用户名: 密码: 验证码:
弧焊电源控制及焊接质量在线监测数字化基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代工业生产对号称“工业缝纫机”的焊接设备提出了更高的要求。提高焊接工艺性能的关键之一在于先进的焊接设备,实现先进的焊接设备在于采用先进的控制理论及针对工艺特点采取合理的控制算法。本文基于数字化焊接的概念,对数字化焊接电源,熔化极气体保护焊(GMAW)焊接过程数学模型以及焊接信号(电流、电压,焊接速度等)特征分析,焊接质量预测以及在线监控等基础问题进行了研究。
     首先研制了以数字信号处理器(DSP)与单片机(MCU)双处理器为控制核心的数字化弧焊电源。完成了主电路,数字控制系统电路,IGBT驱动电路,电流、电压反馈电路,人机接口电路,送丝系统电路以及保护电路的研制,并完成了电源软件系统的设计与调试。
     其次,进行了CO2焊接短路过渡波形控制研究,分析了CO2短路过渡可以减小飞溅和改善焊缝成型的电压、电流波形。提出了三种波形控制方法,对三种控制方案及效果进行了比较分析。
     再次,为了实现先进控制方法在焊接电源控制中的应用,分析了GMAW焊接过程所涉及的焊接参数及相互关系,对GMAW过程电路系统、电弧系统、熔滴上的作用力、熔滴过渡、焊丝熔化速度进行分析。建立GMAW过程数学模型;应用基于微分几何的反馈线性化方法,将GMAW过程电流及弧长模型同胚映射为等价的线性系统,使复杂的非线性控制问题转化成简单的线性系统的控制问题;将滑模变结构控制方法应用于焊接电流及弧长的控制,并运用Matlab进行仿真研究。
     然后,进行了有关CO2焊接电信号分析处理研究。DSP强大的数据处理能力和快速运算能力为焊接信号的实时处理分析提供了合适的平台,为形成焊接过程质量实时评价系统、形成焊接过程的实时闭环控制提供了可能。利用相关性分析、傅立叶谱、短时傅立叶、功率密度谱、小波分析等多种现代信号分析方法对CO2焊接电压、电流的时域、频域及时频域特征进行数据挖掘,从信号分析角度丰富对焊接电压、电流信号深层所蕴含信息的认识,为实现焊接过程的实时监控提供理论基础。
     最后,采用BP算法经样本训练对焊缝几何尺寸进行预测研究。针对普通BP算法存在的问题,采用自适应学习率及附加动量项的方法进行改进,以提高BP网络的运算速度。采用支持向量机,分别运用线性核函数,多项式核函数,RBF核函数以及ERBF核函数对焊缝尺寸进行预测,从而实现通过神经网络模型预测焊缝形貌来达到焊接质量的实时监控及焊接过程的在线控制的目的。
With the development of digital technology, industrial production sets a still higher demand on welding equipment, which is called“industrial sewing machine”. Advanced welding equipment is the one of key factors to improve the welding technological property. Aiming at the technology characteristics, advanced control theories and appropriate control algorithms are used to realize the advanced welding equipment. In this paper, based on digital welding, digital welding power source, mathematical model of GMAW welding process, characteristic analysis of welding signals(current, voltage, welding speed, etc), prediction of welding quality, and on-line monitoring are studied.
     Based on dual processors of digital signal processor (DSP) and single chip microcomputer (MCU) a multi-function arc welding power source is made. Main circuit, digitization control circuit, driving circuit for IGBT, feedback circuits for current and voltage, circuit for man-machine interface system, circuit for wire feeding system and protection circuit are designed. In addition, system software is programmed and debugging the whole system.
     The study of CO2 arc welding short-circuit waveform control is done. The discussion of ideal voltage waveform and current waveform, analysis of characteristics of welding parameters, and further study of scheme of current waveform control in CO2 short circuit transition welding are taken. Three control schemes are designed and compared.
