用户名: 密码: 验证码:
锚杆锚固质量无损检测理论与智能诊断技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对锚杆锚固质量无损检测的理论及智能诊断技术进行了系统深入的研究。研究了锚杆围岩系统瞬态激励响应的数学模型并给出了其波动方程的数值解法;在研究声波反射检测法的原理和检测技术方法的基础上,研制了一种锚杆检测专用传感器;结合模型锚杆试验及实际工程锚杆检测实践,提出了锚杆锚固质量无损检测评价标准;对锚杆检测的反射波进行了小波分形维数的计算,得到了表征锚杆质量的特征向量,进而提出了基于BP神经网络的锚杆质量智能诊断模型并得到验证。为锚杆锚固系统无损检测而研究开发的一套完整实用、快捷方便的检测诊断方法和技术,对锚杆锚固工程的质量检测具有重要的应用价值。本文主要做了以下几点工作和创新:
     1研究了锚杆围岩系统瞬态激励响应的数学模型及其数值解法。
     2.研究了锚杆声波检测反射的机理、反射波时频域分析和信号拟合方法。
     3.研究了声波反射检测法的原理和检测技术方法,在锚杆检测实践的基础上,研制了一种专用传感器,具有独创性。该锚杆检测三分量传感器固定装置已获国家实用新型专利。
     4.结合模型锚杆试验及实际工程锚杆检测实践,首次建立了锚杆锚固质量无损检测评价标准,具有一定的创新性和实用价值。
     5.研究了应用强大的小波包分解工具,对反射波在不同频段的波形特征进行小波包分解,为反射波形检测提供了深层次分析信息,提高了锚杆缺陷分析的准确性。
     6.首次将分形维数的分析方法引入锚杆锚固系统的无损检测中,对锚杆缺陷的小波分形维数特征向量和锚杆缺陷的关系进行了初步的探讨,明确指出了分形维数的大小可以量度反射波在该小波分解频段能量的大小,具有创新性。
     7.针对获取的表征锚杆缺陷的特征向量与锚杆密实度之间的非线性关系,借助人工神经网络技术,引入BP神经网络模型。分析了对锚杆质量评价有影响的因素,确定了BP神经网络的输入输出参数,对锚杆的质量进行了预测,预测结果与实测值具有满意的吻合,说明该模型对于锚杆锚固系统的智能化无损检测有较高的准确性,满足锚杆检测的工程需求,具有推广应用的价值。
A study on nondestructive detection theory and intelligent diagnosis technology of rockbolt anchorage quality has been carried out systematically in this paper.The mathematics model of the transient responds of rockbolt and wall rock system have been studied and its numerical value solution of wave equation have been analyzed.On the basis of study on the principle and technology of the sonic reflection detection method and detection practicing,a kind of special sensor for rockbolt detection has been developed,Combining with model rockbolt testing and actual project detection practice in site, an evaluation standard for rockbolt anchorage quality of nondestructive detection has been put forward.The reflected wave containing the information of rockbolt defect was obtained on the dissertation firstly by means of sonic reflection, decomposing of the wavelet packet for the reflected wave and calculation of the decomposed waveform fractal dimension were then conducted, the characteristic vectors indicating rockbolt quality were accordingly achieved;based on the overall analysis of the factors which influence the rockbolt quality diagnosis, intelligent diagnosis model of rockbolt quality has been put forward based on the BP neural network,which has created a complete set of practicable, shortcut and convenient detection method and technology for the anchorage system, and has significant application value on the quality detection for the rockbolt works.
     The main achievements of study works and some innovations are as follows.
     1.The mathematics model of the wave equation of transient responds of rockbolt and wall rock system have been studied and its numerical value solution of wave equation have been analyzed.
     2.The principle of the sonic reflection of rockbolt detection;reflection analyse in time and frequency field and the method of signal fitting have studied.
     3.Principle and technology of the sonic reflection detection method have been studied. A kind of special sensor has been developed on the basis of detection practice, this sensors device has original creation, it has won the national practical and new-type patent.
     4.Combining with model rockbolt testing and actual project detection practice in site, an evaluation standard for rockbolt anchorage quality of nondestructive detection has been put forward.It has definite original creation and utility.
