用户名: 密码: 验证码:
磁共振功能成像在人脑胶质瘤侵袭性评价中的应用及与病理免疫组化的对照研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     脑胶质瘤是脑内最常见的原发肿瘤,不同级别的胶质瘤的临床病程和治疗手段各异。胶质瘤中星形细胞瘤占大多数,少枝胶质细胞瘤是次之常见的胶质瘤,且与同级别星形细胞瘤相比临床症状轻,生存期长,对放疗或化疗非常敏感。因此术前明确胶质瘤病理级别和组织学类型对患者的治疗和预后判断非常重要。病理组织学细胞形态改变是胶质瘤分级诊断的金标准,可是组织标本需要有创的活检或手术获得,而且采样的误差常不能准确判断肿瘤的恶性度,如何准确判断肿瘤的侵袭能力是临床医生面临的难题。传统MR检查在脑肿瘤的形态显示方面发挥了重要价值,近年来MR功能成像的应用使脑胶质瘤的诊断上升到微观水平,达到形态与生理生化等功能并重,并能在一定程度上进行量化分析,是传统MR检查的必要补充。
     本研究的创新之处在于从人体脑胶质瘤的代谢改变入手,使用磁共振波谱成像(MRS)中最常用的代谢物比值测量方法应用于星形细胞瘤与含少枝细胞的胶质细胞瘤的鉴别诊断及对胶质瘤的不同强化程度区域进行细化研究;并首次将MRS与肿瘤的发生发展过程中的重要因子PCNA和Survivin进行对照研究,提供MRS判断星形细胞瘤恶性度和侵袭性的理论依据。同时进行弥散张量成像评价胶质瘤的恶性度并与临床表现相结合判断对锥体束的侵袭性,从而实现代谢与组织病理学相联系、形态与功能并重,为临床治疗和预后判断提供重要客观依据。
     材料与方法
     研究对象为50例星形细胞瘤(男29例,女21例),平均年龄45.18岁(11岁~74岁)和10例少枝胶质细胞瘤或少枝星形细胞瘤(男5例,女5例),平均年龄31.50岁(13岁~47岁)。其中星形细胞瘤组包括星形细胞瘤Ⅱ级(WHO分类标准(2007))10例,Ⅲ级21例,Ⅳ级19例。含少枝细胞的胶质瘤组包括少枝胶质细胞瘤(Ⅱ级)3例、少枝星形细胞瘤(Ⅱ级)1例、间变性少枝胶质细胞瘤和间变性少枝星形细胞瘤(Ⅲ级)各3例。并取20名健康志愿者做对照组。所有检查都在告知被检者检查详情并获同意后进行。进行头部磁共振常规T_1加权成像(T_1WI)、T_2加权成像(T_2WI)、MRS检查及T_1WI增强扫描。磁共振检查采用GE Signa MR/i和Excite HD MR 1.5T超导型磁共振扫描仪。应用Functiontool软件得到波谱图像及代谢物解剖图,对肿瘤实质、瘤周和对照组织测量单个体素的最大Cho/NAA、Cho/Cr和最小NAA/Cr;对强化不均匀的胶质瘤测量肿瘤不同强化程度部分的Cho、NAA、Cr与对照组织的比值(Cho/nCho、NAA/nNAA、Cr/nCr)。对50例星形细胞瘤标本进行PCNA和Survivin免疫组化检查,得到肿瘤PCNA的标记指数(PI)和Survivin的免疫活性指数(IRS)。对星形细胞瘤MRS测值分别进行单因素方差分析,对星形细胞瘤与含有少枝胶质细胞的胶质瘤进行独立样本t检验;对肿瘤实质内显著强化和轻度或无强化部分进行配对t检验。对MRS测得比值与PI和IRS分别进行pearman相关分析。应用SPSS13.0进行统计学分析。P<0.05为差异有统计学意义。
     本组另外收集了经手术病理确诊的23例幕上胶质瘤,男12例,女11例,平均年龄45.91岁(22岁~71岁)。其中高级别胶质瘤16例(间变性胶质瘤7例,胶质母细胞瘤9例),低级别胶质瘤(Ⅱ级)7例。11例术前有肢体感觉和(或)运动异常,包括1例胶质瘤Ⅱ级、3例间变性胶质瘤、7例胶质母细胞瘤;其余12例都没有肢体运动及感觉障碍。术前均行MRI平扫、Gd-DTPA增强扫描及DTI检查。采用1.5T GE Signa Excite HD超导磁共振扫描仪、8通道头颈联合线圈进行检查。DTI采用SE/EPI序列横断位扫描,弥散梯度场取25个不同方向,b值取0和1000s/mm~2。统计学检验采用秩和检验及配对t检验。
     结果
     一、氢质子磁共振波谱在人脑胶质瘤中应用研究
     星形细胞瘤Ⅱ级的Cho/Cr和Cho/NAA低于高级别星形细胞瘤(Ⅲ级和Ⅳ级)(P<0.05);星形细胞瘤Ⅱ级的NAA/Cr显著高于高级别星形细胞瘤(P<0.05)。高级别星形细胞瘤(Ⅲ级和Ⅳ级)之间各代谢物比值没有统计学差异(P>0.05)。星形细胞瘤Ⅱ级瘤周Cho/NAA低于高级别星形细胞瘤瘤周(P<0.05),同时星形细胞瘤Ⅲ级瘤周Cho/NAA低于Ⅳ级瘤周(P<0.05)。星形细胞瘤Ⅱ级瘤周Cho/Cr低于高级别星形细胞瘤瘤周(P<0.05),NAA/Cr高于高级别星形细胞瘤(P<0.05)。高级别星形细胞瘤(Ⅲ级和Ⅳ级)瘤周之间Cho/Cr和NAA/Cr差异都没有统计学意义(P>0.05)。
     少枝胶质细胞瘤和少枝星形细胞瘤与级别相同的星形细胞瘤(Ⅱ和Ⅲ级)相比,Cho/Cr和Cho/NAA更高(P<0.05),而NAA/Cr没有显著差异(P>0.05)。对强化不均匀的高级别胶质瘤进行研究显示轻度或无强化的肿瘤实质的Cho/nCho、Cr/nCr和NAA/nNAA都高于显著强化的肿瘤实质(P<0.05)。
     二、星形胶质细胞瘤MRS与肿瘤细胞PCNA、Survivin对照研究
     Survivin的IRS和PCNA的PI随着肿瘤恶性度增加而升高。星形细胞瘤Cho/Cr与IRS显著正相关(r=0.745,P<0.01);星形细胞瘤Cho/NAA与IRS显著正相关(r=0.753,P<0.01)。星形细胞瘤Cho/Cr与PI显著正相关(r=0.818,P<0.01);星形细胞瘤Cho/NAA与PI显著正相关(r=0.760,P<0.01)。星形细胞瘤NAA/Cr与IRS呈负相关(r=-0.374,P<0.01),星形细胞瘤NAA/Cr与PI呈负相关(r=-0.436,P<0.01)。
     三、DTI在幕上胶质瘤分级及对锥体束侵袭性评价中的应用
     低级别胶质瘤瘤周MD值高于肿瘤实质组织,而低于瘤内囊变坏死;FA值则高于肿瘤实质和囊变坏死(P<0.01);高级别胶质瘤瘤周组织MD值亦高于肿瘤实质(P<0.01),FA值则无显著差异(P>0.05)。高低级别胶质瘤之间肿瘤周边区MD值和FA值比较有显著统计学差异(P<0.01),而肿瘤实质和囊变坏死区两组间FA值比较均无统计学差异(P>0.05)。低级别胶质瘤在锥体束通过的内囊后肢层面、大脑脚层面和脑桥层面的肿瘤侧与对侧MD值和FA值比较差异都没有统计学意义(P>0.05)。高级别胶质瘤肿瘤侧内囊后肢层面锥体束FA值显著低于对照侧(P<0.01),MD值没有差异;大脑脚层面、脑桥层面锥体束FA和MD值与对照侧比较都没有显著差异(P>0.05)。
     有肢体感觉和(或)运动异常组肿瘤侧内囊后肢层面锥体束MD值高于对侧;内囊层面和大脑脚层面锥体束FA值低于对侧(P<0.05)。无肢体感觉和(或)运动障碍组肿瘤侧锥体束通过内囊后肢、大脑脚及脑桥层面MD值和FA值与对侧比较差异都没有统计学意义(P>0.05)。
     纤维束示踪成像锥体束与肿瘤关系都得到清晰显示。患侧锥体束显示基本正常或正常者,即1型有12例,包括星形细胞瘤Ⅱ级6例,间变性胶质瘤4例,胶质母细胞瘤2例;锥体束明显移位合并有MD、FA伪彩色异常者,即2型共10例;仅有1例表现为锥体束明显受侵、少部分纤维束中断。所有有肢体感觉运动异常的患者的锥体束改变都为2型和3型。胶质瘤患者肢体感觉和(或)运动障碍在术后都有减轻或消失。
     结论
     星形细胞瘤的MRS检测有助于星形细胞瘤级别判定及与同级别少枝胶质细胞瘤的鉴别。强化不均匀的胶质瘤内部代谢物含量不同,轻度强化或无强化的肿瘤部分Cho、Cr、NAA含量高于显著强化区域,有必要对轻度或无强化的肿瘤区域进行活检。
     MRS基本反映了肿瘤细胞PCNA及Survivin蛋白表达情况,能够无创的在术前预测肿瘤凋亡抑制情况、增殖潜能、侵袭能力和预后,其中Cho/Cr,Cho/NAA较NAA/Cr更有意义。
     应用DTI对胶质瘤实质和瘤周区MD和FA值的测量有助于高低级别胶质瘤的鉴别。胶质瘤T_2WI可见的瘤周异常信号外可见FA值和MD值的异常改变。对锥体束通过的不同层面FA值和MD值测量有助于揭示常规MR检查不能显示的患者临床肢体感觉障碍和(或)运动异常的病理改变。锥体束的白质纤维束示踪成像可以直观立体显示锥体束与胶质瘤的空间关系,并能通过附加FA和MD值伪彩来显示锥体束的微观改变。DTI联合白质纤维束成像能更有效指导手术治疗和判断预后。
Preface
     Glioma is the most common primary brain tumor. The clinical course and treatment method are different according to various grade of the tumor. Astrocytomas account for the majority of gliomas. Oligodendrocytomas and oligoastrocytomas are the second common gliomas. The clinical symptom is less severe and there is longer survival time for oligodendrocytoma and oligoastrocytoma comparing with astrocytoma. They are very allergic to the radiotherapy and chemotherapy. Presurgical determination of malignancy degree and the type of histology of cerebral gliomas plays an important role in clinical work. The morphologic changes of the tumor cells are the golden standard of glioma grading. But the histological specimen can only be obtained by invasive surgery or biopsy. It is difficult to get the accurate malignant degree of the glioma because of inevitable sampling error. How to judge the invasiveness of the tumor accurately is a tough problem for clinical doctors. Routine MR imaging plays a very important role in the morphological diagnosis of gliomas. The application of MR functional techniques makes the diagnosis of glioma to the microscopic scale which provides both morphological changes and biochemical functions. They can also provide the quantitative analysis in some degree and become the necessary complementary methods for routine MR examinations.
     Our studies begin with the metabolism of gliomas. We use the most commonly used ratios of metabolism that been got from proton MR spectroscopy (~1HMRS) to differentiate astrocytomas and oligodendroglioma or oligodendroastrocytoma. We also use them to investigate various enhanced area of glioma. For the first time, we compared MRS with PCNA (proliferating cell nuclear antigen) and survivin of astrocytomas in order to get the theoretic proof of the ability that MRS can assess the malignancy and invasiveness of gliomas. Meanwhile, DTI was studied in the assessment of malignancy of supra-tentorial gliomas. The correlation between DTI manifestations and clinical manisfestations was performed to evaluate the invasion of gliomas to the pyramidal tracts. We engaged in the study of the metabolism and histopathologic study noninva-sively. The morphologic and functional studis are equally emphasized. It may offer the objective criterion to the therapy and prognosis of gliomas.