     For the application of advanced control methods in welding power source circuit system, arc system, forces on droplet, droplet transition and melting rate of welding wire in GMAW welding process are analyzed based on he welding parameter and its mutual relation. Mathematical model of GMAW welding process is established. By the feedback linearization method of differential geometry, Equivalent linear system is achieved by using homeomorphism mapping of models of current and arc length, which makes the complicated nonlinear control problem transformed into a simple linear control problem. Because of the decreasing of complex degree of controller design, control Effect improves. The method of sliding mode variable structure control is used in the control of welding current and arc length. And it is simulated with MATLAB.
     Time domain characteristics, frequency domain characteristics and time-frequency domain characteristics of the current and voltage signals are studied by using advanced signal analysis, such as correlation analysis, fourier spectrum, short-time fourier, power density spectrum, wavelet analysis and so on. The understanding of current and voltage signals is enriched.
     Prediction of weld line size is achieved by sample training at BP algorithm. Because of the existing problems of general BP algorithm, operation speed of BP Network is improved by using adaptive learning rate and additional item. In addition, weld size is predicted by using support vector machine(SVM),which is trained with linear kernel function, polynomial kernel function, RBF kernel function and ERBF kernel function. Real-time monitoring of welding quality and on-line control of welding process are achieved by predicting the weld appearance based on neural network model.
引文
[1]黄石生,弧焊电源,北京:机械工业出版社,1980.7。
    [2]冯雷,高速CO2焊成型机理与成型稳定性研究,哈尔滨工业大学博士论文,1999.7。
    [3] G.E.Cook,Feedback and adaptive control in automated arc welding system, Met. Construct. 13(9) (1990) 551-556.
    [4] Heinrich Hackl, Digitally controlled GMA power sources http://www.fonius.com/download/welding.technology/papers/e_prozes.pdf
    [5]华学明,吴毅雄,焦馥杰,张勇,李铸国,于乾波.以数字信号为基控制的可控硅焊机的数字触发.焊接学报,2002,23(2):72-74.
    [6]张勇,吴毅雄,华学明,于乾波.数字信号处理器在CO2焊接中的应用.电子产品世界,2002,8A:43-45.
    [7]华学明,张勇,吴毅雄,焦馥杰,于乾波,付延安.数字信号处理器控制的焊接电源研制.电焊机,2002,32(10):25-28.
    [8]刘嘉,卢振洋,殷树言,丁京柱.电焊机的数字化.焊接学报,2002,23(2):P88-92.
    [9]刘嘉,殷树言,丁京柱.数字化焊机及其特点.电焊机,2001,31(6):8-10.
    [10]王伟明,刘嘉,马德,王三良,殷树言.基于DSP的单脉冲焊及双脉冲焊全数字控制系统的研究.电焊机,2004,34(3):41-44.
    [11]吴开源.基于DSP的弧焊逆变电源数字化控制系统.电子设计应用,2002,1(11):71-73.
    [12]李阳,吴开源,黄石生,陆沛涛.DSP在弧焊逆变器中的应用.电焊机,2003,33(4):29-31.
    [13]曾尧,张秀兰.数字化焊接电源.中国机械工学会.全国CO2逆变焊机和焊丝技术交流会.上海,2002,10:43-52.
    [14]陈裕川.全数字控制逆变式弧焊电源.上海焊接通讯,2001(12):P13-19.
    [15] R. Yender J. Tyler K.L. Moore, D.S. Naidu. Modeling, calibration, and control-theoretic analysis of the gmaw process. In Nonlinear Analysis,Methods and Applications, volume 3,. Proc. American Control Conference (ACC), 1998: 1747–1751.
    [16] S.D. Naidu J. Tyler S. Ozcelik, K.L. Moore. Classical control of gas metal arc welding. In Trends in Welding Research: Proc. 5th International Conference, 1998: 1033–1038.
    [17] M. AbdelRahman. Feedback linearization control of current and arc length in gmaw system. Proc. of the American Control Conference, 1998.
    [18] D.S. Naidu K.L.Moore, M.A. Abdelrahman. Gas metal arc welding control: Part 2– control strategy. Nonlinear Analysis, 1999(35):85–93
    [19] K.L. Moore D.S. Naidu, S. Ozcelik. Modeling, Sensing and Control of Gas Metal Arc Welding. Elsevier, 2003.
