用户名: 密码: 验证码:
微网群自主与协调控制关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球人口的增长、能耗的增加、环境问题的严峻和化石能源的逐步枯竭,可再生能源的开发利用得到越来越多的关注。微电网作为一种整合利用分布式电源的有效形式,如何通过灵活的控制技术实现可再生能源的充分利用,提高供电质量与可靠性成为研究的热点。此外,微电网的分布式特性越来越明显,渗透率正逐渐提高,在高渗透率情况下如何有效地控制多个微电网的运行成为亟待解决的问题。
     本文围绕微网群协调控制涉及的发电单元控制、微电网控制、群级控制以及控制通信系统模型等几个方面展开了深入的研究,主要研究成果如下:
     1)针对分布式电源下垂控制中频率存在偏差的问题,提出了基于虚拟频率的下垂控制方法。该方法给出通过改变虚拟频率设定值来调整相角,得到相角下垂控制系数,实现了在不改变电源频率条件下的无功功率输出。仿真实验结果表明,与以往下垂控制方法相比基于虚拟频率的下垂控制方法无需改变频率设定值即可实现相同功率分配效果。
     2)针对微电网多运行状态、分布式电源多控制模式的问题,建立了基于有限状态机矩阵的状态转换模型,提出了基于有限状态机矩阵的微电网协调控制方法。该方法可以实现微电网全局控制管理,并且在离网独立运行状态下通过分区协调控制实现了电压频率的二次调整和功率越限控制。
     3)提出了确定微电网在群体中对外应表现的控制特性指标及实现外特性的控制方法,并给出了基于该控制方法的微网群协调控制3层体系结构。通过仿真实验验证了评价指标及其控制方法的适用性和合理性。
     4)在对微电网功能进行全面分解组合的基础上,建立了IEC61850微电网通信控制信息模型,并给出了基于该信息模型的微网群控制实现方法。该信息模型为微网群中智能设备互操作提供了基础,使得微电网控制方法实现过程标准化,文中对典型控制功能的实现进行了验证。
Along with growth of the world's population, increased consumption of energy, serious environmental problems and exhaustibility of fossil fuels, the development and utilization of renewable energy attracts much more attention. Micro-grid is an effective way to support distributed generation integrated into, it has become a hot topic that how to make full use of renewable energy, improve power quality and guarantee reliability of power supplement through flexible control technology. Moreover, due to distributed characteristics and permeability of micro-grid increasing gradually, how to effectively control multi-microgrids operation becomes a serious problem that needs to be solved urgently.
     This paper mainly studies in coordinated control of a micro-grid cluster, which involves control of a power generation unit, control of a micro-grid and control of a micro-grid cluster. The main results of this research are as follows:
     1) Aim at the frequency deviation problem existing in droop control of distributed generation, an improved droop control method based on virtual frequency is proposed. In this method, adjustment of phase angle is achieved by changing setting value of virtual frequency, and then can get the control coefficient of voltage phase-angle droop. Consequently, reactive power output is achieved in the condition of not changing frequency of distributed generation. Simulations results show that, compared with previous droop control method, when the same effect of power allocation is done, the proposed droop control method based on virtual frequency need not change setting value of frequency.
     2) Concentrate on problem existing in multiple operation states of micro-grid and multiple control modes of distributed generation, a coordinating control method based on finite-state-machine matrix is presented. The control method can provide global control and management for overall micro-grid. Also, in the condition of off-grid operation, secondary adjustment of voltage and frequency as well as power over-limit control can be achieved through partition coordination and control.
     3) Not only a method to define the external control characteristic indexes that a micro-grid shows in the micro-grid cluster but also a method to realize the control of external characteristic of a micro-grid are proposed. Furthermore, a three-layer coordinated control architecture of micro-grid cluster is given, which is based on the control method mentioned above. Simulations are carried out to demonstrate the applicability and rationality of the indicator and this method.
