用户名: 密码: 验证码:
双手爪攀爬机器人空间桁架中的无碰路径规划
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双手爪攀爬机器人是指一类结构上由多自由度本体和首尾攀附装置组成的,通过两手爪交替固定并配合本体屈伸或扭摆等运动来实现自身整体移动的特种攀爬机器人。与传统轮式或履带式等攀爬机器人相比,其具有多种攀爬步态、良好的越障和杆件间过渡能力等优点。因而有望成为替代人类执行空间桁架中高强度、高危险的高空作业的自动化解决方案。但就国内外研究现状而言,双手爪攀爬机器人缺乏在空间桁架中进行自主智能路径规划的能力,相关理论研究几乎空白。
     本文以采用环抱式夹持的双手爪攀爬机器人作为研究对象,就其在空间桁架中进行无碰路径规划的相关问题展开系统的研究和深入的探讨。主要内容包括:
     (1)研究了空间桁架与双手爪攀爬机器人的描述方式,提出了以双位姿矩阵(基座位姿和末端位姿)来完整描述双手爪攀爬机器人与桁架之间的相互关系。基于该描述方法,提炼出双手爪攀爬机器人在空间桁架中无碰路径规划的共性问题,并建立了其数学模型。通过与双足步行移动方式类比,提出了逐步细化的三层规划器框架来解决该规划问题,并从宏观角度分析了全局路径规划器、夹持点规划器和单步无碰运动规划器的任务和作用。
     (2)探讨了以位置可达性与夹持安全性为约束的杆件间可过渡性快速筛选方法和以杆件间最近点为基础的过渡姿态选择策略,同时建立了对平面构型五自由度双手爪攀爬机器人在夹持姿态约束下进行可过渡性分析并准确求解可过渡区域的相关理论。基于上述杆件间过渡分析理论和方法,设计了全局路径规划器对桁架进行搜索以获取具有全局导向性的路径地图。通过仿真验证了过渡姿态选择策略和可过渡区域求解算法的正确性。
     (3)基于双手爪攀爬机器人的步态信息讨论了移动距离与所需最少攀爬步数的分段函数关系,提出了以夹持点数目最少为目标的基于关键位姿的夹持点规划算法。定义了可夹持区域的概念,并提出了一种基于二分逼近原理的快速搜索算法予以求解以及基于可夹持区域求解的夹持点规划算法。设计了夹持点规划器来分割全局路径地图以获取夹持点序列。通过仿真验证了可夹持区域求解理论和算法的高效性。
     (4)研究了双手爪机器人在多步连续攀爬中每一步无碰运动规划的具体模型。通过状态定义、随机采样和插值以及度量函数等共性设计,将双向快速扩展随机树算法(BiRRT)引入双手爪攀爬机器人的单步无碰运动规划。提出了前处理环节为规划器选择更加合理的起始和目标构型。通过仿真验证了单步无碰运动规划算法的有效性。
     (5)讨论了三层规划器的集成和协作问题,以及进行攀爬路径规划的具体步骤。通过规划五自由度和六自由度双手爪攀爬机器人在空间桁架中的攀爬路径的仿真实验,验证了本文所提出的规划器的理论、策略以及算法的有效性。
Biped climbing robots refer to those special climbing robots configured multiple degrees-of-freedom body in the middle and attaching devices at both ends. They usually move by them-selves through interchanging grippers to attach and cooperating with the body motion such asflexion and extension, swinging-around or flipping-over and so on. Compared with traditionalwheeled or tracked climbing robots, biped climbing robots feature high mobility in terms ofmultiple gaits, superior ability to negotiate obstacles and to transit between poles, etc. Hencethey are expected to be the automated solution to carry out high-strength, high-danger andhigh-rise tasks in stead of human beings. However, as regards to the state of the art of bipedclimbing robots all over the world, they lack of the capability to plan a path on spatial trussesautonomously and intelligently.
     This dissertation focuses on the fundamental issues related to collision-free path planningof biped climbing robots enclosing a pole to grasp on spatial trusses. Specifically, the maincontributions are as follows.
