用户名: 密码: 验证码:
隔爆水冷变频器热交换及温差控制机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力电子技术的迅速发展,人们对矿用设备电力拖动系统的安全节能要求日益提高,交流变频调速技术作为一种节能降耗的重要技术得到广泛认可。变频器凭借其优越的节能效果和调速性能,在煤矿生产过程中得到越来越广泛的应用。但是,煤矿井下使用的电气设备必须是防爆的,综合各种防爆型式的优缺点,隔爆变频器应运而生,将所有电子元件置于密闭的隔爆箱体内部,而电子元件的损耗散热严重影响变频器的使用。针对采用水冷方式的隔爆变频器进行的冷却效果和出现的结露问题,有必要分析水冷变频器的热交换过程产生的温差及其影响因素,从而指导设计隔爆水冷变频器的水冷控制系统。
     首先,针对某1140V/100KW隔爆水冷变频器的主电路结构,计算了功率元件的总损耗,并对损耗热量的散热路径进行了详细分析,损耗热量的热交换过程主要是强制对流,同时伴随有热传导和热辐射,整个热交换过程涉及到固体、液体和气体三种传热方式的耦合。整个散热过程中,冷却水的温度、流量和环境温度对隔爆箱体内部温度场有重要影响。
     其次,建立了隔爆水冷变频器的散热模型,运用计算流体仿真软件FLUENT对隔爆水冷变频器热交换进行了数值模拟,得到一定温度下不同流量和一定流量不同温度情况下的散热模型的温度场云图、冷却水温度云图、箱体内部的温度场云图和关键部位的温度分布曲线等,对比分析冷却水流量和温度对散热效果的影响。数值模拟仿真结果表明:散热模型温度随冷却水流速的增加而下降,V=0.4m/s是本散热模型散热效果最佳的流速,流速继续增大而温度减小缓慢。冷却水入口温度对散热模型温度场的影响是线性的,随着冷却水水温的增加而线性增加,温度越低的冷却水其降温性越好。通过数值模拟计算得到模型内部不同速度和温度情况下的低温分布区域,确定了不同工况下出现结露的重点部位。
     然后,针对井下隔爆水冷变频器工作的环境气候,总结了温度和湿度的变化规律。进而分析了空气结露的机理,温度低于露点温度则会出现结露现象,过低温度或者大流量的冷却水都会导致温差大而产生冷凝水。以本模型在矿井空气下温度t=20℃,相对湿度φ=80%的环境条件下,分析了不同冷却水流量与温度时内部空气的相对湿度场和出现结露的区域,得到有效散热且不产生结露的冷却水最佳入口速度V=0.27m/s和温度T=286.5K。
     最后,分析了隔爆水冷变频器采用冷却水流量实现温差控制,提出了温差控制的流程,并运用Matlab模糊逻辑工具箱(Fuzzy Logic Toolbox)设计出温差模糊控制器,通过控制系统框图仿真对比了温差模糊控制器和PID控制器的响应输出曲线,结果显示模糊控制器具有良好的动态和静态性能,能够很好地控制隔爆水冷变频器内部的温差。
With the rapid development of the power electronic technology, the energy-saving and secure requirements of the mining equipment and electric drive system are increasing day by day, Ac-variable-frequency regulating speed technology as an important energy-saving technology is widely accepted. In the coal mine production process, inverter is used more and more widely for its excellent energy-saving effect and the performance of speed adjustment. However, the electric equipments of coal mine underground use must be explosion-proof, comparing the advantages and disadvantages of various explosion-proof types, flameproof inverter arises at the historic moment, all electronic components are installed in the flameproof shell, while electronic components power loss serious influence the use of inverter.In view of the cooling effect and dewing problems appear on flameproof water-cooling inverter, it is necessary to analysis the process of cooling inverter heatexchange, temperature difference and its influence factor, so as to guide design water-cooling control system of flameproof water-cooling inverter.
     First of all, the total power components loss of 1140V/100KW flameproof water-cooling inverter is calculated by analysis of main circuit structure, thermal path of loss heat is detailedly analyzed,the main heatexchange process is forced convection, and with a heat conduction and radiation, the heat transfer process is coupled solid, liquid and gas by three heat transfer foems. In the whole cooling process, the flameproof shell interior air temperature field distribution is important influenced by cooling water temperature, flow and environmental temperature.