     4) Based on functional decomposition and integration of the micro-grid, a control information model on the grounds of IEC61850communication protocol is established, then providing a control method used this information model to achieved3-layer control of the micro-grid cluster. The information model provides basis for interoperations between different intelligent devices and makes the process of the micro-grid control standardized. Also, typical control functions are tested and proven in the paper.
引文
[l]英大网.控制雾霾重要路径:发展清洁能源、优化能源结构.]http://www.micropowers.com/ newsinfo.asp?id=807,2013-12-26.
    [2]中国能源网.美国分布式发电现状、政策和前景.http://www.micropowers.com/newsinfo.asp?id=672,2012-2-1.
    [3]Sinke W C, Montoro D F, Despotou E, et al. The Solar Europe Industry Initiative:Research, technology development and demonstration in support of 2020 and long-term targets:Photovoltaic Specialists Conference (PVSC),2010 35th IEEE, Honolulu, HI,2010[C].2010,20-25.
    [4]王新建,杨军,王峰.微型电网的控制策略研究综述.电气开关,2011,49(06):19-22.
    [5]周篁.关于我国可再生能源发电的问题分析及对策研究.电网技术,2001,(7):1-3.
    [6]鲁宗相,王彩霞,闵勇,等.微电网研究综述.电力系统自动化,2007,31(19):100-107.
    [7]郑漳华,艾芊.微电网的研究现状及在我国的应用前景.电网技术,2008,(16):27-31.
    [8]盛鹍,孔力,齐智平,等.新型电网-微电网(Microgrid)研究综述.继电器,2007,(12):75-81.
    [9]Caire R, Retiere N, Martino S, et al. Impact assessment of LV distributed generation on MV distribution network:Power Engineering Society Summer Meeting,2002 IEEE, Chicago, IL, USA, 2002[C].2002,25-25.
    [10]Lasseter R H, Paigi P. Microgrid:a conceptual solution:Power Electronics Specialists Conference,2004. PESC 04.2004 IEEE 35th Annual,2004[C].2004,20-25.
    [11]Kohno R, Takizawa K. Overview of research and development activities in NICT UWB consortium,2005 IEEE International Conference on, Ultra-Wideband, ICU,2005[C].2005,735-740.
    [12]Aki H. Energy storage research and development activities in Japan:Power and Energy Society General Meeting,2011 IEEE, San Diego, CA,2011[C].2011,24-29.
    [13]王成山.微电网专题介绍.中国电机工程学报,2012,(25):1.
    [14]黄杏.微网系统并_离网特性与控制策略研究:[博士论文]北京交通大学,2013.
    [15]Tamaki M, Uehara S, Takagi K, et al. Demonstration results using Miyako Island Mega-Solar Demonstration Research Facility:Transmission and Distribution Conference and Exposition (T&D), 2012 IEEE PES, Orlando, FL,2012[C].2012,7-10.
    [16]Morozumi S, Kikuchi S, Chiba Y, et al. Distribution technology development and demonstration projects in Japan:Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,2008 IEEE, Pittsburgh, PA,2008[C].2008,20-24.
    [17]蹇芳,李建泉,吴小云.基于IEC61850标准的微电网监控系统.大功率变流技术,2012,(02):26-29.
    [18]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述.电网技术,2003,27(12):71-75.
    [19]钱科军,袁野,周承科.分布式发电对配电网可靠性的影响研究.电网技术,2008,32(11): 74-78.
    [20]丁磊,潘贞存,丛伟.基于有根树的分布式发电孤岛搜索.中国电机工程学报,2008,28(25):62-67.
    [21]王志群,朱守真,周双喜.逆变型分布式电源控制系统的设计.电力系统自动化,2004,28(24):61-66.
    [22]王成山,杨占刚,王守相,等.微网实验系统结构特征及控制模式分析.电力系统自动化,2010,34(1):99-105.