     (1) The description of spatial trusses and biped climbing robots is investigated, whichleads to a novel method with double configuration matrixes to completely express the re-lationship between them. The universal mathematical model of collision-free path planningwith biped climbing robots on spatial trusses is proposed. Inspired by biped walking, a three-layered framework integrating three planners, which are respectively the global path planner,the footholds planner and the single-step collision-free motion planner, is presented to solvethis problem. The roles of the three planners are also illustrated.
     (2) In order to fast filter potential poles for transiting, an approach valuating the accessibil-ity of position and the safety of grasps is proposed. A strategy based on the closest points of twopoles is also proposed to select the grasping orientation for transiting. The optional graspingregions for transiting with a five degrees-of-freedom biped climbing robot like Climbot-5D arediscussed and solved. In the basis of the above theories and approaches, a global path planneris designed to search the truss, so as to obtain roadmaps with global guidance information. Al-gorithms to select the grasping orientation and to solve optional grasping regions for transitingare verified through simulations.
     (3) According to the information of three basic gaits for biped climbing robots, the re- lationship between the mobile distance and the least number of climbing cycles is discussed.An algorithm based on this function relationship is presented to achieve the least number ofgrasping points through the whole path. Then the concept of graspable regions is defined, anda novel and fast approach using the binary approximating principle is proposed to solve them.After that, an algorithm based on solving the graspable regions is also presented to implementfootholds planning. With the above two algorithms, a footholds planner is designed to extractfootholds sequence from the global roadmap. Simulations demonstrate the efectiveness andthe efciency of the proposed algorithm to solving the graspable regions.
     (4) The specific model of single-step collision-free motion planning with biped climbingrobots is presented. The bilateral rapidly-exploring random tree (BiRRT) algorithm is intro-duced to solve this problem by universal design of its main processes, including state definition,sampling and interpolation, and so on. A preprocess is proposed to select suitable initial andgoal configurations for BiRRT. The efectiveness of the algorithm is verified by simulations.
     (5) Three planners are integrated together and their cooperation mode is also discussed.The specific steps to perform climbing path planning with them are presented. Through simu-lations with biped climbing robots with five and six degrees of freedom, the accuracy and theefectiveness of the presented theories, strategies and algorithms are verified.
引文
[1] Karel C. Rossum’s universal robots [M]. New York: Doubleday,1923.
    [2] Corke P. Robotics, vision and control [M]. Berlin: Springer-Verlag,2011.
    [3]熊有伦,丁汉,刘恩沧.机器人学[M].北京:机械工业出版社,1993.
    [4] Kurfess T. Robotics and automation handbook [M]. Boca Raton: CRC Press LLC,2005.
    [5] Baghani A, Ahmadabadi M, Harati A. Kinematics modeling of a wheel-based pole climb-ing robot (UT-PCR)[C]. IEEE International Conference on Robotics and Automation,2005:2111–2116.
    [6] Ozgur U, Metin S. Tankbot: a palm-size, tank-like climbing robot using soft elastomeradhesive treads [J]. International Journal of Robotics Research,2010,29(14):1761–1777.
    [7] Kamikawa K, Arai T, Inoue K, et al. Omni-directional gait of multi-legged rescue robot[C]. IEEE International Conference on Robotics and Automation,2004:2171–2176.
    [8] Spenko M, Haynes G, Saunders J, et al. Biologically inspired climbing with a hexapedalrobot [J]. Journal of Field Robotics,2008,24(4-5):223–242.
    [9]朱海飞,管贻生,蔡传武,等.具有多种运动方式的小型模块化双手爪机器人MiniBibot [J].机器人,2012,34(3):176–181+189.
    [10] Longo D, Muscato G. The Alicia3climbing robot: a three-module robot for automaticwall inspection [J]. IEEE Robotics and Automation Magazine,2006,13(1):42–50.
