用户名: 密码: 验证码:
周期性扰动对壁湍流多尺度相干结构影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对风洞中平板湍流边界层通过展向狭缝引入的不同频率的局部周期性扰动控制多尺度相干结构进行了实验研究。采用热线测速技术,以高于对应最小湍流时间尺度的分辨率,精细测量了施加不同频率的周期性扰动前后平板湍流边界层中不同流向和法向位置的瞬时流向、法向和展向速度分量的时间序列信号,研究了不同频率的周期性扰动对平板边界层多尺度相干结构的影响。
     利用快速Fouier变换,确定了扰动影响流场的流向和法向空间范围。通过测量基本流场,发现在扰动源下游一定空间范围内,摩擦系数有所减小,粘性底层增厚。扰动使雷诺应力幅值趋于零的空间范围变大;改变了湍流边界层原有湍动能的产生和扩散输运机制,在一定程度上抑制了湍流脉动的产生。此外,在扰动源下游形成了两个定常的、强度相似的、大尺度的展向涡,起到流体滚动轴承的作用,减小了壁面摩擦阻力。
     采用子波系数模极大值法提取了猝发过程中,相干结构不同速度分量和雷诺应力分量的条件相位平均波形,发现在缓冲层和对数律层,流向和法向脉动速度分量的相位平均波形的相位差恒定保持为钝角,几乎不随法向位置变化,导致雷诺应力分量u′v′在湍流边界层中恒保持为负号且具有很大幅值。而展向分量的相位平均波形比流向脉动速度分量的相位平均波形明显存在相位滞后,且相位差随法向位置变化,在缓冲层相位差为钝角,随着远离壁面,相位差逐渐减小为零。
     基于湍流多尺度结构和局部平均速度结构函数的概念,研究了施加扰动对湍流多尺度相干结构及其间歇性的影响。发现在缓冲层,扰动使得小尺度湍涡结构在湍流整体中的重要性相对减弱;使能量最大尺度附近的大尺度湍涡结构的重要性相对增强;湍流系统在整体上受到与扰动尺度相当的大尺度湍涡结构的制约;扰动使多尺度湍涡结构的正负交替有序性增强。扰动抑制了低速条纹结构的上抛运动和高速条纹结构的下扫运动,而且扰动频率越大抑制得也就越强烈,使展向条纹结构更加有序化,抑制了条纹结构在展向的失稳。
     周期性扰动改变了法向或展向脉动速度与流向脉动速度的条件相位平均波形的相位差,使法向或展向脉动速度与流向脉动速度的相位差保持在π/2的奇数倍左右,此时一个脉动速度分量的幅值达到最大而另一个脉动速度分量的幅值则几乎为零,使雷诺应力分量的幅值保持在较小的状态,从而达到了控制湍流产生和减阻的目的。
Experimental investigations on controlling multi-scale coherent structures by locally periodic disturbances of different frequency were carried out. The time sequence signals of instantaneous longitudinal, normal and spanwise velocity components at different vertical locations in turbulent boundary layer over a flat plate have been finely measured by constant temperature anemometry and the effects of periodic disturbances on the multi-scale coherent structures of boundary layer were studied in a flat plate.
     The longitudinal and normal regions comprising disturbed signals were extracted by the method of FFT. In these regions, it is found that the friction coefficients are reduced, the sub-layer becomes thicker and the turbulent kinetic distribution coefficients are reduced. The spactical ranges, in which the Reynolds stresses trend to zero, become larger. The mechanism of producing, diffusion and transporting is changed and the turbulent fluctuations are restrained to a certain degree. After disturbed, two unsteady, similar strength and large-scale spanwise vortexes came into being. These vortexes play the role of fluid rolling bearing, which reduce the wall friction drag.
     By the method of the module-maximum of wavelet coefficients, the conditional phased-averaged waveforms of coherent structures were extracted in the burst. The phased differences between the phased averaged waveforms of the longitudinal velocity and the normal velocity always remain blunt angles and almost not change with the normal locations. Thus the Reynolds stress u′v′remains negative and the amplitude is large. While the spanwise velocity lags to the longitudinal velocity apparently. The phased differences change with the normal locations. In the buffer layer, it is blunt angles and it gradually reduces to zero with far from the wall.