    [23]Blaabjerg F, Teodorescu R, Liserre M, et al. Overview of Control and Grid Synchronization for Distributed Power Generation Systems. Industrial Electronics, IEEE Transactions on,2006,53(5): 1398-1409.
    [24]张颖媛.微网系统的运行优化与能量管理研究:[博士论文]合肥工业大学,2011.
    [25]郜登科,姜建国,张宇华.使用电压-相角下垂控制的微电网控制策略设计.电力系统自动化,2012,36(5):29-34
    [26]宋明玉,曾成碧.微型燃气轮机发电系统并网运行和孤网运行仿真.现代电力,2010,(05):72-75
    [27]Katiraei F, Iravani M R. Power management strategies for a microgrid with multiple distributed generation units. IEEE Transactions on Power Systems,2006,21 (4):1821-1831.
    [28]Uerrero J M, Hang L, Uceda J. Control of distributed uninterruptible power supply systems. IEEE Transactions on Industrial Electronics,2008,55(8):2845-2859.
    [29]Guerrero J M, De Vicuna Lg, Matas J, et al. A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems. IEEE Transactions on Power Electronics,2004,19(5):1205-1213.
    [30]牟晓春,毕大强,任先文.低压微网综合控制策略设计.电力系统自动化,2010,34(19):91-96.
    [31]Yun W L, Ching-Nan K. An Accurate Power Control Strategy for Power-Electronics-Interfaced Distributed Generation Units Operating in a Low-Voltage Multibus Microgrid. Power Electronics, IEEE Transactions on,2009,24(12):2977-2988.
    [32]张庆海,彭楚武,陈燕东,等.一种微电网多逆变器并联运行控制策略.中国电机工程学报,2012,32(25):126-132.
    [33]程军照,李澍森,吴在军,等.微电网下垂控制中虚拟电抗的功率解耦机理分析.电力系统自动化,2012,36(7):27-32.
    [34]张婷,程军照,张小亮.基于虚拟电阻的微网下垂控制方法.水电能源科学,2013,(05):176-178.
    [35]赵洪涛,程军照.采用虚拟阻抗的逆变器并联运行均流控制.电测与仪表,2012,(07):64-69.
    [36]温春雪,李正熙.基于虚拟电阻控制环的并联逆变器简化控制方法.电工技术学报,2012,(06):63-68.
    [37]于玮,徐德鸿.基于虚拟阻抗的不间断电源并联系统均流控制.中国电机工程学报,2009,(24):32-39.
    [38]周贤正,荣飞,吕志鹏,等.低压微电网采用坐标旋转的虚拟功率V/f下垂控制策略.电力系统自动化,2012,36(2):47-51.
    [39]黄伟,孙昶辉,吴子平,等.含分布式发电系统的微电网技术研究综述.电网技术,2009,33(9):14-18.
    [40]杨向真.微网逆变器及其协调控制策略研究:[博士论文]合肥工业大学,2011.
    [41]肖朝霞.微网控制及运行特性分析:[博士论文]天津大学,2009.
    [42]Zeng L, Jinjun L, Yalin Z, et al. Output impedance modeling and stability criterion for parallel inverters with master-slave sharing scheme in AC distributed power system:Applied Power Electronics Conference and Exposition (APEC),2012 Twenty-Seventh Annual IEEE, Orlando, FL,2012[C].2012, 5-9.
    [43]Borrega M, Marroyo L, Gonzalez R, et al. Modeling and Control of a Master– Slave PV Inverter With N-Paralleled Inverters and Three-Phase Three-Limb Inductors. Power Electronics, IEEE Transactions on,2013,28(6):2842-2855.
    [44]潘远,李培强,李欣然,等.考虑主从控制策略的微电源逆变器设计.电力系统及其自动化学报,2013,(03):25-30.
    [45]李军,许嘉宁,孙志强,等.微电网主从控制建模仿真.南京工程学院学报(自然科学版),2012,(03):16-22.