    [11] Sheng W, Gu J, Shen Y. Permanent magnetic system design for the wall-climbing robot[C]. IEEE International Conference on Mechatronics and Automation,2005:2078–2083.
    [12] Kang T, Kim H, Son T, et al. Design of quadruped walking and climbing robot [C]. IEEEInternational Conference on Robotics and Biomimetics,2003:619–624.
    [13] Cai C, Zhu H, Jiang L, et al. A biologically inspired miniature biped climbing robot [C].IEEE International Conference on Mechatronics and Automation,2009:2653–2658.
    [14] Guan Y, Jiang L, Zhang X. Mechanical design and basic analysis of a modular robotwith special climbing and manipulation functions [C]. IEEE International Conference onRobotics and Biomimetics,2007:502–507.
    [15] Guan Y, Jiang L, Zhang X, et al.1-DOF robotic joint modules and their applications innew robotic systems [C]. IEEE International Conference on Robotics and Biomimetics,2008:1905–1910.
    [16] Guan Y, Jiang L, Zhang X, et al. Climbing gaits of a modular biped climbing robot[C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2009:532–537.
    [17] Guan Y, Jiang L, Zhang X, et al. Development of novel robots with modular methodology[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,2009:2385–2390.
    [18] Guan Y, Jiang L, Zhu H, et al. Climbot: a modular bio-inspired biped climbing robot [C].IEEE/RSJ International Conference on Intelligent Robots and Systems,2011:1473–1478.
    [19] Guan Y, Xiao Z, Wu W, et al. Gripper Self-Alignment for Autonomous Pole-Graspingwith a Biped Climbing Robot [C]. IEEE International Conference on Robotics andBiomimetics,2012:181–186.
    [20]蔡传武.爬杆机器人的攀爬控制[D].广州:华南理工大学,2011.
    [21]江励.双手爪式模块化仿生攀爬机器人的研究[D].广州:华南理工大学,2012.
    [22] Goerzen C, Kong Z, Mettler B. A survey of motion planning algorithms from the persepc-tive of autonomous UAV guidance [J]. Journal of intelligent and robotic systems,2010,57(1-4):65–100.
    [23] Xu Y, Brown B, Aoki S, et al. Mobility and manipulation of a light-weight space robot[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,1992:11–19.
    [24] Carnegie Mellon University. Self-mobile space manipulators [J]. http://www.cs.cmu.edu/afs/cs/usr/xu/www/sm2.html/,1995.
    [25] Nechyba M, Xu Y. Human-robot cooperation in space: SM2for new space station struc-ture [J]. IEEE Robotics and Automation Magazine,1995,2(4):4–11.
    [26] Balaguer C, Gimenez A, Abderrahim M. ROMA robots for inspection of steel basedinfrastructures [J]. Industrial Robot: An International Journal,2002,29(3):246–251.
    [27] SUGANO Lab. Forest robot project [J]. http://www.sugano.mech.waseda.ac.jp/project/forest/index.html/,2013.
    [28] Yoon Y, Rus D. Shady3D: a robot that climbs3D trusses [C]. IEEE International Con-ference on Robotics and Automation,2007:4071–4076.
    [29] Tavakoli M, Marques L, de Almeida A.3DCLIMBER: climbing and manipulation over3D structures [J]. Mechatronics,2011,21(1):48–62.
    [30] Lam T, Xu Y. Climbing strategy for a flexible tree climbing robot—Treebot [J]. IEEETransactions on Robotics,2011,27(6):1107–1117.
    [31] Chung W, Xu Y. A novel frame climbing robot: Frambot [C]. IEEE International Con-ference on Robotics and Biomimetics,2011:2559–2566.
    [32] Balaguer C, Gimenez A, Pastor J, et al. A climbing autonomous robot for inspectionapplications in3D complex environments [J]. Industrial Robot: An International Journal,2000,18(3):287–297.
    [33] Kushihashi Y, Koji Y. Development of tree-climbing and pruning robot woody-1––sim-plication of control using adjust function of grasping power (in Japanese)[C].2006:1A1–E08.