     Based on the concept of turbulent multi-scale and locally averaged velocity structure fuction, the effct of turbulent energy and coherent structure intermittence have been studied. The disturbances weaken the importance of small scale turbulent vorticity structures, while strengthen the importance of large scale turbulent vorticity structures. The turbulent system is restrained by the large-scale vorticity structures. The positive and negative alternations of vortical structures are enganced. After disturbed, the upward movement of low-velocity striation structures and the downward movement of high-velocity structures are restrained. The spanwise fringe became more ordering and the spanwise losting stability is restrained.
     By periodic disturbance, the phase angles between the phase-averaged waveforms of the longitudinal, vertical velocity and the spanwise velocity are changed. When their phase angles are about odd times ofπ/2, the Reynolds stress is about zero. At this point, the turbulent coherent structures are controlled and the burst in turbulence is restrained.
引文
[1]佘振苏,苏卫东,湍流中的层次结构和标度律[J],力学进展,2000,29(3):289-303。
    [2]黄永念,湍流与混沌之间关系的发展近况[C],第三届全国湍流与流动稳定性学术会议论文集,第三届全国湍流与流动稳定性学术会议,天津,1991,1-6
    [3] Douady S, Couder Y. & Brachet M E, Direct observation of intermittency of intense vorticity filaments in turbulence [J]. Phys.Rev.Lett.1991, 67(2): 983-986
    [4] Siggia E D, Numerical study of small-scale intermittency in 3-dimensional turbulence [J], J. Fluid Mech. 1981, 107(2): 375-406
    [5] Vincent A & Meneguzzi M, The spatial structure and statistical properties of homogeneous turbulence [J]. J. Fluid Mech. 1991, 225(3): 1-20
    [6] She Z-S, Jackson E & Orszag S A, Intermittent vortex structures in homogeneous isotropic turbulence [J]. Nature 1990(4), 344: 226-228
    [7] G. Ruiz Chavarria, S. Ciliberto, C. Baudet et al. Scaling properties of the streamwise component of velocity in a turbulent boundary layer[J], Physica D 141, 183-198.
    [8] F. Toschi, G.Amiti, S. Succi et al. Intermittency and structure functions in channel flow turbulence, Physical Review Letters[J], 25(32): 5044-5047
    [9] F. Toschi, E. Leveque, and G. Ruiz-Chavarria, Shear effects innonhomogeneous turbulence, Physical Review Letters [J], 85(7): 1436-1439.
    [10] R.Camussi, G.Guj, Orthonormal wavelet decomposition of turbulent flows: intermittency and coherent structures [J], J. Fluid Mech., 1997(348):177-199.
    [11] Ciguel Onorato, Roberto Camussi, Gaetano Iuso, Small scale intermittency and bursting in a turbulent channel flow, Physical Review E[J], 61(2):1447-1454
    [12]欣茨.湍流.北京,科学出版社,1987年
    [13]张兆顺.湍流.北京,国防工业出版社,2002年
    [14] Corrsin S,Kistler A L. Preliminary measurements of turbulence and temperature fluctuations behind a heated grid [R] , NACA,Tech Notes,No.3133,1954
    [15] Townsend A A.The Structure of Turbulent Shear Flow,Combridge Press 1956
    [16] Einstein H A, Li H. Steady vortex flow in a real fluid,Proc. Heat Transfer and Fluid Mechanics Institute, Stanford University, 1951, 33–43. C
    [17] Kline S J, Runstadler P W. Some preliminary results of visual studies of the flow model of the wall layers of the turbulent boundary layer[J],J Appl Mech Trans A SME,1959,2:166-170
    [18] Kline S J, Reynolds W C, Schraub F H, Runstadler P W, The structure of turbulent boundary layer [J], J Fluid Mech., 1967, 30: 741-774.
    [19] Corino E R, Brodkey R S, A visual investigation of the wall regionin turbulent flow [J], J Fluid Mech., 1969, 37: 1-30.
    [20] Kim H T,Kline S J and Reynolds W C. The Production of Turbulence Near a Smooth Wall in a Turbulent Boundary Layer [J],J. Fluid Mech.,1971,50:133-160.