    [20] Subbaram D. Naidu Selahattin Ozcelik, Kevin L. Moore. Application of mimo direct adaptive control to gas metal arc welding. Proc. of the American Control Conference, 1998.
    [21] B.L. Walcott Y.M. Zhang, Liguo E. Interval model based control of gas metal arc welding. Proc. of the American Control Conference, 1998.
    [22] B.L. Walcott Y.M. Zhang, Liguo E. Robust control of pulsed gas metal arc welding. Journal of Dynamic Systems, Measurement and Control, 2002,124(2):281–289
    [23] A. Puklavec B. Torvornik M. Golob, A. Koves. Modelling, simulation and fuzzy control of the gmaw welding proces. In 15th Triennial World Congr. Int. Fed. of Automatic Control, 2002.
    [24] A. Lesnewich. Control of the melting rate and metal transfer in gas shielded metal arc welding, part i. Welding Research Supplement, 1958, 343–353
    [25] V.A. Nemchinsky. Heat transfer in an electrode during arc welding with a consumable electrode. J. Phys. D: Appl. Phys., 1998, (31):730–736
    [26] V.A. Nemchinsky. The rate of melting of the electrode during arc welding. the influence of discrete removal of the melt. J. Phys. D: Appl. Phys., 1998, (31):1565–1569
    [27] S.W. Simpson P. Zhu. Theoretical study of a consumable anode in a gas metal welding arc. In Trends in Welding Research, Proc. 4th Int. Conf. Proc. 4th International Conference, 1995
    [28] G.E. Cook Z. Bingul. Dynamic modeling of gmaw process. In Int. Conf. on Robotics Automation, 1999
    [29] V.A. Nemchinsky. Heat transfer in a liquid droplet hanging at the tip of an electrode during arc welding. J. Phys. D: Appl. Phys., 1997 (30):1120–1124
    [30] J. Haidar. An analysis of the formation of metal droplets in arc welding. J. Phys. D: Appl. Phys., 1998 , (31):1233–1244
    [31] V.A. Nemchinsky. Size and shape of the liquid droplet at the molten tip of anarc electrode. J. Phys. D: Appl. Phys., 1994, (27):1433–1442
    [32] Y.S. Kim S.K. Choi, C.D. Yoo. The dynamic analysis of metal transfer in pulsed current gas metal arc welding. J. Phys. D: Appl. Phys., 1998, (31):207–215
    [33] E. Liguo Y.M. Zhang. Numerical analysis of the dynamic growth of dropletsin gas metal arc welding. In Proc. Instn Mech Engrs, 2000 (214)
    [34] P.E.Murry. Stability of a pendant droplet in gas metal arc welding. In Trends in Welding Research: Proc. 5th International Conference, 1998, 308–313
    [35] V.A. Nemchinsky. Electrode melting during arc welding with pulsed current. J. Phys. D: Appl. Phys., 1998, (31):2797–2802
    [36] J.A. Johnson A.D. Watkins, H.B. Smartt. A dynamic model of droplet growth and detachment in gmaw. In Recent Trends in Welding Science and Technology. ASM, 1992
    [37] J.C. Amson. Lorentz force in the molten tip of an arc electrode. Brit. J. Appl. Phys., 1965,16:1169–1179
    [38] J.H. Lang L.A. Jones, T.W. Eagar. Magnetic forces acting on molten drops in gas metal arc welding. J. Phys. D: Appl. Phys., 1998, (31):93–106