     Materials and Methods
     The study group was composed of two sub-groups. The first sub-group included 50 patients of astrocytoma (29 men and 21 women, age range 11-74 years, with a median age of 45.18 years): Low-grade astrocytoma (WHO gradeⅡ) in 10 patients, anaplastic astrocytoma (WHO gradeⅢ) in 21 patents and glioma multiform (WHO gradeⅣ) in 19 patients. The second sub-group included 10 patients (5 men and 5 women; age range from 13 to 47 years, with a median age of 31.50 years): oligoden-droglioma (WHO gradeⅡ) in 3 patients, oligodendroastrocytoma (WHO gradeⅡ) in 1 patient, anaplastic oligodendroglioma (WHO gradeⅢ) in 3 patients, anaplastic oligodendroastrocytoma (WHO gradeⅢ) in 3 patients. The control group included 20 healthy volunteers. All the studies were informed to all the subjects and acceptances were obtained from all of them. The examinations included routine precontrast T_1 weighted spin-echo imaging (T_1WI), T_2 weighted spin-echo imaging (T2WI), ~1HMRS examination and postcontrast T_1WI. They were performed with GE Signa MR/ior Excite HD 1.5 T superconductive MR system. The raw data was imported to GE workstation. MRS images and met-anatomic images were obtained with Functiontool software. The maximal values of Cho/NAA and Cho/Cr and the minimal value of NAA/Cr in the tumor parenchyma, peri-tumorous region and contralateral brain were recorded. The ratios of tumour Cho、NAA、Cr to the contralateral side(Cho/nCho、NAA/nNAA、Cr/nCr) were also recorded. The immunohistochemical stainings of PCNA and survivin were performed for all the astrocytomas. The proliferative index(PI) of PCNA and im-munoreactive score(IRS) of survivin were obtained. The metabolism ratios of astrocytomas were compared by one way ANOVA. Independent- samples t test was used for the comparison between astrocytomas and gliomas with oligodendrocyte. Pared-samples t test was used for analysis between the strongest enhanced regions and the less enhanced or non-enhanced regions of the high grade gliomas. Separate statistical comparisons of the three MRS parameters (met-ratios of Cho/NAA、Cho/Cr and NAA/Cr) with PI values of tumors, the met-ratios with IRS values were made using Pearson correlation analysis. Statistical software (SPSS 13.0) was used for analysis and P values of less than 0.05 were considered to indicate a statistically significant difference.
     Twenty-three patients with supra-tentorial gliomas confirmed by surgery were also included in this study (12 men and 11 women; age range from 22 to 71 years, with a median age of 45.91 years). This group included low-grade glioma (WHO gradeⅡ) in 7 patients and high-grade glioma in 16 patients (WHO gradeⅢin seven patients and WHO grade IV in nine patients). Eleven patients experienced preoperative sensorimo-tor deficits (low-grade glioma in 1 patient, anaplastic glioma in 3 patients, glioblastoma in 7 patients). The rest 12 cases didn't suffer from sensorimotor deficits. Conventional gadolinium-DTPA enhanced T_1WI, and diffusion-tensor imaging (DTI) were performed before surgical resection using GE Signa Exicite HD 1.5 T superconductive MR machine with a 8-channel phased-array head and neck coil. A single-shot spin-echo echo-planar sequence with axial-plane was applied for DTI. Diffusion gradients encoding in 25 directions with b=1000s/mm~2 and 0 s/mm~2 were performed. Statistic analysis was made by using Mann-Whitney U test and 2-sided pared t test.
     Results
     1. Application of ~1HMRS in the human brain gliomas
     The met ratios of Cho/Cr and Cho/NAA in the low-grade astrocytomas were lower than high-grade astrocytomas (WHO gradeⅢand gradeⅣ) (P<0.05) and the met ratio of NAA/Cr was higher than high-grade astrocytomas (P<0.05), but there were no significant deviations of the met ratios within high-grade astrocytomas (P>0.05). The ratios of Cho/NAA and Cho/Cr in the peri-tumorous region in low grade astroctyomas were lower than that in high grade astrocytomas (P<0.05) and NAA/Cr was higher than that of high grade astrocytoma (P<0.05). The ratio of Cho/NAA in astrocytomas gradeⅢin the peri-tumorous region was lower than that of gradeⅣ(P<0.05), but there was no significant deviation of Cho/Cr and NAA/Cr between gradeⅢand gradeⅣastro- cytomas (P>0.05).
     The met ratios of Cho/Cr and Cho/NAA were higher in oligodendrogliomas and oligodendroastrocytomas than astrocytomas of the same grade (P<0.05), but there was no significant difference of NAA/Cr between them (P>0.05). The ratios of Cho/nCho、Cr/nCr and NAA/nNAA were higher in the less or non-enchanced region than the most significant enhanced region(P<0.05).
     2.~1HMRS manifestation of astrocytomas in patients and the compare study with the PCNA and survivin of the post-surgery specimen
     The IRS of survivin and PI of PCNA were higher accompanying the higher grade of gliomas. There was a strongly positive correlation between the ratio of Cho/Cr and IRS (r=0.745, P<0.01), and also between the ratio of Cho/NAA and IRS (r=0.753, P<0.01). We found strongly positive correlation between the ratio of Cho/Cr and PI (r=0.818, P<0.01), and between the ratio of Cho/NAA and PI (r=0.760, P<0.01). There was a weak negative correlation of NAA/Cr with IRS (r=-0.374, P<0.01) and PI(r=-0.436, P<0.01).