     5.Using the powerful decomposing tools of the wavelet packet, decomposing of the wavelet packet is carried out for the reflected wave according to the waveform nature of various frequency band , which has provided in-depth analysis of information for the reflected waveform detection, and also increase the accuracy of analysis by broadening and deepening the evaluation scope of rockbolt defect.
     6.It is the first time to apply the analysis method of fractal dimension to nondestructive detection of anchorage system. As the dimension calculation can better show the total information of the wave form,the defect of the anchorage system can be more accurately and comprehensively analyzed by employing the wavelet fractal dimension as the characteristic vector of rockbolt defect,this has original creation.
     7.As for the nonlinear relation between the obtained characteristic vector representing rockbolt defect and rockbolt density,BP neural network model is introduced by means of artifical neural network technique.The factors which would affect quality evaluation of the rockbolt have been analysed, the input and output parameters of the BP neural network finalized, and the computation method and formulas for learning and training purpose given on this dissertation.Upon learning, trying and verifying of this model, forecasting of the rockbolt quality has been conducted, and the forecasted results satisfactorily coincide with the measured data,it is illustrated that the developed model has better accuracy on intelligentized nondestructive detection of the anchorage system,can cater to the requirements of rockbolt detection,and thus is valuable to extensively apply on the engineering practice.
引文
[1] T.H.汉纳.胡定等译.锚固技术在岩土工程中的应用.北京:中国建筑工业出版社,1987
    [2]陈波,鲁永康,郭玉等.电磁法检测锚固质量初探.工程地球物理学报,2004, 1(4):336-339.
    [3]郭世明,高才坤.弹性应力波法锚杆质量检测初探.岩土钻掘矿业工程,1999.
    [4]李维树,甘国权,朱容国,汪天翼.工程锚杆注浆质量无损检测技术研究与应用.岩土力学,2003,24,增刊:189-194.
    [5] Beard M.D.,Lowe M.J.S. Nondestructive testing of Rock bolts using guided ultrasonic waves. International Journal of Rock Mechanics & Mining Sciences, 2003,40:527-536.
    [6] Wang Mingwu, Wang Heling. Nondestructive testing of grouted bolts system. Chinese Journal of Geotechnical Engineering, 2001,23(1):109-113.
    [7]汪明武,王鹤龄.锚固质量的无损检测技术.岩石力学与工程学报,2003,21(1):126-129.
    [8]王富春,李义等.动测法检测锚杆锚固质量及工作状态的理论及应用.太原理工大学学报,2002,33(2): 169-172.
    [9]朱国维,彭苏萍,王怀秀.高频应力波检测锚固密实状况的试验研究.岩土力学,2003,23(6):787-791.
    [10]彭斌,刘春生,肖柏勋,等.锚杆锚固质量无损检测数据的分析与处理.物探化探计算技术,2003, 25(3):241-245.
    [11]陈长征,罗跃纲.白秉三,唐忠.结构损伤检测与智能诊断.北京:科学出版社,2001
    [12]刘盛东,张平松.工程锚杆锚固质量动测技术.地球物理学进展,2 004,19(3):568-572.
    [13]雷林源,杨长特.桩基瞬态动测响应的数学模型及基本特性.地球物理学报.1992,Vol.35:501-509.
    [14]刘东甲.完整桩瞬态纵向振动的模拟计算.合肥工业大学学报.2000,23(5):683-687.
    [15]王靖涛.桩基应力波检测理论及工程应用,地震出版社,1999年。
    [16]陈冬贵.低应变动测桩频率与检测.探矿工程,2004,(6):11-12.
    [17]王成,恽寿榕,李义.锚杆-锚固介质-围岩系统瞬态激励的响应分析.太原理工在学学报,2000, 31(6):658-661.
    [18]杨湖,王成.锚杆围岩系统数学模型的建立及动态响应分析.华北工学院测试技术学报,2002,16 (1):41-44.
    [19]许明,张永兴.锚杆低应变动测的数值研究.岩石力学与工程学报,2003,22(9):1538-1541.
    [20]许明,张永兴,李燕.锚杆动测问题的解析解.重庆建筑大学学报,2003,25(2):48-53.
    [21]杨湖,王成.弹性波在锚杆锚固体系中传播规律的研究.测试技术学报,2003,17(2):145-149.