    [34] Detweiler C, Vona M, Yoon Y, et al. Self-assembling mobile linkages—analyzing pas-sive and active modules [J]. IEEE Robotics and Automation Magazine,2007,14(4):45–55.
    [35] Tavakoli M, Marques L, de Almeida A. Development of an industrial pipeline inspectionrobot [J]. Industrial Robot: An International Journal,2010,37(3):309–322.
    [36] Tavakoli M, Marques L, de Almeida A. A low-cost approach for self-calibration of climb-ing robots [J]. Mechatronics,2011,29(1):23–34.
    [37] Lam T, Xu Y. Biologically inspired tree-climbing robot with continuum maneuveringmechanism [J]. Journal of Field Robotics,2012,29(6):843–863.
    [38] Tummala R, Mukherjee R, Xi N, et al. Climbing the walls—presenting two underactu-ated kinematic designs for miniature climbing robots [J]. IEEE Robotics and AutomationMagazine,2002,9(4):10–19.
    [39] Balaguer C, Gimenez A, Huete A, et al. The MATS robot: service climbing robot forpersonal assistance [J]. IEEE Robotics and Automation Magazine,2006,13(1):51–58.
    [40] Guan Y, Zhu H, Wu W, et al. A modular biped wall-climbing robot with high mobilityand manipulating function [J]. IEEE/ASME Transactions on Mechatronics,2013.
    [41] Uenohara M, Ross W, Friedman M. TORCS: a teleoperated robot control system for theself mobile space manipulator, CMU-RI-TR-91-07[R].1991.
    [42] Xu Y, Brown B, Friedman M, et al. Control systems of the self-mobile space manipulator[J]. IEEE Transactions on Control Systems Technology,1994,2(3):207–219.
    [43] Chung W, Xu Y. Minimum energy demand locomotion on space station [J]. Journal ofRobotics,2013,2013:1–15.
    [44] Yun S, Rus D. Optimal self assembling of modular manipulators with active and passivemodules [J]. Autonomous Robots,2011,31(2-3):183–207.
    [45] Lam T, Xu Y. Motion planning for tree climbing with inchworm-like robots [J]. Journalof Field Robotics,2013,30(1):87–101.
    [46] Chestnutt J. Navigation planning for legged robots [D]. Pittsburgh, Pennsilvania:Carnegie Mellon University,2007.
    [47] Chestnutt J, Lau M, Cheung G, et al. Footstep planning for the Honda ASIMO humanoid[C]. IEEE International Conference on Robotics and Automation,2005:629–634.
    [48]夏泽洋,陈恳.仿人机器人足迹规划建模及算法实现[J].机器人,2008,30(3):231–237.
    [49] Chost H. Principles of robot motion: theory, algorithms, and implementations [M]. Mas-sachusetts: MIT Press,2005.
    [50] LaValle S. Planning algorithms [M]. Cambridge: Cambridge University Press,2006.
    [51] Siciliano B, Sciavicco L. Robotics: modelling, planning and control [M]. Berlin:Springer-Verlag,2009.
    [52] Lozano T. Automatic planning of manipulator transfer movements [J]. IEEE Transactionson Systems, Man and Cybernetics,1981,11(10):681–698.
    [53]丁富强,韩卫军,赵锡芳.基于C空间的双臂机器人无碰撞运动规划[J].上海交通大学学报,2001,35(1):54–58.
    [54] Lozano T. Spatial planning: a configuration space approach [J]. IEEE Transactions onComputers,1983,100(2):108–120.
    [55] McCracken R. Robotic path planning using a variational approach with an improvedmethod of generating configuration space [D]. Newark, America: University ofDelaware,1997.
    [56] Lee S, Lee B, Lee K. A configuration space approach to collision avoidance of a two-robot system [J]. Robotica,1999,17(2):131–141.
    [57] Hourtash A. Robot path planning by decomposition [D]. San Diego, America: Universityof California,1999.
    [58] LaValle S. Motion planning part I: the essentials [J]. IEEE Robotics and AutomationMagazine,2011,18(1):79–89.