    [21] Smith C R, Metzler S P, The characteristics of low speed streaks in the near wall region of a turbulent boundary layer [J], J. Fluid Mech.,1983(129):27-54.
    [22] Tu B,Willmarth W W.College of Engineering Universityof Michigan Rept O2920-d-T,1966
    [23] Rao K N,Narasimha, Badri Narayanan M A.Rept of Areospace Engineering[C]. Rept 69FM8,India,Bangalore,India Institute of Science.
    [24] Rao K N,Narasimha,Badri Narayanan M A. The 'Bursting' Phenomenon in a Turbulent Boundary Layer[J],J Fluid Mech,1971,48:339-396
    [25] Laufer J,Badri Narayanan M A. Mean Period of the Turbulent Production Mechanism in a Boundary Layer[J], Phys. Fluids,1971,14:182-197
    [26] Kavasznay L S G, Kiben V,Blackwelder R F, The Turbulent Boundary Layer[J], Annu. Rev. Fluid Mech.,1970,2:95-112
    [27] Luchik T S,Tiedermann W G,Time scale and the structure of ejections and bursts in turbulent channal flow[J],J Fluid Mech,1987 174:529-577
    [28] Blackwelder R F,Kaplan R E,On the wall structure of the turbulent boundary layer[J],J Fluid Mech,1976,76:89-108
    [29] Brodkey R S,Wallance J M,Eckelmann H,Some properties of truncatedturbulence signals in bounded shear flows[J] , J Fluid Mech,1974,63:209-237
    [30] Smith, C. R., Metzler, S. P., The Characteristics of Low-Speed Streaks in the Near-Wall Region of a Turbulent Boundary Layer[J], J. Fluid Mech., 1976,129,:27-54
    [31] Blackwelder R F,Eckelmann H, Streamwise Vortices Associated With the Bursting Phenomenon[J],J Fluid Mech,1979,94:577-594
    [32]孙葵花,舒玮,湍流猝发的检测方法[J],力学学报,1994,26(4):488-493
    [33]石建军,固壁温度对壁湍流相干结构的影响,天津大学硕士论文,1995.
    [34] Marie Farge,Nicholas Kevlahan,Valerie Perrier. Wavelets and turbulence [J]. Proceedings of the IEEE,84(4):639-669
    [35] Marie Farge. Wavelet transforms and their applications to turbulence [J],Annu. Rev. Fluid Mech.,1992,24:395-457
    [36] Michio Yamada,Koji Ohkitani. Orthonormal wavelet analysis of turbulence [J]. Fluid dynamics research,1991, 8:101-115
    [37] Liepmann H W, Narasimha R. Turbulence management and relaminarisation[C]. In: IUTAM symposium’87. India:Bangalore.
    [38]姜楠,王振东,舒玮,辨识子波分析壁湍流猝发事件的能量最大准则[J],力学学报,1997, 29(4):406-411
    [39] H. T. Kim,S. J. Kline,W. C. Reynolds,The production of turbulence near a smooth wall in a turbulent boundary layer[J],J. Fluid Mech. 1971(50):133-160
    [40]彭玉华.小波变换与工程应用.北京,科学出版社,2000年
    [41] Charles Meneveau.Analysis of turbulence in the orthonormal wavelet representation[J]. J.Fluid Mech.,1991, 232:469-520
    [42] H.Tennekes,J.L. Lumley. A first course in turbulence,Cambridge, Massachusetts, and London, England. the MIT press
    [43] R. A. Antonia,L. Fulachier,L. V. Krishnamoorthy. Influence of wall suction on the organized motion in a turbulent boundary layer[J], J. Fluid Mech.,1998,190:217-240
    [44] Walsh, M.J. Riblets. Viscous drag reduction in boundary layers [J]. NASA Technical Report, Virginia, 1990: 203-261.
    [45] Walsh, M.J. Riblets as a viscous drag reduction technique [J]. Am. Inst. Aeronaut. J., April 1983,21(4): 485-486.