    [39] J.H. Lang L.A. Jones, T.W. Eagar. The temporal nature of forces acting on metal drops in gas metal arc welding. In Trends in Welding Research: Proc. 4th International Conference, 1995,365–370
    [40] V.A. Nemchinsky. The effect of the type of plasma gas on current constriction at the molten tip of an arc electrode. J. Phys. D: Appl. Phys., 1996 , (29):1202–1208
    [41] J.A. Johnson H.B. Smartt T. Harmer K.L. Moore E.W. Reutzel, C.J. Einerson. Derivation and calibration of a gas metal arc welding (gmaw) dynamic droplet model. In Trends in Welding Research, Proc. of the 4th International Conference, 1995, 377–384
    [42] C.D. Yoo J.H. Choi, J. Lee. Dynamic force balance model for metal transfer analysis in arc welding. J. Phys. D: Appl. Phys., 2001, (34):2658–2664
    [43] J.H. Lang L.A. Jones, T.W. Eagar. A dynamic model of drops detaching from a gas metal arc welding electrode. J. Phys. D: Appl. Phys., 1998, (31):107–123
    [44] C.J. Allum. Metal transfer in arc welding as a varicose instability: I. varicose instabilities in a current-carrying liquid cylinder with surface charge. J. Phys. D: Appl. Phys., 1985, (18):1431–1446
    [45] C.J. Allum. Metal transfer in arc welding as a varicose instability: Ii. Development of model for arc welding. J. Phys. D: Appl. Phys., 1985,(18):1447–1468
    [46] M.J. Piena J.H. Waszink. Experimantal investigation of drop detachment and drop velocity in gmaw. Welding Research Supplement, November 1986
    [47] S.W. Simpson Q. Lin, X. Li. Metal transfer measurements in gas metal arc welding. J. Phys. D: Appl. Phys., 2001, (34):347–353
    [48] Y.S. Kim S.K. Choi, C.D. Yoo. Dimensional analysis of metal transfer in gma welding. J. Phys. D: Appl. Phys., 1999, (32):326–334
    [49] R. Yender J. Tyler K.L. Moore, D.S. Naidu. Gas metal arc welding control: Part 1– modeling and analysis. In Nonlinear Analysis, Methods and Applications, volume 30, pages 3101–3111. Proc. 2nd World Congress of Nonlinear Analysts, 1997.
    [50] R.F. Yender J. Tyler S. Ozcelik K.L. Moore, D.S. Naidu. Experimantal calibration of an automated gmaw model. In Trends in Welding Research: Proc. 5th International Conference, 1998, 314–319
    [51] D.Weiss T.W. Eagar L.A. Jones, P. Mendez. Dynamic behavior of gas metal arc welding. In 9th Conf. on Iron and Steel Technology, 1997
    [52] S.W. Simpson P. Zhu, M. Rados. A theoretical study of a gas metal arc welding system. Plasma Sources Sci. Tech., 1995, (4):495–500
    [53] R.J. Barnett A.M. Strauss B.S. Wells Z. Bingul, G.E. Cook. An investigation of constant potential gmaw instability behavior. In Trends in WeldingResearch: Proc. 5th International Conference, 1998, 289–294
    [54] P. Zhu. Keynote address - computer simulation of gas metal welding arcs. In Trends in Welding Research: Proc. 5th International Conference, 1998, 283–288
    [55]潘际銮,现代弧焊控制,北京:机械工业出版社,2000,63–168
    [56]王其隆,弧焊过程质量实时传感与控制,北京:哈机械工业出版社,2000,5-6