    [59] Choset H. Robotic motion planning: cell decomposition [J]./http://voronoi.sbp.ri.cmu.edu/~motion,2013.
    [60] Lozano T, Wesley M. An algorithm for planning collision-free paths among polyhedralobstacles [J]. Communications of the ACM,1979,22(10):560–570.
    [61] Takahashi O, Schilling R. Motion planning in a plane using generalized Voronoi diagrams[J]. IEEE Transactions on Robotics and Automation,1989,5(2):143–150.
    [62] Khatib O. Real-time obstacle avoidance for manipulators and mobile robots [J]. Interna-tional Journal of Robotics Research,1986,5(1):90–98.
    [63] Chuang J. Potential-based modeling of three-dimensional workspace of the obstacleavoidance [J]. IEEE Transactions on Robotics and Automation,1998,14(5):778–785.
    [64] Spong M, Hutchinson S, Vidyasagar M. Robot dynamics and control [M].2nd ed.
    [65] Lin C, Kuo L, Chuang J. Potential-based path planning for robot manipulators [J]. Journalof Robotic Systems,2005,22(6):313–322.
    [66] Karaman S, Frazzoli E. Sampling-based algorithms for optimal motion planning [J]. In-ternational Journal of Robotics Research,2011,30(7):846–894.
    [67] LaValle S. Motion planning part II: wild frontiers [J]. IEEE Robotics and AutomationMagazine,2011,18(2):109–119.
    [68] Kavraki L, Svestka P, Latombe J, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces [J]. IEEE Transactions on Robotics and Automation,1996,12(4):566–580.
    [69] Kavraki L, Kolountzakis M, Latombe J. Analysis of probabilistic roadmaps for path plan-ning [J]. IEEE Transactions on Robotics and Automation,1998,14(1):166–171.
    [70] LaValle S, Branicky M, Lindemann S. On the relationship between classical grid searchand probabilistic roadmaps [J]. The International Journal of Robotics Research,2004,23(7-8):673–692.
    [71] Simeon T, Laumond J, Cortes J, et al. Manipulation planning with probabilistic roadmaps[J]. The International Journal of Robotics Research,2004,23(7-8):729–746.
    [72] Geraerts R. Sampling-based motion planning:analysis and path quality [D]. Utrecht, Hol-land: Utrecht University,2006.
    [73] LaValle S. Rapidly-exploring random trees: A new tool for path planning, TechnicalReport11[R].1998.
    [74] Kufner J, LaValle S. RRT-Connect: an efcient approach to single-query path planning[C]. IEEE International Conference on Robotics and Automation,2000:995–1001.
    [75]周芳,朱齐丹,赵国良.基于改进快速搜索随机树法的机械手路径优化[J].机械工程学报,2011,47(11):30–35.
    [76]谢碧云,赵京,刘宇.基于快速扩展随机树的7R机械臂避障达点运动规划[J].机械工程学报,2012,48(3):63–69.
    [77] Kufner J. Efective sampling and distance metrics for3D rigid body path planning [C].IEEE International Conference on Robotics and Automation,2004:3993–3998.
    [78] LaValle S, Kufner J. Randomized kinodynamic planning [J]. The International Journalof Robotics Research,2001,20(5):378–400.
    [79] Berenson D, Srinivasa S, Ferguson D, et al. Manipulation planning on constraint mani-folds [C]. IEEE International Conference on Robotics and Automation,2009:625–632.
    [80] Jaillet L, Cortes J, Simeon T. Sampling-based path planning on configuration-spacecostmaps [J]. IEEE Transactions on Robotics,2010,26(4):635–646.
    [81] Stilman M, Schamburek J, Kufner J, et al. Manipulation planning among movable obsta-cles [C]. IEEE/RSJ International Conference on Intelligent Robots and Systems,2007:3327–3332.
    [82] Diankov R. Automated construction of robotic manipulation programs [D]. Pennsylva-nia, America: Carnegie Mellon University,2010.