     3. Application of DTI in the grading and evaluation of invasiveness of supra-tentorial gliomas
     The MD value in the peritumoural region of low grade glioma was higher than the solid part of the glioma and lower than the necrotic and cystic region, but the FA value was higher than those region (P<0.01). The MD value in the peri-tumoural region of high grade glioma was higher than the tumour parenchyma (P<0.01), but there was no significant difference of FA values between them (P>0.05). There were significant differences in MD and FA values of the peri-tumoural regions within the high grade gliomas (P<0.01), but there were no differences in the FA values of parenchyma and cystic region between them (P>0.05).
     There were no significant deviations for the MD and FA values of pyramidal tracts in the plane of posterior limb of internal capsule、cerebral peduncle and pons of low grade glioma between the two sides(P>0.05). The FA value in the ipsilateral side was lower than contralateral location in the section of posterior limb of internal capsule (P<0.01). There was no significant difference in the other two planes. The MD values in all the planes were similar between the two sides (P>0.05).
     In patients suffering sensorimotor deficits, we found significantly decreased FA and increased MD for the ipsilateral pyramidal tracts in the plane of internal capsule, but for the patients without deficits, there were no differences in the MD and FA values on all the planes between two sides (P>0.05).
     All the pyramidal tracts were clearly showed by the diffusion tensor tractography. There were 12 patients (WHO gradeⅡin six patients, gradeⅢin four patients and gradeⅣin two patients) had normal or approximately normal fiber tracts (type one). There were shifts of the pyramidal tracts with abnormal pseudo-color of MD and FA (type two) in the 10 cases. There was obvious invasion and interruption of some fibers in the rest one case. We didn't find completely interruption of the fibers in all the group of patients. All of the patients suffering sensorimotor deficients had the pyramidal tract changes of type two and three and the symptoms relieved or disappeared postsurgery.
     Conclusion
     MRS examination is very helpful for astrocytomas in grading and discrimination with oligodendroglioms and ologodendroastrocytomas. The contents of metabolisms are different in the nonhomogeneous enhanced gliomas. The biopsy of the weak enhanced or non-enhanced region is suggested respecting there is more Cho、Cr and NAA in that region.
     MRS has strongly correlation with the protein manifestation of PCNA and sur-vivin of astrocytomas. MRS provides a helpful and noninvasive method in the preop-erative assessment of apoptosis、reproductive activity、invasive activity and predicting the prognosis of astrocytomas. The ratios of Cho/Cr and Cho/NAA are more useful than NAA/Cr.
     Measurements of MD and FA values from DTI in the tumor parenchyma and peri-tumoural region are assisted in differentiation between high-grade and low-grade gliomas. We have found changes of FA and MD values outside the tumor abnormal-appearing region on T2WI. The measurements of FA and MD values of pyramidal tracts on different sections are very helpful in revealling the pathologic changes of the deficient patients which are not detectable on conventional MR imaging. The reconstruction of pyramidal tracts shows us the three-dimensional relationship of the fiber bundles and gliomas. In addition, it can show us the micro changes of the pyramidal tracts by adding the pseudo-colour of MD and FA values. DTI in combination with fiber tracking can provide more important imformations which are very helpful in making the plan of surgery and prognostic assessment of the patient with glioma.
引文
1 Perry A.Oligodendroglial neoplasms:current concepts,misconceptions,and folklore.Adv Anat Pathol.2001;8:183-199.
    2 Engelhard HH,Stelea A,Cochran EJ.Oligodendroglioma:pathology and molecular biology.Surg Neurol.2002;58:111-117.
    3 Engelhard HH,Stelea A,Mundt A.Oligodendroglioma and anaplastic oligodendroglioma:clinical features,treatment,and prognosis.Surg Neurol.2003;60:443-456.
    4 Dowling C,Bollen AW,Noworolski SM,et al.Preoperative proton MR spectroscopic imaging of brain tumors:correlation with histopathologic analysis of resection specimens.AJNR.2001;22:604-612.
    5 Dean BL,Drayer BP,bird R,et al.Gliomas:classification with MR imaging,Radiology.1990;174:411-415.
    6 Shimizu H,Kumabe T,Shirane R,et al.Correlation between Choline level measured by proton MR spectroscopy and Ki-67 labeling index in gliomas.AJNR.2000;21:659-665.
    7 Dvorak HF,Nagy JA,feng D,et al.Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis.Curr Top Mi-Crobiol Immunol.1999;237:97-132.
    8 Ishimaru H,Morikawa M,Iwanaga S,et al.Differentiation between high-grade glioma and metastatic brain tumor using single-voxel proton MR spectroscopy.Eur Radiol.2001;11:1784-1791.
    9 Urenjak J,Williams SR,Gadian DG,et al.Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types.J Neurosci.1993;13:981-989.
    10 Michaelis T,Merboldt KD,Bruhn H,et al.Abosolute concentrations ofmetabolites in the adult human brain in vivo:quantification of localized proton MR spectra.Neuroradiology.1993;187:219-227.
    11 龚才桂,王小宜,刘慧等.1H-MRS对低级别和高级别脑胶质瘤鉴别诊断的作用及病理级别相关性的研究.临床放射学杂志.2006;25:502-506.