    [46] Bushnell D M, Hefner J N, Ash R L, Effect of compliant wall motion on turbulent boundary layers, [J]. AGARD Report, n654, Spec Course on Concepts for Drag Reduction, 1977, 9: 1-26
    [47] Shu Wei, Liu Wei Ming, The effect of compliant coating on coherent structure in turbulent boundary layers, [J]. ACTA MECHANICA SINICA, 1990, 6(2): 29-40
    [48]王玉春、姜楠、周兴华、舒玮,柔性壁面湍流边界层相干结构控制的实验研究[J],实验力学,2004,19(1): 45-50。
    [49] N. F. Yurchenko, Optimization of heat transfer control based on a receptivity approach, Proc. Turbulent Heat Transfer Conference, Manchester, UK, May-June, 1998: 78-82.
    [50] Taneda, S., Visual study of unsteady sperated flows around bodies[J],Prog. Aerospace Sci, 1978, 17: 287-348.
    [51] Savchenko, Y. N., Hydrodynamic effects of a traveling wave[J], JPRS L/9420, 1980.
    [52] Wu, J.M., Wu C. J., Wu, J.Z. ,Vakilli, A. D., Preliminary studying of nonlinear flow over traveling wavy wall. In: Nonsteady Fluid Dynamics (J. A. Miller and D. P. Telionis eds.), SIAM, Philadelphia. 1990: 359-368.
    [53] Wu, J.Z. , and Wu, J.M. Vorticity dynamics on boundaries. Advances in Applied Mechanics 32 (J. H. Huchinson and T.Y.Wu eds.), Academic press. 1996: 119-275.
    [54] Yang,Z. Study of periodic separated flow over traveling wavy wall of infinite axisymmetric column. BS thesis, Peking University, 2001.
    [55] Zaman K B M Q, Effect of acoustic excitation on the flow over a low-Re airfoil [J]. J. Fluid Mech., 1987, 182: 127-148.
    [56] G Ruiz Chavarria, S Ciliberto, C Baudet, E Leveque, Scaling properties of the streamwise component of velocity in a turbulent boundary layer [J]. Physica D, 2000, 141: 183-198.
    [57] Baron a, Sibilla S, Applied Scientific Research (The Hague), 1997-1998, 59(4): 331-352
    [58] Luckhik TS and Tiederman WG. Turbulent structure in low-concentration drag-reducing channel flows [J], J. Fluid Mech., 1988, 190: 241-263.
    [59] Jeongyoung Park and Haecheon Choi, Physics of fluids[J], 1999 11(10):3095-3105
    [60] S-H. Park, I. Lee, H. J. Sung, Effect of local forcing on a turbulent boundary layer[J], Experiments in Fluids, 2001 31:384-393
    [61] Gwang Hoon Rhee, Hyung Jin Sung, Numerical prediction of locally forced turbulent boundary layer[J], International Journal of Heat and Fluid Flow, 2001 22:624-632
    [62] R. A. Antonia and Y. Zhu, Effect of concentrated wall suction on a turbulent boundary layer[J], Phys. Fluids, 1995 7(10):2465-2474
    [63] G. Pailhas, J. Cousteix, F. Anselmet and L. Fulachier, Influence of suction through a slot on a turbulent boundary layer[C], Proceedings of the 8th Symposium on Turbulent Shear Flows, 1991,18(4):1-6
    [64] E. Merigaud, G. Pailhas, F. Anselmet, J. Cousteix, and L. Fulachier, Couche limite turbulente en presence de fentes d’aspiration, XI Congres Francais de Mecanique, Lille, France,1993
    [65] U. Piomelli, J. Ferziger, P. Moin, and J. Kim, New approximate boundary conditions for large eddy simulations of wall-bounded flows[J], Physics of fluids, 1989:1061-1074
    [66] P. Mariani, P. Spalart and W. Kollmann, Direct simulation of a turbulent boundary layer with suction, Near-Wall Turbulent Flows, edited by R. M. C. So, C. G. Speziale, and B. E. Launder, 1993:347-360
    [67] Y. Sumitani and N. Kasagi, Direct numerical simulation of turbulent transport with uniform wall injection and suction[J], AIAA J., 1995(33):1220-1240
    [68] R. Y. Myose and R. F. Blackwelder, Control of streamwise vortices using selective suction[J], AIAA J., 1995(33):1076-1092