    [46]韩培洁,张惠娟,杜强.微电网主/从控制策略的分析研究.低压电器,2012,(14):22-26.
    [47]杨文杰.光伏发电并网与微网运行控制仿真研究:[硕士论文]西南交通大学,2010.
    [48]纪明伟.分布式发电中微网技术控制策略研究:[硕士论文]合肥工业大学,2009.
    [49]Xiao S, Lik-Kin W, Lee Y S, et al. Design and analysis of an optimal controller for parallel multi-inverter systems. Circuits and Systems Ⅱ:Express Briefs, IEEE Transactions on, 2006,53(1):56-61.
    [50]Xiao S, Lee Y S, Dehong X. Modeling, analysis, and implementation of parallel multi-inverter systems with instantaneous average-current-sharing scheme. Power Electronics, IEEE Transactions on, 2003,18(3):844-856. [51] Piboonwattanakit K, Khan-Ngern W. Design of the Two Parallel Inverter Modules by Circular Chain Control Technique:Power Electronics and Drive Systems,2007. PEDS'07.7th International Conference on, Bangkok,2007[C].2007,27-30.
    [52]李福东,吴敏.微电网孤岛模式下负荷分配的改进控制策略.中国电机工程学报,2011,31(13):18-25.
    [53]KATIRAEI F, IRAVANI M R. Power management strategies for a microgrid with multiple distributed generation units. Power Systems, IEEE Transactions On,2006,21 (4):1821-1831.
    [54]Li Y W, Kao C N. An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid. Power Electronics, IEEE Transactions on,2009,24(12):2977-2988.
    [55]王瑞琪.分布式发电与微网系统多目标优化设计与协调控制研究:[博士论文]山东大学,2013.
    [56]周念成,金明,王强钢,等.串联和并联结构的多微电网系统分层协调控制策略.电力系统自动化2013,37(12):13-18.
    [57]丁明,罗魁,毕锐.孤岛模式下基于多代理系统的微电网能量协调控制策略.电力系统自动化,2013,37(5):1-8.
    [58]吴志,顾伟.孤岛方式下基于多代理系统的微电网有功-频率控制.电力自动化设备,2009,29(11):57-61.
    [59]周念成,胡斌,王强钢.含多种形式能源发电的微电网状态转换协调控制策略.重庆大学学报(自然科学版),2012,35(9):61-69.
    [60]Dimeas A. L, Hatziargyriou N. D. Operation of a Multiagent System for Microgrid Control. IEEE Transactions on Power Systems,2005,20(3):1447-1455.
    [61]Chun-xia D, Bin L. Multi-Agent Based Hierarchical Hybrid Control for Smart Microgrid. Smart Grid, IEEE Transactions on,2013,4(2):771-778.
    [62]Shafiee Q, Guerrero J M, Vasquez J C. Distributed Secondary Control for Islanded Microgrids-A Novel Approach. IEEE Transactions on Power Electronics,2014,29(2):1018-031.
    [63]吴志,顾伟.孤岛方式下基于多代理系统的微电网有功-频率控制.电力自动化设备,2009,29(11):57-61.
    [64]杨向真,苏建徽,丁明.面向多逆变器的微电网电压控制策略.中国电机工程学报,2012,32(7):7-13.
    [65]郝雨辰,吴在军,窦晓波,等.多代理系统在直流微网稳定控制中的应用.中国电机工程学报,2012,32(25):27-35.
    [66]孟安波,刘永前,徐海波.基于多Agent遗传算法的水电厂机组优化组合研究与实现.电力系统保护与控制,2011,39(1):23-28.
    [67]王健,王玮,屈志坚,等.基于多代理技术的含分布电源的智能配电网.电力系统保护与控制,2010,38(11):86-89.
    [68]杨秀,杨菲,王瑞霄.微电网实验与示范工程发展概述.华东电力,2011,10:1599-1603.