    12 Kemp GJ.Non-invasive methods for studying brain energy metabolism:what they show and what it means.Dev Neurosci.2000;22:418-428.
    13 Meyerand ME,Pipas JM,Mamourian A,et al.Classification of biopsy-confirmed brain tumors using single-voxel MR spectroscopy.AJNR Am J Neuroradiol.1999;20:117-123.
    14 Go KG,Kamman RL,Mooyaart EL,et al.Localized proton spectroscopy and spectroscopic imaging in cerebral gliomas,with comparison to positron emission tomography.Neuroradiology.1995;37:198-206.
    15 Fulham MJ,Bizzi A,Dietz MJ,et al.Mapping of brain tumor metabolites with proton MR spectroscopic imaging:clinical relevance.Radiology.1992;185:675-686.
    16 Negendank WG,Brown TR,Evelhoch JL,et al.Proceedings of a National Cancer Institute workshop:MR spectroscopy and tumor cell biology.Radiology.1992;185:875-883.
    17 Herholz k,Heindel W,Luyten P R,et al.In vivo imaging of glucose consumption and laclate concentration in human gliomas.Ann Neurol.1992;31:319-422.
    18 Burger PC,Kleihues P.Cytologic composition of the untreated gliobastoma with implications for evaluation of needle biopsies.Cancer.1989;63:2014-2023.
    19 Law M,Cha S,Knopp EA,et al.High-grade gliomas and solitary metastases:differentiation by using perfusion and proton spectroscopic MR imaging.Radiology.2002;222:715-721.
    20 Leclerc X,Huisman T,Gregory A.The potential of proton magnetic resonance spectroscopy (1H-MRS) in the diagnosis and management of patients with brain tumors.Current Opinion in Oncology.2002;14:292-298.
    21 麦筱莉,储成凤,秦伟等.多体素1HMRS和DWI对脑肿瘤强化周边区的评价.中国医学影像技术杂志.2006;22:513-517.
    22 许茂盛,潘智勇,曹志坚等.颅脑肿瘤强化周围区域的多体素氢质子波谱研究.中华放射学杂志.2003;37:1105-1110.
    23 Croteau D,Scarpace L,Hearshen D,et al.Correlation between magnetic resonance spectroscopy imaging and image-guided biopsies:semiquantitative and qualitative histopathological analyses of patients with untreated glioma.Neurosurgery.2001;49:823-829.
    24 Sijens PE,Oudkerk M.1H chemical shift imaging characterization of human brain tumor and edema.Eur Radiol.2002;12:2056-2061.
    25 Burtseher IM,Skagerberg G,Geljer B,et al.Proton MR spectroscopy and preoperative diagnostic accuracy:an evaluation of intracranial mass lesions characterized by stereotactic biopsy findings.AJNR.2000;21:84-93.
    26 Vuori K,Kankaanranta L,Hakkinen AM,et al.Low-grade gliomas and focal cortical developmental malformations:differentiation with proton MR spectroscopy.Radiology.2004;230:703-708.
    27 Stadlbauer A,Gruber S,Nimsky C,et al.Preoperative grading ofgliomas by using metabolite quantification with high-spatial-resolution proton MR spectroscopic imaging.Radiology.2006;238:958-969.
    28 Pirzkall A,Mcknight TR,Grave EE,et al.MR-spectroscopy guided target delineation for high-grade glioma.Int J Radiat Oncol Biol Phys.2001;50:915-928.
    29 McKnight TR,Noworolski SM,Vigneron DB,et al.An automated technique for the quantitative assessment of 3D-MRSI data from patients with glioma.J Magn Reson Imaging.2001; 13:167-177.
    30 Fan GG,Deng QL,Wu ZH,et al.Usefulness of diffusion / perfusion-weighted MRI in patients with non-enhancing supratentorial brain gliomas:a valuable tool to predict tumour grading? Br J Radio.2006;79:652-658.
    31 Cha S,Knopp EA,Johnson G,et al.Intracranial mass lesions:dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging.Radiology.2002;223:11-29.
    1 Yates AJ.An overview of principles for classifying brain tumors.Chem Neuropathol.1992;17:103-120.
    2 Tien RD,Lai PH,Smith JS,et al.Single-voxel proton brain spectroscopy exam(PROBE/SV)in patients with primary brain tumors.A JR Am J Roentgenol.1996;35:201-209.
    3 Kugel H,Heindel W,Ernestus R-I,et al.Human brain tumors:spectral patterns detected with localized H-1 MR spectroscopy.Radiology.1992;183:701-709.
    4 Friedrich M,Villena-Heinsen C,Reitnauer K,et al.Malignancies of the uterine corpus and immunoreactivity score of the DNA "mismatch-repair" enzyme human Mut-S-homologon-2.J Histochem Cytochem.1999;47:113-118.
    5 Ambrosini G,Adida C,Altieri DC.A novel anti-apoptosis gene,survivin,expressed in cancer and lymphoma.Nat Med.1997;3:917-921.
    6 Altieri DC.Validating surviving as a cancer therapeutic target.Nat Rev Cancer.2003;3:46-54.
    7 Kajiwara Y,Yamasaki F,Hama S,et al.Expression of survivin in astrocytic tumors:correlation with malignant grade and prognosis.Cancer.2003;15:1077-1083.
    8 Krieg A,Mahotka C,Krieg T,et al.Expression of different survivin variants in gastric carcinomas:first clues to a role of survivin-2B in tumor progression.Br J Cancer.2002;86:737-743.
    9 Monzo M,Rosell R.Felip E,et al.A novel anti-apoptosis gene:Re-expression of survivin messenger RNA as a prognosis marker in non-small-cell lung cancers.J Clin Oncol.1999;17:2100-2104.
    10 Kennedy SM,O'Driscoll L,Purcell R,et al.Prognostic importance of survivin in breast cancer.Br J Cancer.2003:88:1077-1083.
    11 lkeguchi M,Hirooka Y,Kaibara N.Quantitative analysis of apoptosis-related gene expression in hepatocellular carcinoma.Cancer.2002:95:1938-1945.
    12 Swana HS,Grossman D,Anthony JN.et al.Tumor content of the antiapoptosis molecule survivin and recurrence of bladder cancer.N Engl J Med.1999:341:452-453.
    13 Shariat SF,Lotan Y,Saboorian H,et al.Survivin expression is associated with features of biologically aggressive prostate carcinoma.Cancer.2004;100:751-757.
    14 Mahotka C, Krieg T. Krieg A. et al. Distinct in vivo expression patterns of survivin splice variants in renal cell carcinomas. Int J Cancer. 2002; 100:30-36.
    