    [57]徐忻,吴毅雄,张勇,CO2弧焊过程质量评价技术的研究进展及发展趋势,电焊机,2003, 33(10),1-5
    [58]区智明等.CO2焊接电弧信号分析与稳定性的评价.第三届计算机在焊接中的应用技术交流论文集,2000.11
    [59] S.W.Simpson. Information Processing in Welding: WELDING SIGNATURES AND APPLICATIONS IN INDUSTRY. WELDING in the WORLD Vol.43 1999.7-8 No.4
    [60]俞建容等.CO2弧焊特征参数的检测分析系统.第三届计算机在焊接中的应用技术交流会论文集,2001.11
    [61]朱六妹,肖孝南,王伟等.C02焊熔滴过渡特征的分析与研究.电焊机,2000.1
    [62] Johnson J A et al. Process Control of GMAW: Sensing of Metal transfer mode. Welding Journal, 1991(4): 91s-99s
    [63] Adma G and Siewert T A. Sensing of GMAW Droplet Transfer Modes Using an ER100S-1 Electrode. Welding Journal, 1990(3):103s-108s
    [64]张晓囡,李俊岳,杨立军,黄石生,基于小波分析的CO2弧焊电源工艺动特性的评定,机械工程学报,2002.1
    [65]裴浩东,樊丁,马跃洲,陈剑虹,人工神经网络及其在焊接中的应用,甘肃工业大学学报,1996.3
    [66] Absi Alfaro S.C, Carvalho G .C. Stand off’s indirect estimation in GMAW. Journal of materials processing technology, 2004, 3-7
    [67] Johnson J.A., Carlson N.M., Smartt H.B. Process control of GMAW: Sensing of metal transfer model. Welding Journal, 1991, 70(4):91-99
    [68] Quinn T.P., Madian R.B., Mornis M.A. Contact tube wear detection in gas metal arc welding. Welding Journal, 1995, 74(4):115-121
    [69] Mei Kobayashi, Listening for Defects: Wavelet-Based Acoustical Signal Processing in Japan. SIAM News,1996.3
    [70] Arata Yoshiaki, Vibration analysis of base metal during welding, Transaction of JWRI,1981.9
    [71] D.Saini and S.Floyd, An Investigation of Gas Metal Arc Welding Sound Signature for On-lone Quality Control, Welding Journal, April 1998
    [72] Kaskinen.P and Mueller.G, Acoustic arc length control, Proceedings of an International Conference on Trends in Welding Reaserch,Gatlinburg,1986:763—765
    [73] Saini D, Floyd S. An investigation of gas metal arc welding sound signature for on-line quality control. Welding Journal, 1998, 77(4): 172-179
    [74]陈强,王耀文,孙久文,孙振国.脉冲等离子焊接小孔效应的检测及控制,第十次全国焊接会议论文集, 2-322
    [75]王耀文,陈强,孙振国,孙久文,王海燕,等离子弧焊接穿孔行为的声信号传感,机械工程学报,2001.1
    [76]马跃洲,王春柏,陈剑虹.小波包分解Welch平均法在焊接电弧声功率谱估计中的应用.甘肃工业大学学报,2001,2:5-8
    [77]韩国明,吴钊,柳刚,云绍辉,李俊岳,焊接电弧紫外光谱信息的计算机采集与处理系统,机械工程学报,1999.8
    [78] P.J.LI and Y.M.ZHANG, Analysis of an Arc Light Mechanism and Its Application in Sensing of the GTAW Process, Welding Research Supplement, 225-s
    [79]韩国明,云绍辉,李俊岳.熔滴过渡类型光谱信号自动识别软件系统,焊接学报,2001,22(1)19-23
    [80]刘涛,曾祥军,曾军,实用小波分析入门,北京:国防工业出版社,2006
    [81]李桓,陈育浩,薛海涛.焊接电信号滤波方法的选用.焊接.2003,(11):29-32
    [82]薛家祥,张小囡,黄石生.弧焊过程电信号小波软阈值消噪.焊接学报,2000, 21(2):18-21
    [83]朱延功,高雪山,刘嵩.使用小波分析方法提取焊缝位置信息.哈尔滨工业大学学报,2001, 33(3):389-393
    [84]卢超,于润桥,彭应秋.连续小波包变换在焊接缺陷超声检测中的应用.南昌大学学报,2002, 24(2):17-21
    [85] Changming Chen. Radovan Kovacevic, Drangana Jandgric. Wavelet transform analysis of acoustic emission in monitoring friction stir welding of 6061 aluminum. International Journal of Machine Tools & Manufacture, 2003, 43: 1383-1390
    [86]薛海涛,李桓,杨立军.CO2焊短路过渡过程缩颈信息的小波提取.焊接学报.2004, 23(1):74-79