    [69]Arefifar S A, Mohamed Y A I, EL-Fouly T H M. Supply-Adequacy-Based Optimal Construction of Microgrids in Smart Distribution Systems. Smart Grid, IEEE Transactions on,2012, 3(3):1491-1502.
    [70]Hatziargyriou N D, Dimeas A, Tsikalakis A G, et al. Management of microgrids in market environment:Future Power Systems,2005 International Conference on, Amsterdam,2005 [C].2005, 18-18.
    [71]丁明,马凯,毕锐.基于多代理系统的多微网能量协调控制.电力系统保护与控制,2013,(24):1-8.
    [72]Gil N J, Peas Lopes J A. Hierarchical Frequency Control Scheme for Islanded Multi- Microgrids Operation:Power Tech,2007 IEEE Lausanne, Lausanne,2007[C].2007,1-5.
    [73]Kumar Nunna H S V S, Doolla S. Multiagent-Based Distributed-Energy-Resource Management for Intelligent Microgrids. Industrial Electronics, IEEE Transactions on,2013,60(4): 1678-1687.
    [74]艾芊,章健.基于多代理系统的微电网竞价优化策略.电网技术,2010,34(2):46-51.
    [75]胡丽萍,朱雨晨,许佳佳.基于多代理系统的微网与电网协调运行模式.陕西电力,2013(04):42-46.
    [76]Nunna K H S V, Doolla S. Responsive End-User-Based Demand Side Management in Multimicrogrid Environment. Industrial Informatics, IEEE Transactions on,2014,10(2):1262-1272.
    [77]Koyanagi K, Hida Y, Yokoyama R, et al. Electricity Cluster-Oriented Network:A grid-Independent and autonomous aggregation of micro-grids:Modern Electric Power Systems (MEPS), 2010 Proceedings of the International Symposium, Wroclaw,2010[C].2010,20-22.
    [78]Yokoyama R, Hida Y, Koyanagi K, et al. The role of battery systems and expandable distribution networks for smarter grid:Power and Energy Society General Meeting,2011 IEEE, San Diego, CA,2011[C].2011,24-29.
    [79]Sofla M A, King R. Control method for multi-microgrid systems in smart grid environment-Stability, optimization and smart demand participation:Innovative Smart Grid Technologies (ISGT), 2012 IEEE PES, Washington, DC,2012[C].2012,16-20.
    [80]Gil N J, Peas Lopes J A. Hierarchical Frequency Control Scheme for Islanded Multi-Microgrids Operation:Power Tech,2007 IEEE Lausanne, Lausanne,2007[C].2007,1-5.
    [81]Guerrero J M, Chandorkar M, Lee T, et al. Advanced Control Architectures for Intelligent Microgrids-Part Ⅰ:Decentralized and Hierarchical Control. Industrial Electronics, IEEE Transactions on, 2013,60(4):1254-1262.
    [82]Kargarian A, Falahati B, Yong F, et al. Multiobjective optimal power flow algorithm to enhance multi-microgrids performance incorporating IPFC:Power and Energy Society General Meeting, 2012 IEEE, San Diego, CA,2012[C].2012,22-26.
    [83]Rua D, Pereira L F M, Gil N, et al. Impact of multi-Microgrid Communication systems in islanded operation:Innovative Smart Grid Technologies (ISGT Europe),2011 2nd IEEE PES International Conference and Exhibition on, Manchester,2011[C].2011,5-7.
    [84]Gopalan S A, Sreeram V, Iu H H C, et al. Fault analysis of an islanded Multi-microgrid:Power and Energy Society General Meeting,2012 IEEE, San Diego, CA,2012[C].2012,22-26.
    [85]何磊.IEC61850应用入门基础.北京:中国电力出版社,2006
    [86]丁力.IEC61850变电站自动化通信仿真研究:[硕士论文]西南交通大学,2008.