    15 Hai-Ning Zhen, Xiang Zhang, Pei-Zhen Hu, et al. Survivin expression and its relation with proliferation, apoptosis. and angiogenesis in brain gliomas. Cancer. 2005; 104:2775-2783.
    
    16 Chakravarti A, Noll E, Black PM, et al. Quantitatively determined survivin expression levels are of prognostic value in human gliomas. J Clin Oncol. 2002; 20:1063-1068.
    
    17 Ogata K, Kurki P, Celis JE et al. Monoclonal antibodies to a nuclear protein (PCNA /cyclin) associated with DNA replication. Exp Cell Res. 1987; 168:475-486.
    
    18 Van Dierendonck JH, Wijsman JH, Keijzer R, et al. Cell-cycle-related staining patterns of anti- proliferating cell nuclear antigen monoclonal antibodies. Comparison with BrdUrd labelling and Ki-67 staining. Am J Pathol. 1991; 138:1165-1172.
    
    19 Barbareschi M, luzzolino P, Pennella A, et al. P53 protein expression in central nervous system neoplasm. J Clin Pathol. 1992; 45:583-586.
    
    20 Dowling C, Bollen AW, Noworolski SM, et al. Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR. 2001;22:604-612.
    
    21 Dean BL, Drayer BP, Bird CR, et al. Gliomas: classification with MR imaging. Radiology. 1990; 174:411-415.
    
    22 Shimizu H, Kumabe T, Shirane R, et al. Correlation between Choline level measured by proton MR spectroscopy and Ki-67 labeling index in gliomas. AJNR. 2000; 21:659-665.
    
    23 Ishimaru H, Morikawa M, Iwanaga S, et al. Differentiation between high- grade glioma and metastatic brain tumor using single-voxel proton MR spectroscopy. Eur Radiol. 2001; 11:1784-1791.
    
    24 Urenjak J, Williams SR, Gadian DG, et al. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci. 1993; 13:981-989.
    
    25 Himmelreich U, Dzendrowskyj TE, Allen C, et al. Cryptococcomas distinguished from gliomas with MR spectroscopy: an experimental rat and cell culture study. Radiology. 2001; 220:122-128.
    
    26 Chiou SK, Jones MK, Tamawski AS. Survivin-an anti-apoptosis protein: its biological roles and implications for cancer and beyond.Med Sci Monit. 2003; 9:25-29.
    
    27 Chen J, Huang SL, Li T, et al. In vivo research in astrocytoma cell proliferation with 1H-magnetic resonance spectroscopy: correlation with histopathology and immunohistochem-istry. Neuroradiology. 2006; 48:312-318.
    1 Romero JM, Schaefer PE, Grant PE, et al. Diffusion MR imaging of acute ischemic stroke.Neuroimaging Clin N Am. 2002; 12:35-53.
    2 王丽君,叶滨宾,范国光等.MR弥散加权成像在近期脑梗死诊断中的应用.中国医学影像技术. 2002; 18:462-464.
    
    3 Krabbe K, Gideon P, Wagn P, et al. MR diffusion imaging of human intracranial tumours.Neuroradiology. 1997; 39:483-489.
    
    4 Sugahara T, Korogi Y, Kochi M, et al. Use of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. JMRI. 1999; 9:53-60.
    
    5 Kono K, Inoue Y, Nakayama K, et al. The role of diffusion-weighted imaging in patients with brain tumors. AJNR. 2001; 22:1081-1088.
    
    6 Jellison BJ, Field AS, Medow J, et al. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR. 2004;25:356-369.
    
    7 Melhem ER, Mori S, Mukundan G. Diffusion tensor MR imaging of the brain and white matter tractography. AJR. 2002; 178:3-16.
    
    8 Tropine A, Vucurevic G, Delani P, et al. Contribution of diffusion tensor imaging to delineation of gliomas and glioblastomas. J Magn Resom Imaging. 2004; 20:905-912.
    
    9 Sinha S, Bastin ME, Whittle IR, et al. Diffusion tensor MR imaging of high-grade cerebral gliomas. AJNR. 2002; 23:520-527.
    
    10 Bulakbasi N, Kocaoglu M, Ors F, et al. Combination of single-voxel proton MR spectroscopy and apparent diffusion coefficient calculation in the evaluation of common brain tumors. AJNR.2003; 24:225-233.
    
    11 Bulakbasi N, Guvenc I, Onguru O, et al. The added value of the apparent diffusion coefficient calculation to magnetic resonance imaging in the differentiation and grading of malignant brain tumors. J Comput Assist Tomogr. 2004; 28:735-746.
    
    12 Higano S, Yuri X. Malignant Astrocytic Tumors: Clinical Importance of Apparent Diffusion Coefficient in Prediction of Grade and Prognosis. Radiology. 2006; 241:839-846.
    
    13 Lu S, Ahn D, Johnson G, et al. Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: introduction of the tumor infiltration index. Radiology. 2004;232:221-228.
    
    14 Beppu T, Inoue T, Shibata Y, et al. Measurement of fractional anisotropy using diffusion tensor MRI in supratentorial astrocytic tumors. J Neurooncol. 2003; 63:109-116.
    
    15 Goebell E, Paustenbach S, Vaeterlein O. Low-Grade and Anaplastic Gliomas: Differences in Architecture Evaluated with Diffusion-Tensor MR Imaging. Radiology. 2006; 239:217-222.
    