     Secondly, the heat dissipation model of flameproof water-cooling inverter is established,the heatexchange is numerically simulated by computational fluid simulation software FLUENT, obtained contours of the heat dissipation model temperature field, cooling water temperature field, flameproof shell internal air temperature field and the temperature distribution curves of key parts under the certain temperatures different flow and certain flow different temperature,compared and analyzed cooling effect influence of cooling water flow and temperature. The numerical simulation results indicate that, with cooling water velocity increasing, temperature of the heat dissipation model decreases; the best cooling effect of this model water velocity is V=0.4m/s, velocity continue to increase and temperature decrease slowly. The influence of cooling water inlet temperature to thermal model temperature field is linear, the lower temperature of cooling water the better cooling effect.Obtained the low temperature distribution areas and dewing zones under different conditions.
     Then, summarizes the temperature and humidity change rule of flameproof water-cooling inverter working environment climate. And then analyzes the mechanism of the dewing of air, temperature below the dewpoint temperature will appear the dewing phenomenon, low temperature or large flow of the cooling water will lead to large temperature difference and appear dew. When this model in the mine air temperature t=20℃, relative humidityφ=80%, the internal air relative humidity field and dewing area are analyzed under different temperature and cooling water flow, appear to effectively cooling and does not produce the cooling water condensation best inlet velocity V=0.27 m/s and temperature t=286.5 K.
     Finally, cooling water flow controlling temperature difference of flameproof water-cooling inverter is analyzed, temperature control flow is proposed, and use Matlab Fuzzy Logic Toolbox to designe Fuzzy controller, through the control system block diagram simulation compared the Fuzzy controller and PID controller outputs curves, the results show that the Fuzzy controller with good dynamic and static performance, can easily control the flameproof water-cooling inverter internal temperature.
引文
[1]陈怀道,王立伟,韩菊娣.变频器在煤矿井下的应用[J].煤炭科学技术,2004,32(6):24-27.
    [2]高峥.浅谈防爆变频器的散热[J].电气防爆,2007,(4):7-9.
    [3]孙志坚.电子器件回路型热管散热器的数值模拟与试验研究[D].杭州:浙江大学,2007.
    [4]傅林,黄文涛.矿用隔爆型变频器散热方式的选择[J].变频器世界,2009,(7):79-81.
    [5]胡建辉,李锦庚,邹继斌等.变频器中的IGBT模块损耗计算及散热系统设计[J].电工技术学报,2009,24(3):159-163.
    [6]张明元,沈建清,李卫超等.一种快速IGBT损耗计算方法[J].船电技术,2009,29(1):33-36.
    [7]Dewei Xu;Haiwei Lu;Lipei Hang;Satoshi Azuma;Masahiro Kimnata;and Ryohel-Uchida.Power Loss and Junction Temperature Analysis of Power Semiconductor Devices[J].WEEE Transaction on Industry Applications, v01.38, no.5, PP,1426—1431, September/October 2002.
    [8]J. Qian;A. Khan;A, I. Batarseh.Turn—off switching loss model and analysis of IGBT under different switching operation modes[J].Proc.21st International Conference on Industrial Electronics, Control, and Instrumentation,6-10 Nov.1995, v0.1, PP.240—245.
    [9]Takashi Kojimna Yasushi Yaunada;Mauro Ciappa.Marco Chiavrwini and Wolfgamg Fichtner.A NovelEleetro-thermal Simulation Approach of Power IGBT modules for automotive traction applications [J].Proceeding of 2004 international symnposium on power semiconductor devices & ICs. Kitakyushu.2004.
    [10]黄碧霞,陈阳生.一种三相逆变器损耗分析方法[J].微电机,2009,42(9):49-52.
    [11]李文顶.中压矿用变频器主电路损耗分析及散热设计[D].上海:上海交通大学,2009.
    [12]支淼川.电力电子设备水冷散热器的数值模拟[D].北京:华北电力大学,2006.
    [13]全振兴.矿用隔爆交流变频器的结构分析及设计[D].西安:西安理工大学,2007.
    [14]石书华,李守法,张海燕等.三电平变频器水冷散热器温度场的计算与分析[J].动力工程学报,2010,30(1):68-72.
    [15]Han, Minsub; Lee, Su-Dong; Hong, Chanook, etc. Development of water-cooled heat sink for high-power IGBT inverter [J].7th Internatonal Conference on Power Electronics, ICPE'07, p 295-299,2008.