    [87]谭文恕.变电站通信网络和系统协议IEC61850介绍.电网技术,2001,25(9):8-11.
    [88]李永亮,李刚.IEC61850第2版简介及其在智能电网中的应用展望.电网技术,2010,(04):11-16.
    [89]任雁铭,操丰梅.IEC61850新动向和新应用.电力系统自动化,2013,(02):1-6.
    [90]王聪,张毅,文正国.基于IEC 61850标准的水电厂监控系统信息建模.水电自动化与大坝监测,2012,(06):1-4
    [91]许振明.基于IEC61850标准的变电站自动化系统模型设计及生成:[硕士论文]厦门大学,2008.
    [92]张昀.基于IEC61850标准的变电站技术应用研究:[硕士论文]浙江大学,2008.
    [93]易永辉.基于IEC 61850标准的变电站自动化若干关键技术研究:[博士论文]浙江大学,2008.
    [94]陈伟.基于IEC61850的变电站通信网络性能及通信控制器的研究:[硕士论文]华东交通大学,2009.
    [95]窦晓波.基于IEC 61850的新型数字化变电站通信网络的研究与实践:[博士论文]东南大学,2006.
    [96]陈志伟.基于IEC61850的配网自动化通信技术研究:[硕士论文]山东大学,2012.
    [97]吴琼.基于IEC 61850的变电站自动化系统通信网络.上海电力,2010,(06):347-352.
    [98]袁安富,于海,缪文贵,等.智能变电站MMS报文捕获分析的研究与实现.电测与仪表,2013,(09):74-78.
    [99]黄华勇,游步新,全智,杨庭军.通信在线监视分析系统在智能变电站中的应用.电力自动化设备,2011,(04):124-127.
    [100]李友军,徐广辉,等.Web Service和MMS技术在IEC61850标准体系中的应用分析.电力系统保护与控制,2009,(14):101-104.
    [101]张杰,张浩,侯思祖,等.MMS在变电站自动化系统通信协议中的应用.电力系统通信,2011,(04):34-38.
    [102]刘菲,周伊琳,孙建伟,等.基于MMS实现调度主站与智能变电站间实时数据交互的技术研究.电工技术,2012,(11):61-63.
    [103]吴在军,窦晓波,胡敏强.基于IEC61850标准的数字保护装置建模.电网技术,2005,(21):85-88.
    [104]韩国政,徐丙垠.基于IEC61850标准的智能配电终端建模.电力自动化设备,2011,(02):104-107.
    [105]段新会,郑光绪,翟伟翔.基于IEC61850线路保护IED的信息建模与配置方法.仪器仪表与分析监测,2013,(04):25-29.
    [106]杨桂松,张浩,牛志刚.基于IEC61850的IED数据建模研究与实现.华东电力,2007,(08):75-79.
    [107]王德文,邸剑,张长明.变电站状态监测IED的IEC 61850信息建模与实现.电力系统自动化,2012,(03):81-86.
    [108]彭安红,张浩,牛志刚.电力系统继电保护装置的IEC 61850建模.华东电力,2008,(04):38-40.
    [109]邬航杰,盛戈皞,崔荣花,等.基于IEC 61850的变压器状态监测IED的信息建模及SCL描述.华东电力,2011,(12):2012-2016.
    [110]张杰,侯思祖,陈小倩,等.基于IEC 61850信息建模方法的应用研究.电力系统通信,2011,11:31-35.
    [111]童镭,杨小磊,许武松,等.基于1EC61850标准的牵引变压器保护装置的建模研究.电气技术,2011,(02):47-49.
    [112]祁忠,笃竣,张志学,等.IEC61850 SCL配置工具的研究与实现.电力系统保护与控制,2009,(07):76-81.
    [113]王凤祥,方春恩,李伟.基于IEC61850的SCL配置研究与工具开发.电力系统保护与控制,2010,(10):106-109.