    [22]郭余峰,陈春雷.固体圆柱中弹性波场的激发以及在无限均匀固体介质中的传播.大庆石油学院学报, 1996,20(3):92-96.
    [23]陈春雷.均匀介质包围的固体圆柱中的临界折射纵横波.大庆高等专科学校学报,1996,16(4):77-83.
    [24]罗骐先,桩基工程检测手册,人民交通出版社,2003年
    [25]王奎华,成层广义Voigt地基中粘弹性桩纵向振动分析与应用,浙江大学学报(工学版), Vol. 36, No. 5, 2002.
    [26]沈永欢等,实用数学手册,科学出版社,1992年
    [27]刘海峰,锚杆锚固质量及工作状态动测技术研究,太原理工大学硕士学位论文, 2000.
    [28]于德介、谭永、周先雁,用拟合桩顶速度响应的方法估计桩身形状,振动工程学报, Vol.7,No.4, 1994.
    [29]苏超伟,偏微分方程逆问题的数值方法及其应用,西北工业大学出版社, 1995.
    [30]罗伯特(Robert J.Schilling)、桑德拉(Sandral. Harris),应用数值方法使用Matlab和C语言( Applied Numerical Methods for Engineers Using Matlab and C ),机械工业出版社, 2004( 2002 by Brooks / Cole, a division of Thomson Learning ).
    [31]胡建伟、汤怀民,微分方程数值方法,科学出版社,2001.
    [32]刘则毅,科学计算技术与Matlab,科学出版社,2001.
    [33]卡姆克,常微分方程手册,科学出版社,1997.测试技术学报, Vol.16, No.1, 2002.
    [34]汪凤泉.基础结构动态诊断,江苏科学技术出版社,1992年。
    [35] Zhang H.L., Wang X.M., Ying C.F. Leaky modes and wave components of a fluid-filled borehole embedded in and elastic medium. Science in China(Series A),1996,39:289-300.
    [36]马俊,王克协.声波测井复模式波求取方法的改进与算例.计算物理,1998,15(2):147-152.
    [37] Rao V.N.,Rama Vandiver J.K. Acoustics of fluid-filled boreholes with pipe: Guided propagation and radiation. Journal of the Acoustical Society of America,1999,105:3057-3066.
    [38]章成广,刘银斌,车文华.横向各向同性孔隙地层中测井全波波形数值分析.计算物理,1999,16(3): 253-258.
    [39] Liu Q.H., Sinha B.K. Multipole acoustic waveforms in fluid-filled boreholes in biaxially stressed formations: A finite-difference method.Geophysics,2000,65:190-201.
    [40] Li Z.L., Du G.S., Wang Y.J. Effects of bonding conditions on the propagation of acoustic wave along a cased borehole. Shengxue Xuebao/Acta Acoustic, 2001,26:6-12.
    [41]鲁来玉,王文等.层状半空间中的多模问题和瑞利波勘探.物探化探计算技术,2001,23(3):215-221.
    [42]张碧星,鲁来玉.层状空间中导波的传播.声学学报,2002,27(1):295-304.
    [43]刘继生,王克协.用频率-波数域分析研究声波测井全波列的各波相.测井技术,2000,24(3):198-202.
    [44]李整林,杜光升等.套管井体胶结状态对井孔中声传播的影响.声学学报,2001,26(1):6-12.
    [45] Wang Xiuming, Zhang Hailan, Ying Chongfu. The distribution of Poles in the Contour Integral Evaluation of the wavefield within a fluid-filled borehole. Journal of DAQING petroleum institute, 2000,24(1):1-8.
    [46]孔永联,陆士良,周楚良.声波波谱技术在采矿工程中的应用研究.岩石力学与工程学报。1991.20(3)
    [47]张雷,洪钟瑜,李都林.小波分析法在变速机械故障诊断中的应用.华东工业大学学报,1996,19(1):19-24.
    [48]赵凯,王宗花.小波变换及其在分析化学中的应用.北京,地质出版社,2000.
    [49]张湘伟,骆小明,中桐滋.小波分析在测试信号分析中的应用.应用数学和力学,1998,19(3):203-207.
