食声吸收的研究[J].西北大学学报(自然科学版),2004,34(1):34-38.
    [75]郭敏.声信号在准多孔介质中的传播及害虫弱声信号特征分析[D].西安:陕西师范大学,2003.
    [76]郭敏,尚志远,耿森林.粮食中声波传播理论模型的建立及实验验证[J].云南大学学报(自然科学版),2005,27(3):228-231.
    [77] Chen G N, Yan H, Zhou Y G, et al. A new method of sound travel-time measurement in stored grain.Advanced Research on Computer Education[C]. Simulation and Modeling International Conference,Wuhan, China,2011:232-237.
    [78]朱晓莉,闫志勇.声学法炉膛温度场重建算法研究[J].大家,2012(14):120-121.
    [79]张肇富.用超声波温度计测量高温[J].上海计量测试,1998(6):55.
    [80]周献,王强,缪志农等.基于RBF神经网络的三维温度场重建算法[J].仪表技术与传感器,2013(5):99-102.
    [81]杜功焕,朱哲民,龚秀芬.声学基础[M].南京:南京大学出版社,2001.
    [82]吴孟余.工程热力学[M].上海:上海交通出版社,2000.
    [83]张雨.二维方形边界温度场声学测量可视化研究[D].大庆:东北石油大学,2013.
    [84]周献.声学法三维温度场重建算法的研究[D].成都:西华大学,2013.
    [85]朱晓莉.电站锅炉炉膛温度场重建算法研究[D].杭州:中国计量学院,2012.
    [86]王明吉,张利巍,曹文.一种声学测温技术中声波飞渡时间的测量方法[J].中国石油大学学报(自然科学版),2011,35(6):183-187.
    [87] Jovanovic I, Sbaiz L, Vetterli M. Acoustic tomography method for measuring temperature and windvelocity[C].2006IEEE International Conference on Acoustics, Toulouse, France,2006:1141-1144.
    [88]乔志伟,韩焱,魏学业.一种滤波反投影算法的加速方式[J].系统工程与电子技术,2010,32(2):401-404.
    [89]孙小平,田丰,邵富群等.复杂温度场图像重建算法实验研究[J].东北大学学报,2006,27(3):268-271.
    [90]苏邦良,张以恒,彭黎辉等.同步迭代图像重建技术在电容层析成像系统中的应用[J].清华大学学报(自然科学版),2000,40(9):90-92.
    [91]刘晓.工业CT图像重建算法的计算机模拟研究[D].成都:四川大学,2004.
    [92] Yan H, Chen G N, Xu Y, et al. Research on estimation of acoustic travel-time in soybeans[C].International Conference on Measuring Technology and Mechatronics Automation, Zhang Jiajie,China,2009:832-835.
    [93]樊炜.海底热液口温度场声学测量技术研究[D].杭州:浙江大学,2010.
    [94]王明吉.气体介质温度场声学测量方法与技术研究[D].大庆:东北石油大学,2012.
    [95]乔志伟,魏学业,韩焱.滤波反投影算法的数值实现问题研究[J].机械管理开发,2009,24(2):1-2+5.
    [96]田丰.声学燃煤锅炉炉膛火焰温度场图像重建研究[D].沈阳:东北大学,2004.
    [97]王国荣.矩阵算子与广义逆[M].北京:科学出版社,1998.
    [98]李芝兰.基于声层析成像的温度场重建技术研究[D].沈阳:沈阳工业大学,2007.
    [99] Young K J, Ireland S N, Melendez-Cervates M C, et al. On the systematic error associated with themeasurement of temperature using acoustic pyrometry in combustion products of unknown mixture[J].Measurement Science and Technology,1998,9(1):1-5.
    [100]王明吉,王瑞雪,姜凤红.三维温度场声学测量重建及计算机仿真[J].现代电子技术,2012,35(1):121-123+128.
    [101]张雪晓.第一类Fredholm积分方程正则化[D].西安:电子科技大学,2013.
    [102]庞爱平.慢速求解第一类Fredholm积分方程的方法研究[D].哈尔滨:哈尔滨工业大学,2013.
    [103]王化祥.电学层析成像[M].北京:科学出版社,2013.
    [104] Yan H, Li K, Wang S H. A3d temperature field reconstruction algorithm based on acoustictravel-time tomography[J]. Lecture Notes in Electrical Engineering,2012,140(2):639-644.