    [114]李先妹,黄家栋,唐宝锋.数字化变电站继电保护测试技术的分析研究.电力系统保护与控制.2012,(03):105-108.
    [115]邹贵彬,王晓刚,高厚磊.全数字化动模测试系统设计与实现.电力系统保护与控制,2011,03:109-113.
    [116]王涛,高厚磊,邹贵彬,王大鹏,马凯,汤磊,钱卫钧.基于IEC 61850标准的数字化保护动模测试系统.电力系统保护与控制,2009,24:133-136+141.
    [117]陈炯聪,高新华,潘璠.IEC61850互操作测试分析.电力系统保护与控制.2009,(15):121-123.
    [118]国家能源局,DL/T 860.7420,电力系统自动化通信网络和系统第7-420部分:基本通信结构-分布式能源逻辑节点.北京:中国电力出版社,2012-12-1.
    [119]Ishchenko D, Oudalov A, Stoupis J. Protection coordination in active distribution grids with IEC 61850:Transmission and Distribution Conference and Exposition (T&D),2012 IEEE PES, Orlando, FL,2012[C].2012,7-10.
    [120]Ustun T S, Ozansoy C, Zayegh A. Modeling of a Centralized Microgrid Protection System and Distributed Energy Resources According to IEC 61850-7-420. Power Systems, IEEE Transactions on,2012,27(3):1560-1567.
    [121]Ustun T S, Ozansoy C, Zayegh A. Simulation of communication infrastructure of a centralized microgrid protection system based on IEC 61850-7-420:Smart Grid Communications (SmartGridComm),2012 IEEE Third International Conference on, Tainan,2012[C].2012,5-8.
    [122]Ustun T S, Ozansoy C, Zayegh A. Extending IEC 61850-7-420 for distributed generators with fault current limiters:Innovative Smart Grid Technologies Asia (ISGT),2011 IEEE PES, Perth, WA,2011[C].2011,13-16.
    [123]Honeth N, Wu Y, Etherden N, et al. Application of the IEC 61850-7-420 data model on a Hybrid Renewable Energy System:PowerTech,2011 IEEE Trondheim, Trondheim,2011[C].2011, 19-23.
    [124]Lee J, Han B, Cha H. Development of hardware simulator for DC micro-grid operation analysis:Power and Energy Society General Meeting,2012 IEEE, San Diego, CA,2012[C].2012, 22-26.
    [125]ByungGwan Y, Hyo-Sik Y, Seungho Y, et al. CAN to IEC 61850 for microgrid system: Advanced Power System Automation and Protection (APAP),2011 International Conference on, Beijing, 2011[C].2011,16-20.
    [126]Stanciulescu G, Farhangi H, Palizban A, et al. Communication technologies for BCIT Smart Microgrid:Innovative Smart Grid Technologies (ISGT),2012 IEEE PES, Washington, DC,2012[C]. 2012,16-20.
    [127]Colet-Subirachs A, Ruiz-Alvarez A, Gomis-Bellmunt O, et al. Control of a utility connected microgrid:Innovative Smart Grid Technologies Conference Europe (ISGT Europe),2010 IEEE PES, Gothenburg,2010[C].2010,11-13.
    [128]Ruiz-Alvarez A, Colet-Subirachs A, Gomis-Bellmunt O, et al. Design, management and comissioning of a utility connected microgrid based on IEC 61850:Innovative Smart Grid Technologies Conference Europe (ISGT Europe),2010 IEEE PES, Gothenburg,2010[C].2010,11-13.
    [129]Ruiz-Alvarez A, Colet-Subirachs A, Alvarez-Cuevas Figuerola F, et al. Operation of a Utility Connected Microgrid Using an IEC 61850-Based Multi-Level Management System. Smart Grid, IEEE Transactions on,2012,3(2):858-865.