    16 Holodny A, Olenschlager M. Difusion imaging in brain tumors. Neuroimaging Clin N Am. 2002;12:107-124.
    17 Beppu T,Inoue T,Shibata Y,et al.Measurement of fractional anisotropy using diffusion tensor MRI in supratentorial astrocytic tumors.J Neurooncol.2003;63:109-116.
    18 Inoue T,Ogasawara K,Beppu T,et al.Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas.Clin Neurol Neurosurg.2005;107:174-180.
    
    19 Wieshmann UC,Clark CA,Symms MR,et al.Franconi F,Barker GJ,Shorvon SD.Reduced anisotropy of water diffusion in structural cerebral abnormalities demonstrated with diffusion tensor imaging.Magn Resort Imaging.1999;17:1269-1274.
    20 Burger PC,Kleihues P.Cytologic composition of the untreated gliobastoma with implications for evaluation of needle biopsies.Cancer.1989;63:2014-2023.
    21 Bulakbasi N,Kocacglu M,(O|¨)rs F,et al.Combination of single-voxel proton MR spectroscopy and apparent diffusion coefficient calculation in the evaluation of common brain tumors.AJNR.2003;24:225-233.
    22 Tien RD,Felsberg GJ,Friedman H,et al.MR imaging of high-grade cerebral gliomas:value of diffusion-weighted echoplannar pulse sequences.AJR.1994;162:671-677.
    23 张竞文,苗延巍,伍建林等.磁共振弥散加权成像对脑肿瘤瘤周水肿的临床应用.中国医学影像技术.2005;21:1810-1814.
    24 Stanley L,Daniel A,Glyn J,et al.Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors.AJNR.2003;24:937-941.
    25 Sinha S,Bastin ME,Whittle IR,et al.Diffusion tensor MR imaging of high-grade cerebral gliomas.AJNR.2002;23:520-527.
    26 Provenzale JM,McGraw P,Mhatre P,et al.Peritumoral brain regions in gliomas and meningiomas:investigation with isotropic diffusion-weighted MR imaging and diffusion-tensor MR imaging.Radiology.2004;232:451-460.
    27 Price SJ,Burner NG,Donovan T,et al.Diffusion tensor imaging at 3T:a potential tool for assessing white matter tract invasion? Clin Radiol.2003;58:455-462.
    28 Tropine A,Vucurevic G,Delani P,et al.Contribution of diffusion tensor imaging to delineation of gliomas and glioblastomas.J Magn Reson Imaging.2004;20:905-912.
    29 Stadlbauer A,Nimsky C,Gruber S,et al.Changes in fiber integrity,diffusivity,and metabolism of the pyramidal tract adjacent to gliomas:a quantitative diffusion tensor fiber tracking and MR spectroscopic imaging study.AJNR Am J Neuroradiol.2007;28:462-469.
    30 Nimsky C,Ganslandt O,Hastreiter P,et al.Intraoperative diffusion-tensor MR imaging:shifting of white matter tracts during neurosurgical procedures-initial experience.Radiology.2005;234:218-225.
    31 Akai H,Mori H,Aoki S,et al.Deffusion tensor tractography of gliomatosis cerebri:fiber tracking through the tumor.J Comput Assist Tomogr.2005;29:127-129.
    32 Lu S,Ahn D,Johnson G,et al.Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors.AJNR Am J Neuroradiol.2003;24:937-941.
    33 Yamada K,Kizu O,Mori S,et al.Brain fiber tracking with clinically feasible diffusion-tensor MR imaging:initial experience.Radiology.2003;227:295-301.
    34 吴劲松,周良辅,洪汛宁等.磁共振弥散张量成像在涉及锥体束的脑肿瘤神经导航术中的应用.中华外科杂志.2003;41:662-666.
    35 Wu JS,Zhou LF,Tang WJ,et al.Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation:a prospective,controlled study in patients with gliomas involving pyramidal tracts.Neurosurgery.2007;61:935-48.
    36 Bryan J.Laundre,Brian J.et al.Diffusion Tensor Imaging of the Corticospinal Tract before and after Mass Resection as Correlated with Clinical Motor Findings:Preliminary Data.American Journal of Neuroradiology.2005;26:791-796.
    37 OkadaY,Miki Y,Kikuta K,et al.Diffusion tensor fiber tractography for arteriovenous malformations:quantitatibe analyses to evaluate the corticospinal tract and optic radiation.AJNR.2007;28:1107-1113.
    1 Leibel SA, Scott CB, Loeffler JS. Contemporary approaches to the treatment of malignant gliomas with radiation therapy. Semin Oncol. 1994; 21:198-219.
    
    2 Levin VA, Silver P, Hannigan J, et al. Superiority of post-radiotherapy adjuvant chemotherapy with CCNU, procarbazine, and vincristine (PCV) over BCNU for anaplastic gliomas: NCOG 6G61 final report.Int J Radiat Oncol Biol Phys. 1990; 18:321-324.
    
    3 Burdette JH, Elser AD, Ricci PE. Acute cerebral infarction: quantification of spin-density and T2 shine-through phenomena on diffusion-weighted MR images. Radiology. 1999; 212:333-339.
    
    4 Provenzale JM, Engelter ST, Petrella JR, et al. Use of MR exponential diffusion-weighted to eradicate T2 "shine-through" effect. AJR Am J Roentgenol. 1999; 172:537-539.
    
    5 Melhem ER , Mori S , Mukundan G. Diffusion tensor MR imaging of the brain and white matter tractography. AJR. 2002; 178:3-16.
    
    6 Mamata H, Jolesz FA, Maier SE. Characterization of central nervous system structures by magnetic resonance diffusion anisotropy. Neurochem Int. 2004; 45:553-560.
    
    7 Witwer BH, Moftakhar R, Hasan KM, et al. Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm. J Neurosurg. 2002; 97:568-75.
    
    8 Roberts TPL, Liu F, Kassner A, et al. Fiber density index correlates with reduced fractional anisotropy in white matter of patients with glioblastoma. AJNR. 2005; 26:2183-2186.
    
    9 Jellison BJ, Field AS, Medow J, et al. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR. 2004;25:356-69.
    
    10 Nimsky C, Ganslandt O, Hastreiter P, et al. Intraoperative diffusion-tensor MR imaging: shifting of white matter tracts during neurosurgical procedures-initial experience. Radiology. 2005;234:218-225.
    
    11 Akai H, Mori H, Aoki S, et al. Diffusion tensor tractography of gliomatosis cerebri: fiber tracking through the tumor. J Comput Assist Tomogr. 2005; 29:127-129.
    
    12 Lu S, Ahn D, Johnson G, et al. Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors. AJNR. 2003; 24:937-941.
    
    13 Sinha S, Bastin ME, Whittle IR, et al. Diffusion tensor MR imaging of high-grade cerebral gliomas. AJNR. 2002; 23:520-527.
    
    14 Yamada K, Kizu O, Mori S, et al. Brain fiber tracking with clinically feasible diffusion-tensor MR imaging: initial experience. Radiology. 2003; 227:295-301.
    