    [105]吴宗敏.径向基函数、散乱数据拟合与无网格偏微分方程数值解[J].工程数学学报,2002,19(2):1-12.
    [106] Li Z C, Huang H T, Wei Y. Ill-conditioning of the truncated singular value decomposition, Tikhonovregularization and their applications to numerical partial differential equations[J]. Numerical LinearAlgebra with Applications,2011,18(2):205-221.
    [107]张海滨,蒋伟康,万泉.边界元法循环平稳近场声全息理论研究[J].声学学报,2008,33(3):231-237.
    [108]孙珊珊,赵均海,张常光等.基于统一强度理论的大型浅圆筒仓侧压力计算[J].工程力学,2013,30(5):244-249.
    [109]刘超,刁现芬,汪元美.超声逆散射成像问题中的正则化方法研究[J].浙江大学学报,2005,39(2):28-32+43.
    [110] Hansen P C. Analysis of discrete ill-Posed problems by means of the L-curve[J]. SIAM Review1992,34(4):561-580.
    [111] Wu L M. A parameter choice method for tikhonov regularization[J]. Electronic Transations onNumerical Analysis,2003,16:107-128.
    [112]颜华,王善辉,周英钢.正则化参数自适应选取的声学CT温度场重建[J].仪器仪表学报,2012,33(6):1301-1307.
    [113] Yan H, Wang S H, Zhou Y G, et al. A3D acoustic temperature field reconstruction algorithm usingadaptive regularization parameter[C].2013IEEE International Conference on Imaging Systems andTechniques, Beijing, China,2013:150-154.
    [114] Johnson S A, Greenleaf J F, Samayoa W A, et al. Reconstruction of three-dimensional velocityfields and other parameters by acoustic ray tracing[J]. Metals Technology,1975:46-51.
    [115] Charles V, Kak A C. Jakowatz J. Computerized tomographic imaging using x-rays andultrasound[D]. Purdue University: School of Electrical Engineering,1976.
    [116] Andersen A H, Kak A C. Digital ray tracing in two-dimensional refractive fields[J]. The Journal ofthe Acoustical Society of America,1982,72(5):1593-1606.
    [117] Yamamoto H, Tabei M, Ueda Mitsuhiro. Acoustic ray tracing in discrete wave velocity by deployedtriangle[J]. Electronics and Communications in Japan,1991,74(2):59-69.
    [118]王瑞雪.三维温度场声学测量方法及计算机仿真研究[D].大庆:大庆石油学院,2007.
    [119]王明吉,王瑞雪.利用三角形前向展开法追踪温度梯度场中的声线路径[J].中国电机工程学报,2007,27(5):29-33.
    [120]王明吉,姜凤红,王瑞雪.利用正三棱锥前向展开法追踪三维温度场声线路径[J].计量技术,2007(12):11-13.
    [121]姜凤红.三维温度场声学测量方法与技术的优化研究[D].大庆:大庆石油学院,2008.
    [122]姜薇,李太宝.三维声线追踪的正三棱锥前向伸展算法[J].声学学报,2005,30(5):404-408.
    [123]王瑞雪,齐绩,王明吉.二维声线追踪的两种算法研究[J].计量与测试技术,2006,33(11):23-24.
    [124] Yamamoto H, Saito H, Tabei M, et al. Calculation of projection data for the ultrasonic computedtomography by the ray tracing method[J]. Journal of the Acoustical Society of Japan,1991,12(4):157-167.
    [125] Ke H R, Chang R C. Ray-cast volume rendering accelerated by incremental trilinear interpolationand cell templates[J]. The Visual Computer,1995,11(6):297-308.
    [126] Li D W, Lu Z Z, Zhou C C. Contribution to sample failure probability plot and its solution bykriging method[J]. Science China,2013,56(4):866-877.
    [127] Cressie N. The origins of kriging[J]. Mathematical Geology,1990,22(3):239-252.
    [128] Ababou R, Bagtzoglou A, Wood E. On the condition number of covariance matrices in krigingestimation and simulation of random fields[J]. Mathematical Geology,1994,26(1):99-133.
    [129]包世泰,廖衍旋,胡月明等.基于Kriging的地形高程插值[J].地理与地理信息科学,2007,23(3):28-32.
    [130]李晓波.基于虚拟仪器LABVIEW的光敏电阻特性研究[J].电子测试,2013(24):43-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700