    [83] Bertram D, Kufner J, Dillmann R, et al. An integrated approach to inverse kinematicsand path planning for redundant manipulators [C]. IEEE International Conference onRobotics and Automation,2006:1874–1879.
    [84] Vande W, Ferguson D, Srinivasa S. Randomized path planning for redundant manipula-tors without inverse kinematics [C]. IEEE/RAS International Conference on HunmaniodRobots,2007:477–482.
    [85] Berenson D, Srinivasa S, Ferguson D, et al. Manipulation planning with workspace goalregions [C]. IEEE International Conference on Robotics and Automation,2009:618–624.
    [86] Vahrenkamp N, Asfour T, Dillmann R. Simultaneous grasp and motion planning: hu-manoid robot ARMAR-III [J]. IEEE Robotics and Automation Magazine,2012,19(2):43–57.
    [87] Hao H. Robot path planning using a genetic algorithm approach [D]. Alberta, Canada:University of Alberta,1994.
    [88]张尚炜.基于强化学习的机械臂避碰研究[D].武汉:华中科技大学,2008.
    [89]陈亮.焊接机器人路径规划问题的算法研究[D].武汉:武汉科技大学,2010.
    [90]郭敏.带视觉的双臂机器人手臂无碰撞路径规划[D].沈阳:东北大学,2008.
    [91] Zhu H, Guan Y,, et al. Autonomous pose detection and alignment of suction modules of abiped wall-climbing robot [J]. Submitted to IEEE/ASME Transactions on Mechatronics,2014.
    [92] Craig J. Introduction to robotics: mechanics and control [M].3rd ed.
    [93]江励,管贻生,蔡传武,等.仿生攀爬机器人的步态分析[J].机械工程学报,2010,46(15):17–22.
    [94] Gupta K. On the nature of robot workspace [J]. International Journal of Robotics Re-search,1986,5(2):112–121.
    [95] Lai Z, Meng C. The dexterous workspace of simple manipulators [J]. IEEE Transactionson Robotics and Automation,1988,4(1):99–103.
    [96] Zhang H. Efcient evaluation of the feasibility of robot displacement trajectories [J].IEEE Transactions on Systems, Man, and Cybernetics,1993,23(1):324–330.
    [97] Rastegar J, Perel D. Generation of manipulator workspace boundary geometry using themonte carlo method and interactive computer graphics [C]. ASME Trends and Develop-ments in Mechanisms, Machines and Robotics, Vol.3,1988:299–305.
    [98] Alciatore D, Ng C. Determining manipulator workspace boundaries using the monte car-lo method and least squares segmentation [C]. ASME Robotics: Kinematics, Dynamicsand Control,1994:141–146.
    [99] Snyman J, Plessis L, Dufy J. An optimization approach to the determination of theboundaries of manipulator workspaces [J]. Journal of Mechanical Design,2000,122(4):447–456.
    [100]蔡传武,管贻生,周雪峰,等.双手爪式攀爬机器人的摇杆控制[J].机器人,2012,34(3):363–368.
    [101]朱灯林,肖胜,候胡的, et al.弧焊机器人焊枪姿态的自动规划[J].上海交通大学学报,2004,38(9):1472–1475.
    [102]杜月.机器人辅助抛光系统末端抛光工具的优化设计与轨迹规划[D].哈尔滨:哈尔滨工业大学,2009.
    [103] Dunn F, Parberry I.3D数学基础:图形与游戏开发[M].史银雪,陈洪,王荣静,译.北京:清华大学出版社,2005.
    [104] Ericson C.实时碰撞检测算法技术[M].刘天慧,译.北京:清华大学出版社,2010.
    [105] Kirk D. Graphics Gems III [M]. San Francisco: Morgan Kaufmann,1994.
    [106] Gorski K, Hivon E, Banday A, et al. HEALPix: A Framework for high-resolution dis-cretization and fast analysis of data distributed on the sphere [J]. The astrophysical jour-nal,2005,622(2):759–771.
    [107]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:高等教育出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700