    15 Sugahara T, Korogi Y, Kochi M, et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging. 1999; 9:53-60.
    
    16 Kono K, Inoue Y, Nakayama K, et al. The role of diffusion-weighted imaging in patients with brain tumors. AJNR. 2001; 22:1081-1088.
    
    17 Bulakbasi N, Kocaoglu M, Ors F, et al. Combination of single-voxel proton MR spectroscopy and apparent diffusion coefficient calculation in the evaluation of common brain tumors.AJNR.2003; 24:225-233.
    
    18 Bulakbasi N, Guvenc I, Onguru O, et al. The added value of the apparent diffusion coefficient calculation to magnetic resonance imaging in the differentiation and grading of malignant brain tumors. J Comput Assist Tomogr. 2004; 28:735-746.
    
    19 Higano S, Yun X, Kumabe T, et al. Malignant astrocytic tumors: clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. Radiology. 2006; 241: 839-846.
    
    20 Beppu T, Inoue T, Shibata Y, et al. Measurement of fractional anisotropy using diffusion tensor MRI in supratentorial astrocytic tumors. J Neurooncol. 2003;63:109-116.
    
    21 Goebell E, Paustenbach S, Vaeterlein O, et al. Low-grade and anaplastic gliomas: differences in architecture evaluated with diffusion-tensor MR imaging. Radiology. 2006; 239:217-222.
    
    22 Inoue T, Ogasawara K, Beppu T, et al. Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas. Clin Neurol Neurosurg. 2005; 107:174-180.
    
    23 Wieshmann UC, Clark CA, Symms MR, et al. Reduced anisotropy of water diffusion in structural cerebral abnormalities demonstrated with diffusion tensor imaging. Magn Reson Imaging.1999; 17:1269-1274.
    
    24 Brunberg J, Chenevert T, Mckeever P. In vivo MR determination of water diffusion coefficients and diffusion anisotropy: correlation with structural alteration in glioma of the cerebral hemispheres. AJNR. 1995; 16:361-371.
    
    25 Burger PC, Kleihues P. Cytologic composition of the untreated gliobastoma with implications for evaluation of needle biopsies. Cancer. 1989; 63:2014-2023.
    
    26 Bulakbasi N, Kocacglu M, Ors F, et al. Combination of single-voxel proton MR spectroscopy and apparent diffusion coefficient calculation in the evaluation of common brain tumors. AJNR.2003; 24:225-233.
    
    27 Tien RD, Felsberg GJ, Friedman H, et al. MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequences. Am J Roentgenol. 1994; 162:671-677.
    
    28 张竞文,苗延巍,伍建林等.磁共振弥散加权成像对脑肿瘤瘤周水肿的临床应用.中国医学影像技术. 2005; 21:1810-1814.
    
    29 Lu S, Ahn D, Johnson G, et al. Diffusion-tensor MR imaging of intracranial neoplasm and associated peritumoral edema: introduction of the tumor infiltration index. Radiology. 2004; 232:221-28.
    
    30 Lam WW, Poon WS, Metreweli C. Diffusion MR imaging in glioma: does it have any role in the pre-operation determination of grading of glioma? Clin Radiol. 2002; 57:219-225.
    
    31 Stadlbauer A, Nimsky C, Gruber S, et al. Changes in fiber integrity, diffusivity, and metabo- lism of the pyramidal tract adjacent to gliomas: a quantitative diffusion tensor fiber tracking and MR spectroscopic imaging study. AJNR. 2007; 28:462-469.
    
    32 Provenzale JM, McGraw P, Mhatre P, et al. Peritumoral brain regions in gliomas and men-ingiomas: investigation with isotropic diffusion-weighted MR imaging and diffusion-tensor MR imaging. Radiology. 2004; 232:451-460.
    
    33 Price SJ, Burnet NG, Donovan T, et al. Diffusion tensor imaging at 3T: a potential tool for assessing white matter tract invasion? Clin Radiol. 2003; 58:455-462.
    
    34 Tropine A, Vucurevic G, Delani P, et al. Contribution of diffusion tensor imaging to delineation of gliomas and glioblastomas. J Magn Reson Imaging. 2004; 20:905-912.
    
    35 Akai H, Mori H, Aoki S, et al. Diffusion tensor tractography of gliomatosis cerebri: fiber tracking through the tumor. J Comput Assist Tomogr. 2005; 29:127-129.
    
    36 Wieshmann UC, Symms MR, Parker GJ, et al. Diffusion tensor imaging demonstrates deviation of fibers in normal appearing white matter adjacent to brain tumor. J Neurol Neurosurg Psychiatry. 2000; 68:501-503.
    
    37 Horsfield M, Lai M, Webb S. Apparent diffusion coefficients in benign and secondard progressive multiple sclerosis by nuclear magnetic resonance. Magn Reson Med. 1996; 36:393-400.
    
    38 Mara C, Matidlde L. Elisabtta F, et al. Mean diffusitivity and fractional anisotropy histograms of patients with multiple sclerosis. AJNR.2001: 22:952-958.
    
    39 Guo AC, Cumminga TJ, Dash RC, et al. Lymphomas and high-grade astrocytomas: comparison of water diffusidility and histologic characteristics. Radiology. 2002; 224:177-183.
    
    40 Kotsenas AL, Roth TC, Manness WK, et al. Abnomal diffusion-weighted MRI in medul-loblastoma: does it reflect small cell histology? Pediatr Radiol. 1999; 29:524-526.
    
    41 Klisch J, Husstedt H, Hennings S, et al. Supratentorial primitive neuroectodermal tumours:diffusion weighted MRI. Neuroradiology. 2000; 42:393-398.
    
    42 Erder E, Zimmerman RA, Haselgrove JC, et al. Diffusion-weighted imaging and fluid attenuated inversion recovery imaging in the evaluation of primitive neuroectodermal tumours. Neuroradiology. 2001; 43:927-933.
    
    43 Brigtte D, Tadeuz S, Guus K, et al. Use of diffusion-weighted MR imaging in differential diagnosis between incracerebral necrotic tumors and cerebral abscess. AJNR Am J Neuroradiol.1999; 20:1252-1257.
    
    44 Tomczak R, Wunderlich A, Gorich J, et al. Brain abscesses in diffusion-weighted imaging (DWI)-comparison to cystic brain tumors. Radiologe. 2003; 43:661-664.
    
    45 Krabbe K, Gideon P, Wagn P, et al. MR diffusion imaging of human intracranial tumours,Neuroradiology. 1997; 39:483-489.
    
    46 Stanley L, Daniel A, Glyn J, et al. Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors. AJNR. 2003; 24:937-941.
    47 Tsuchiya K, Fujikawa A, Nakajima M, et al. Differentiation between solitary brain metastasis and high grade glioma by diffusion tensor imaging. Br J Radiol. 2005; 78:533-537.
    
    48 Mori S, Frederiksen K, van Zijl PC, et al. Brain white matter anatomy of tumor patients evaluated with diffusion tensor imaging. Ann Neurol. 2002; 51:377-380.
    