    [87]黄石生,张小囡,赖乙宗等.用子波变换提取CO2焊焊穿信息特征的研究.机械工程学报, 1994,30(3):24-30
    [88]蔡艳,样海澜.人工神经网络在CO2短路过渡焊接质量评估中的应用.焊接技术,2001, 30(6):7-9
    [89]俞建荣,蒋力培,史耀武.CO2弧焊熔滴过渡过程的特征及其定量评价.机械工程学报,2002, 38(2):137-140
    [90] Jianrong Yu, Lipei Jiang, Yaowu Shi. Synthetically quantitative evaluation function of characteristic parameters on CO2 arc welding process. China Welding, 2001, 10(1): 19-26
    [91] Kang M J, Rhee S. The statistical models for estimation the amount of spatter in the short circuit transfer mode of GMAW. Welding Journal, 2001, 80(1): 1-8
    [92] Kang M.J., Rhee S. A study on the development of the arc stability index using multiple regression analysis in short-circuit transfer region of gas metak arc welding. Proceedings of the institution of mechanical engineers, 1991, 215(2): 195-205
    [93] Lee J I, Rhee S. Prediction of process parameters for gas metal arc welding by multiple regression analysis. Proceedings of the institution of mechanical engineers, 2000, 214(6): 443-449
    [94] Kim I.S, Park C E, Jeong Y J. Development of an intelligent system for selection of the process variables in gas metal arc welding processes. Int J Adv ManufTechnol, 2001, 18: 98-102
    [95]杨海澜,蔡艳,陈庚军.主成分分析结合人工神经网络技术在焊接过程质量控制中的应用.焊接学报,2001,31(4):325-330
    [96]彭金宁,陈丙森,朱平.焊接工艺参数的神经网络智能设计.焊接学报,1998,19(1):19-24
    [97]胡庆贤,孙俊生,吴传松.基于BP神经网络的GMAW焊接工艺参数设计.山东大学学报,2003, 24(4):55-58
    [98]高向东,黄石生,余英林.机器人焊缝跟踪神经网络控制的研究.机械工程学报,2000, 22(5):5-8
    [99] Johnson J A et al. Process control of GMAW: Sensing of metal transfer mode. Welding Journal, 1991(4): 91-99
    [100] Simpson S W, Hughes P, Prospects for fault identification and control in welding using signature images, IIW Doc. XII-1635-00
    [101] Ardersen k, Cook G E, Karsai G.. Artificial neural networks applied to arc welding process modeling and control. IEEE Trans on Industry Application, 1990, 26:824-830
    [102] Kim Ill-Soo, Son Joon-Sik, Lee Sang-Heon. Optimal design of neural networks for control in robotic arc welding. Robotics and Computer-Integrated Manufacturing, 2004, 20:57-63
    [103]武传松,胡庆贤,孙俊生.基于12维统计矢量的GMAW焊接过程检测模糊神经网络系统.机械工程学报,2004,40(1):151-154
    [104]黄石生,李迪,宋永伦.焊接过程的神经网络建模与控制研究.焊接学报,1999,30(3):24-29
    [105]赵家瑞,逆变焊接与切割电源,北京:机械工业出版社,1995,18~67
    [106]胡大可.MSP430系列FLASH型超低功耗16位单片机[M].北京:北京航空航天大学出版社,2002.
    [107]沈建华,杨艳琴,翟骁曙.MSP430系列16位超低功耗单片机原理与应用[M].北京:清华大学出版社,2004.
    [108]张晞,王德银,张晨.MSP430系列单片机实用C语言程序设计[M].北京:人民邮电出版社,2005,174-186.
    [109]张震.键盘/液晶显示器与单片机的接口电路设计[J].信息工程学院学报,1998,17(4):51-54.
    [110]北京青云创新科技发展有限公司.LCM图形点阵液晶显示模块产品说明书[Z].北京:北京青云创新科技发展有限公司,2002.
    [111]吴平,龚彬,丁铁夫.液晶显示模块和MSP430单片机在显示终端上的应用[J].液晶与显示,2003,18(6):436-440.
    [112]沈建华,杨艳琴,翟骁曙.MSP430系列16位超低功耗单片机实践与系统设计[M].北京:清华大学出版社,2005.
    [113]康劲松,郎玉峰等,IGBT集成驱动模块的应用研究,电工技术杂志,2000,5,36-38
    [114]黄俊,半导体变流技术,北京:机械工业出版社,1986
    [115]郭大勇,CO2短路过渡过程控制及应用,焊接,1998,(7):12-15
    [116]刘勇,姚舜,逆变焊机的多重保护设计,焊接技术,2000,(4):23-24
    [117]骆德阳,方彬,方培权,开关型送丝电源的研制,电焊机,1997,(2):9-11.