    [69] H. Choi, P. Moin and J. Kim, Active turbulence control for drag reduction in wall-bounded flows[J], J. fluid Mech., 1994(262):75-93
    [70] M. Sano and N. Hirayama, Turbulent boundary layers with injection and suction through a slit, First report: Mean and turbulence characteristics[J], Bull. J. Soc. Mech. Eng., 1985(28):807-816
    [71] Park, J., Choi, H., Effects of uniform blowing or suction from a spanwise slot on a turbulent boundary layer flow[J], Phys. Fluids, 1999(11):3095-3105
    [72] Krogstad, P.-A. and Kourakine, A., Some effects of localized injection on the turbulence structure in a boundary layer[J], Phys. Fluids, 2000(12):2990-2999
    [73] Kim, K., Sung, H. J. and Chung, M. K., Assessment of local blowing and suction in a turbulent boundary layer[J]. AIAA J., 2002b(40):175-177
    [74] Tardu, S., Near wall turbulence control by local time periodic blowing[J], Exp. Thermal Fluid Sci., 1998(16):41-53
    [75] Tardu, S. F., Active control of near-wall turbulence by local oscillating blowing[J], J. Fluid Mech., 2001(439):217-253
    [76] Park, S.-H., Lee, I. and Sung, H. J. Effect of local forcing on a turbulent boundary layer[J], Exps. Fluids,2001(31):384-393
    [77] Rhee, G. H. and Sung, H. J., Numerical prediction of locally-forced turbulent boundary layer[J], Intl J. Heat Fluid Flow,2001(22):624-632
    [78] Park, Y.-s., Park, S.-H. and Sung, H. J., Measurement of local forcing on a turbulent boundary layer using PIV[J]. Exps. Fluids,2003(34):697-707
    [79] Kim, K. and Sung, H. J., Effects of periodic blowing from a spanwise slot on a turbulent boundary layer[J], AIAA J.,2003(41):1916-1924
    [80] King L V,On the convection of heat from small cylinders in a stream of fluid:Determination of the convection costants of small platinum wires with applications to hot-wire anemoetry,Phil. Trans. Roy. Soc.,1914, A214:373-432.
    [81] Kyoungyoun Kim and Hyung Jin Sung, Effects of unsteady blowing through a spanwise-slot on a turbulent boundary layer[J], J. Fluid Mech. 2006(557):423-450
    [82] Senda, M., Kawaguchi, Y., Suzuki, K.& Sato, T., Study on a turbulent boundary layer with injection, Bull. JSME, 1981,24:1748-1755
    [83] Sumitani, Y. and Kasagi, N., Direct numerical simulation of turbulent transport with uniform wall injection and suction[J], AIAA J.,1995(33):1220-1228
    [84]徐春晓,崔桂香,张兆顺,黄希伟,壁面展向周期振动对雷诺应力输运的影响[C],全国流体力学青年研讨会论文集,2007:2-6
    [85]盛森芝,徐月亭,袁辉靖,热线热膜流速计,北京:中国科学技术出版社,2003
    [86] Tardu, S. F., Active control of near-wall turbulence by local oscillating blowing, J. Fluid Mech. [J], 2001(439):217-253
    [87] Marie Farge, Wavelet transforms and their applications to turbulence[J],Annu. Rev.Fluid Mech.,1992(24):395-457
    [88] Corino E. R., Brodkey R. S., A visual investigation of the wallregion in turbulent flow[J], J. Fluid Mech.,1969(37):1-30
    [89] H. T. Kim, S. J. Kline, W. C. Reynolds, The production of turbulence near a smooth wall in a turbulent boundary layer[J], J. Fluid Mech., 1971(50):133-160
    [90] G. R. Offen and S. J. Kline, Combined dye-streak and hydrogen-bubble visual observations of a turbulent boundary layer[J], J. Fluid Mech., 1974(62):223-239
    [91] Smith C. R. and Metzler S. P., The characteristics of low speed streaks in the near wall region of a turbulent boundary layer[J], J. Fluid Mech.1983(129):27-54
    [92] Subramanian C S, Rajagopalan S, Antonia R A, et al. Comparison of conditional sampling and averaging techniques in a turbulent boundary layer[J]. J Fluid Mech.,1982, 123:335-362

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700