    49 Bryan J. Laundre~a, Brian J, et al. Diffusion tensor imaging of the corticospinal tract before and after mass resection as correlated with clinical motor findings: preliminary data. AJNR. 2005;26:791-796.
    
    50 Witwer BP, Moftakhar R, Hasan KM, et al. Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm. J Neurosurg. 2002; 97:568-575.
    
    51 Lazar M, Alexander AL, Thottakara PJ, et al. White matter reorganization after surgical resection of brain tumors and vascular malformations. Am J Neuroradiol. 2006; 27:1258-1271.
    
    52 Wu JS, Zhou LF, Tang WJ, et al. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery. 2007; 61:935-948.
    
    53 OkadaY, Miki Y, Kikuta K, et al. Diffusion tensor fiber tractography for arteriovenous malformations: quantitatibe analyses to evaluate the corticospinal tract and optic radiation. AJNR.2007; 28:1107-1113.
    
    54 Burtscher IM, Holtas S. Proton MR spectroscopy in clinical routine. J Magn Reson Imaging.2001; 13:560-567.
    
    55 Sijens PE, Oudkerk M, vanDijk P, et al. 1H-MR spectroscopy monitoring of changes in cho-line peak area and line shape after Gd-contrast administration. Magn Reson Imaging. 1998; 16:1273-1280.
    
    56 Rand SD, Prost R, Haughton V, et al. Accuracy of single-voxel proton MR spectroscopy in distinguishing neoplastic from nonneoplastic brain lesions. AJNR. 1997; 18:1695-1704.
    
    57 Dowling C, Andrew W, Bollen AW, et al. Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol. 2001; 22: 604-612.
    
    58 Fulham MJ, Bizzi A, Dietz MJ, et al. Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance. Radiology. 1992; 185:675-686.
    
    59 Gupta RK, Vatsal DK, Husain N, et al. Differention of tuberculous from pyogenic brain abscesses with in vivo proton MR spectroscopy and magnetization transfer MR imaging. AJNR.2001; 22:1503-1509.
    
    60 Lai PH, Ho JT, Chen WL, et al. Brain abcess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusion-weighted imaging. AJNR. 2002; 23:1369-1377.
    
    61 Burtseher IM, Skagerberg G, Geljer B, et al. Proton MR spectroscopy and preoperative diagnostic accuracy: an evaluation of intracranial mass lesions characterized by stereotactic biopsy findings. AJNR. 2000; 22:84-93.
    
    62 Tedeschi G, Lundbom N, Raman R, et al. Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. J Neurosurg. 1997; 87:516-524.
    
    63 Stadlbauer A, Gruber S, Nimsky C, et al. Preoperative grading of gliomas by using metabolite quantification with high-spatial-resolution proton MR spectroscopic imaging. Radiology. 2006;238:958-969
    
    64 Meyerand ME, Pipas JM, Mamourian A, et al. Classification of biopsy confirmed brain tumors using single-voxel MR spectroscopy. Am J Neuroradiol. 1999; 20:117-123.
    
    65 Yang D, Korogi Y, Sugahara T, et al. Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuroradiology. 2002; 44:656-666.
    
    66 Moller-Hartmann W, Herminghaus S, Krings T, et al. Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology. 2002;44:371-381.
    
    67 Chen J, Huang SL, Li T, et al. In vivo research in astrocytoma cell proliferation with 1H-magnetic resonance spectroscopy: correlation with histopathology and immunohistochemistry.Neuroradiology. 2006; 48:312-318.
    
    68 McKnight TR, Von dem Bussche MH, Vigneron DB, et al. Histopathological validation of a three-dimensional magnetic resonance spectroscopy index as a predictor of tumor presence. J Neurosurg. 2002; 97:794-802.
    
    69 Vuori K. Kankaanranta L. Hakkinen AM. et al. Low-grade gliomas and focal cortical devel- opmental malformations: differentiation with proton MR spectroscopy. Radiology 2004; 230:703-708.
    
    70 Meyerand ME, Pipas JM, Mamourian A, et al. Classification of biopsy-confirmed brain tumors using single-voxel MR spectroscopy. AJNR. 1999; 20:117-123.
    
    71 Go KG, Kamman RL, Mooyaart EL, et al. Localized proton spectroscopy and spectroscopic imaging in cerebral gliomas, with comparison to positron emission tomography. Neuroradiology. 1995; 37:198-206.
    
    72 Negendank WG, Brown TR, Evelhoch JL, et al. Proceedings of a National Cancer Institute workshop: MR spectroscopy and tumor cell biology. Radiology. 1992; 185:875-883.
    
    73 Herholz k, Heindel W, Luyten PR, et al. In vivo imaging of glucose consumption and laclate concentration in human gliomas. Ann Neurol. 1992; 31:319-422.
    
    74 Castillo M, Smith JK, Kwock L. Correlation of myo-inositol levels and grading of cerebral astrocytomas. AJNR.2000; 21:1645-1649.
    
    75 Chawla S, Wang S, Wolf RL, et al. Arterial spin-labeling and MR spectroscopy in the differ- entiation of gliomas. AJNR. 2007; 28:1683-1689.
    
    76 Sijens PE. Oudkerk M. 1H chemical shift imaging characterization of human brain tumor and edema. Eur Radiol. 2002; 12:2056-2061.
    
    77 Law M, Cha S, Knopp EA, et al. High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology. 2002; 222:715-721.
    
    78 Stadlbauer A, Nimsky C, Buslei R. Proton magnetic resonance spectroscopic imaging in the border zone of gliomas: correlation of metabolic and histological changes at low tumor infiltration-initial results. Invest Radiol. 2007; 42:218-223.
    
    79 Ishimaru H, Morikawa M, Iwanaga S, et al. Differetiation between high-grade glioma and me-tastatic brain tumor using single-voxel proton MR spectroscopy. Eur Radiol. 2001; 11:1784-1791.
    
    80 Fan G, Sun B, Wu Z, et al. In vivo single-voxel proton MR spectroscopy in the differentiation and outcome prediction of High-Grade Gliomas and Solitary Metastases.Clinical Radiology. 2004; 59:77-85.
    
    81 McKnight TR, Lamborn KR, Love TD, et al. Correlation of magnetic resonance spectroscopic and growth characteristics within Grades II and III gliomas. J Neurosurg. 2007; 106:660-666.
    
    82 Chan YL, Yeung David KW, Leung SF, et al. Proton magnetic resonance spectroscopy of late delayed radiation-induced injury of the brain. J Magn Reson Imaging. 1999; 10:130-137.
    
    83 Rabinov JD, Lee PL, Barker JG, et al. In vivo 3T-MR spectroscopy in the distinction of recurrent glioma versus radiation effects: initial experience. Radiology. 2002; 225:871-879.
    
    84 Lichy MP, Bachert P, Henze M, et al. Monitoring individual response to brain-tumour chemotherapy: proton MR spectroscopy in a patient with recurrent glioma after stereotactic radiotherapy. Neuroradiology. 2004; 46:126-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700