    [50]冉启文.小波变换与分数傅里叶变换理论及应用.哈尔滨工业大学出版社,2001.
    [51]谢波,朱世华,胡刚.多径衰落信号的分形时序特性研究[J].西安交通大学学报,1999,33(9):18-21
    [52] Crownover RM. Introduction to fractal sand chaos [M].Boston, USA: Jonesand Barlett Publishers,1995:1-5
    [53] BakP, ChenK. Thephysics offractals[J].PhysicaD,1989,38(1):5-12
    [54] GiorgilliA, CasatiD, GalganiL, etal. Anefficient procedure to compute fractal dimesions by boxcounting [J]. Physics Letters A, 1986, 115(5): 202-206
    [55] Liebovitch LS, Toth T. A fastal gorithm to determine fractal dimensions by boxcounting[J].PhysicsLettersA,1989,141(8/9): 86-90
    [56]张小飞,徐大专,齐泽锋,等.基于分形的奇异信号的检测[J].南京航空航天大学学报,2003,35(4):404-408
    [57] Stein MC, Hartt KD. Nonparametric 2 estimation of fractal dimension [R].Visual Communication sand Image Processingc 88, Proceedings of SPIE,1988,1001:132-137
    [58] Theiler J. Estimating fractal dimension [J].Journal of the Optical Society of America A2 Optic sand Image Science,1990,7(6):1055-1073
    [59]张小飞,徐大专,齐泽锋.基于小波变换奇异信号检测的研究[J].系统工程与电子技术,2003,25(7):814-816
    [60] Stephane Mallat,Sifen Zhong. Characterization of signals frommultiscaleedges[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(7):1019-1033
    [61] MallatS.Atheoryformultisolutionsignaldecomposition: the wavelet representation [J]. IEEE Transon Pattern Analysis and Machine Inteligence, 1989,11(7):674-693
    [62] Stephane Mallat, WenLiangHwang. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory,1992,38(2):617-643
    [63]张小飞,徐大专,齐泽锋.基于模极大值小波域的去噪算法的研究[J].数据采集与处理,2003,18(3):315-318
    [64] MandelbrotBB.TheFractalGeometryofNature[M].NewYork:Freeman,1982.
    [65]赵松年.子波变换与子波分析[M]1北京:电子工业出版社,1996.
    [66] Wornell GW,Oppenheim AV.Estimation of Fractal Signal from Noisy Measurements Using Wavelet [J].IEEE Transon SP,1992,40(3):11-23.
    [67] Lundahl T,Ohley WJ,Kay SM,etal. Fractional Brownian Motion: A Maximum Likelihood Estimatorand Its Application to Image Texture[J].IEEE Trans Med Imaging,1986,5(3):51-61.
    [68]秦前清,杨宗凯.实用小波分析.第一版.西安电子科技大学出版社,1995
    [69]王建忠.小波理论及其在物理和工程中的应用.数学进展,1992,21(3):289-316
    [70]胡昌华,张军波,夏军.基于Matlab的系统分析与设计――小波分析.西安.:西安电子科技大学出版社.,1999
    [71]程正兴.小波分析算法与应用.西安:西安交通大学出版社,1999
    [72]许明.锚固系统质量的无损检测与智能诊断技术研究.重庆大学博士学位论文. 2002
    [73] K.法尔科内,曾文曲等译,分形几何――数学基础及其应用,沈阳:东北工学院出版社,1991
    [74]辛厚文,分形理论及其应用,合肥:中国科技大学出版社,1999
    [75]金一栗,袁宝民,于万波,等.基于分形盒子维数的车牌定位方法[J].计算机应用研究,2002(9):40-42.
    [76]石博强,申焱华.机械故障诊断的分形方法[M].北京:冶金工业出版社,2001.16-69.
    [77]李桀,朱金兆,朱清科.分形维数计算方法研究进展[J].北京林业大学学报,2002(2):71-78.
    [78]刘春生.采煤机镐形截齿安装角的研究[J].辽宁工程技术大学学报,2002,21(5):661-663.