    [16]李嘉敏. BARTEC隔爆大功率调频器在井下的应用[J].煤,2007,16(3):62-63.
    [17]邓玮,张宝平.模糊温度控制器的设计与Matlab仿真[J].郑州轻工业学院学报(自然科学版),2009,24(2):50-52.
    [18]李军,王孙安.模糊控制器在温度控制中的应用[J].机床与液压,2003(4):104-106.
    [19]王建渊,钟彦儒,伍文俊等.改善大功率隔爆型变频器散热性能的研究[J]. 西安理工大学学报,2006,22(1):42-45.
    [20]杨世铭,陶文铨.传热学(第三版)[M].北京:高等教育出版社,1998.
    [21]王洪.流体力学及传热学基础[M].北京:机械工业出版社,1999.
    [22]江帆,黄鹏.Fluent高级应用与实例分析[M].北京:清华大学出版社,2008.
    [23]朱红钧,林元华,谢龙汉.FLUENT流体分析及仿真实用教程[M].北京:人民邮电出版社,2010.
    [24]约阿希姆·福斯著(联邦德国),刘从孝译.矿井气候[M].北京:煤炭工业出版社,1989.
    [25]高建良,张学博.潮湿巷道风流温度与湿度变化规律分析[J].中国安全科学学报,2007,7(4):136-139.
    [26]Uchino K, InoueM. New practical method for calculation of air temperature and humidity along wet roadway--The influence of moisture on the underground environment in mines (2nd Report) [J]. Journal of the Mining and Metallurgical Institute of Japan,1986,102 (6):353-357.
    [27]Uchino K, InoueM. Improved practical method for calculation of air temperature and humidity along a roadway under complocated conditions--The influence of moisture on the underground environment in mines (3rd Report) [J]. Journal of the Mining and Materials Processing Institute of Japan,1990,106 (1):7-12.
    [28]姬建虎,张习军,梅勇等.地面气候对井下气候的影响规律分析[J].矿业安全与环保,2009,36(5):57-62.
    [29]叶炳杰,陈国龙,商群等.6家煤矿井下采掘作业地点气象条件调查分析[J].中国职业医学,2001,28(1):62-63.
    [30]GB3836.2-2000,爆炸性气体环境用电气设备第2部分:隔爆型“d”[S].北京:中国标准出版社,2000.
    [31]廉乐明,李力能,吴家正等.工程热力学(第四版)[M].北京:中国建筑工业出版社,1999.
    [32]赵荣义,范存养,薛殿华等.空气调节(第四版)[M].北京:中国建筑工业出版社,2009.
    [33]中国湿度网, 饱和水蒸气压公式[EB/OL], http://www.chinashidu. com.cn/news_detail.php?id=29&nowmenuid=24&cpath=&catid=0,2006-4-24.
    [34]石辛民,郝整清.模糊控制及其MATLAB仿真[M].北京:清华大学出版社;北京交通大学出版社,2008.
    [35]Ding, Zhenjun; Fang, Lide; Song, Zhanbiao; etc. Design and simulation of fuzzy control system for water temperature of heat exchanger [J].2010 The 2nd International Conference on Computer and Automation Engineering, ICCAE 2010, v 4, p 122-125, 2010.
    [36]Pan, Haipeng; Xing, Wei; Xu, Sen; etc. Design of a new intelligent fuzzy control system of greenhouse temperature [J]. Proceedings of the World Congress on Intelligent Control and Automation (WCICA), p 8864-8868,2008.
    [37]Han, Houde; Kan, Ankang; Sha, Lili. Application of fuzzy control technology on the marine heat exchanger control system [J]. Proceedings - 6th International Symposium on Heating, Ventilating and Air Conditioning, ISHVAC 2009, v 1, p 311-317,2009.
    [38]Becker, M.; Oestreich, D.; Hasse, H.; etc. Fuzzy control for temperature and humidity in refrigeration systems [J]. Proceedings of the IEEE Conference on Control Applications, v 3, p 1607-1612,1994.
    [39]张国良,曾静,柯熙政等.模糊控制及其MATLAB应用[M].西安:西安交通大学出版 社,2002.
    [40]闻新,周露,李东江等.MATLAB模糊逻辑工具箱的分析与应用[M].北京:科学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700