    [118]向先波,徐国华,张琴.TMS320F240片内PWM实现D/A扩展功能.单片机及嵌入式系统应用,2003,3:P18-20.
    [119]韩安太,刘峙飞,黄海.DSP控制器原理及其在运动控制系统中的应用.北京:清华大学出版社,2003.
    [120]李鹤岐,李芳,吴荣,等.单片机控制多功能逆变焊机研究(二)--控制系统模块化软件设计[J].电焊机,2003,33(10):6-8
    [121]王同胜,张连芳,王平,等.计算机技术及应用基础,天津:天津大学出版社,1999
    [122] Maruo.H.,Hirata,Y.,and Goto,N.Bridging transfer phenomena of conductive pendent doop : The effects of electromagnetic pinch force on the bridging transfer.Quarterly H.of JWS 1992,10(2):251-258
    [123] P.Buddi. Measurement of drop transfer stability in weld processes with short circuit drop transfer . 2 . International conference computer Technology in welding.The welding Institute,1998:149~155
    [124] J. F. Lancaster. The Physics of Welding. Pergamon Press, 1984
    [125] Abbas Emami-Naeini Gene F. Franklin, J. David Powell. Feedback Control of Dynamic Systems. Addison-Wesley, third edition, 1994
    [126]胡跃明,非线性控制系统理论与应用(第二版),北京:国防工业出版社,2005
    [127]王丰尧,滑模变结构控制,北京:机械工业出版社,1995
    [128] Hassan K. Khalil. Nonlinear Systems. Prentice-Hall, third edition, 2002.
    [129]胡广书,数字信号处理-理论、算法与实现,北京:清华大学出版社,2002
    [130] Oppenheim A V, Schafer R. Discrete-time signal process. Englewood Cliffs, NJ: Prentice-Hall. 1989
    [131] Roberts, Richard A. Digital signal processing. Reading, Mass: Addison Wesley Pub Co, 1987
    [132] Mei Kobayashi, Listening for Defects: Wavelet-Based Acoustical Signal Processing in Japan. SIAM News,1996.3
    [133]胡光锐,信号与系统,上海:上海交通大学出版社,1986
    [134]印勇,随机信号分析,北京:中国物资出版社1996
    [135]冉启文编著.小波分析方法及其应用.哈尔滨:哈尔滨工业大学出版社,1995
    [136]陈继东.小波分析应用于在线监测中的信噪分离的研究.电网技术,1999.11
    [137]杨福生编著.小波变换的工程分析与应用.北京:科学出版社,1999
    [138]程正兴编著.小波分析算法及应用.西安:西安交通大学出版社,1998
    [139] A.Wiedand and R.Leighten. Geometric Analysis of Neural Network Capacity.in Pro.IEEE First IJCNN.1987.1:385~392
    [140] B.Irie and S.Miyake. Capacity of Three-layered Perceptrons.in Pro. IEEE First IJCNN.1988.1:641~648
    [141] S.M.Carroll and W.Dickinson. Construction of Neural Nets Using Random transform. in Pro.IEEE IJCNN.1989.1:607~611
    [142] K I.Funahashi. On the Approximate Realieation of Continuous Mapping by Neural Networks.Inter.Conf.NN.1989.2: 11~13
    [143] R.Hecht-Nielsen. Theory of the Backpropagation. Proc.IEEE IJCNN.1989.1:593~605
    [144] Filip Mulier , Vapnik-Chervonenkis(VC) Learning Theory and Its Applications, IEEE Trans. on Neural Networks. 1999,10(5)
    [145] V.Vapnik,Nature of Statistical Learning Theory,John Wiley and Sons,Inc,New York,in preparation
    [146] Corinna Cortes,V.Vapnik.,Support-Vector Network,Machine Learning, 1995,20,273-297
    [147] J.C.Burges.,A Tutorial on Support Vector Machines for Pattern Recognition, Bell Laboratories, Lucent Technologies,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700