    [79]陈国安,尤肖虎.基于信道变化速率检测的信道估计积分长度与专用导码功率动态调整[J].电子学报,1999,27(11):61-64
    [80]董霄剑,蒋良成,尤肖虎.Rake接收机中信遭最大多普勒频移估计的一种新方洁及其在信遭估计中的应用[J].电路与系统学报,2000,5(3):1-5
    [81]郝柏林.从抛物线谈混沌动力学引论[M]1上海:上海科技教育出版社,1993.
    [82]王金龙.混沌和分形的普适常数的物理意义[J].自然杂志,1998,26(6).
    [83]朱治军,李后强.用小波分析进行分形反演的理论研究[A].冯长根.非线性科学的理论,方法和应用[C],北京:科学出版社,1997.
    [84] Mandelbrot BB. The fractal geometry of nature [M].NewYork: Freeman Company, 1983.
    [85] Mark EG,Olivia J,Jafar AH,etal.Fractals to chastic modeling of Aero magnetic data [J]. Geophysics,1991,58(11):1706-1715.
    [86] Pilkington M,Gregotski ME,Todoceschuck JP.Usingfractal crustal magnetization model sinmagnetic interpretation[J].Geo 2 physical Prospecting, 1995,42:6-7.
    [87] Mark DM,Aronson PB.Scale 2 dependent fractal dimension of topographic surface) Anempirical investigation, with applications ingeomorphology and computer mapping[J].Math. Geol, 1984, 16: 671- 681
    [88]申宁华,王喜臣,王光杰,等.中国大陆重磁异常场的计算方法及地质解释[M].长春:吉林科学技术出版社,1997.
    [89]吴永栓,曹辉,俞建宝,等.分形理论在高精度重力油气检测中的应用[J].石油物探,1997,36(4).
    [90]刘庆生.微磁方法寻找油气藏的基本原理与应用[M].武汉:中国地质大学出版社,1996.
    [91] Saunders DF,Burson KR,Thompson CK,等.土壤磁化率和壤气烃分析与地下油气聚集的观测关系[J].国外油气勘探,1992,(1):97-114.
    [92]胡岗.随机力与非线性系统[M].上海:上海科技教育出版社,1994.
    [93]高安秀树.分形数维[M].沈步明译.北京:地震出版社,1989.
    [94]姜建东,王晓升,屈梁生.分形几何在回转机械信号振动分析中的应用[J].中国机械工程,1998,(9):39—41.
    [95]范金城,梅长林.数据分析.北京:科学出版社,2002
    [96] Agrawal R,Imielinski T,Wami AS.Minin gas sociation rules between sets of items in larger data bases[A].InProc.of ACMSIGMODC ference on Management of Data[C].Washington,DC:[s.n.],1993.207-216.
    [97] Srikant R,Agrawal R.Mining Quantitative Association Rules in Large RelationalTables[A].Proc.1996 ACMSIGMOD Int. lConf . Very Lage Data Bases[C]. Montreal,Canada:[s.n.],1996.1-12.
    [98]王凌,李云峰,逄焕利,等.数据集中多属性关联规则发现算法[J].吉林工学院学报,2000,21(4):26-28.
    [99]王选文,丁夷,范九伦.关联规则挖掘在人事系统中的应用[J].西安邮电学院学报,2001,6(1):21-23.
    [100] Agrawal R,Shim K.Developing tightly-coupled data mining Applications on a Relational Data base System[A]. In Procof the 2nd Int.l Conference on Know ledge Discovery in Data base sand Data Mining[C]. Portland,Oregon:[s.n.],1996.287-290.
    [101]杨炳儒,孙海洪,熊范纶.利用标准SQL查询挖掘多值型关联规则及其评价[J].计算机研究与发展,2002,39(3):307-312.
    [102]董淳,王敏慧,李孟恒,等.关系表中联系规则挖掘的设计和实现[J].计算机工程,1999,25(1):14-15.
    [103] McCulloch W.C.and Pitts W.,A logical Calculations of the Ideas Immanent in Nervous Activity,Bulletin of Mathematical Biophysics,1943,Vol.5,115-133
    [104]王旭等,人工神经网络原理与应用,沈阳:东北大学出版社,2000
    [105] Hecht-Nielsen R,Theory of Back Propagation Neural Network,Proc.IJCNN-89,I-593,1989
    [106]韩力群,人工神经网络理论、设计及应用,北京:化学工业出版社,2002.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700