    [130]Colet-Subirachs A, Ruiz-Alvarez A, Gomis-Bellmunt O, et al. Centralized and Distributed Active and Reactive Power Control of a Utility Connected Microgrid Using IEC61850. Systems Journal, IEEE,2012,6(1):58-67.
    [131]Gomis-Bellmunt O, Sumper A, Colet-Subirachs A, et al. A utility connected microgrid based on power emulators:Power and Energy Society General Meeting,2011 IEEE, San Diego, CA, 2011[C].2011,24-29.
    [132]Blair S M, Coffele F, Booth C D, et al. An Open Platform for Rapid-Prototyping Protection and Control Schemes With IEC 61850. Power Delivery, IEEE Transactions on,2013,28(2):1103-1110.
    [133]邓卫,裴玮,齐智平,基于IEC61850标准的微电网信息交互.电力系统自动化,2013,(36):1-6.
    [134]蹇芳,李建泉,吴小云,基于IEC61850标准的微电网监控系统.大功率变流技术,2012,(2):26-54.
    [135]李国武,张雁忠,黄巍松,等.基于IEC61850的分布式能源智能监控终端通信模型.电力系统自动化,2013,37(10):13-18.
    [136]Yun W L, Ching-Nan K. An Accurate Power Control Strategy for Power-Electronics-Interfaced Distributed Generation Units Operating in a Low-Voltage Multibus Microgrid. Power Electronics, IEEE Transactions on,2009,24(12):2977-2988.
    [137]Vandoom T L, Renders B, Meersman B, et al. Reactive Power Sharing in an islanded microgrid:Universities Power Engineering Conference (UPEC),2010 45th International, Cardiff, Wales, 2010[C].2010,1-6.
    [138]Majumder R, Ledwich G, Ghosh A, et al. Droop Control of Converter-Interfaced Microsources in Rural Distributed Generation. Power Delivery, IEEE Transactions on,2010,25(4): 2768-2778.
    [139]何仰赞,温增银.电力系统分析.武汉:华中科技大学出版社,2002.
    [140]吴云亚,阚加荣,谢少军.适用于低压微电网的逆变器控制策略设计.电力系统自动化,2012,36(6):39-44.
    [141]周龙华,舒杰,张先勇.分布式能源微网电压质量的控制策略研究.电网技术,2012,6(10):17-22.
    [142]陈达威,朱桂萍.低压微电网中的功率传输特性.电工技术学报,2010,25(7):117-122
    [143]张洋,王伟,李献伟.基于有功缺额的微电网集中控制策略研究.电力系统保护与控制,2011,39(23):106-111.
    [144]Iwade T, Komiyama S, Tanimura Y, et al. A novel small-scale UPS using a parallel redundant operation system:Telecommunications Energy Conference,2003. INTELEC'03. The 25th International, Yokohama, Japan,2003[C].2003,23-23.
    [145]Borrega M, Marroyo L, Gonzalez R, et al. Modeling and Control of a Master-Slave PV Inverter With N-Paralleled Inverters and Three-Phase Three-Limb Inductors. Power Electronics, IEEE Transactions on,2013,28(6):2842-2855.
    [146]Peas Lopes J A, Moreira C L, Madureira A G. Defining control strategies for MicroGrids islanded operation. Power Systems, IEEE Transactions on,2006,21(2):916-924.
    [147]吴志锋,舒杰,张先勇.基于多级结构原理的独立微电网控制系统.中国电力,2012,(10):77-81.
    [148]Wandhare R G, Thale S, Agarwal V. Reconfigurable hierarchical control of a microgrid developed with PV, wind, micro-hydro, fuel cell and ultra-capacitor:Applied Power Electronics Conference and Exposition (APEC),2013 Twenty-Eighth Annual IEEE, Long Beach, CA,2013[C]. 2013,17-21.
    [149]Bevrani H, Habibi F, Babahajyani P, et al. Intelligent Frequency Control in an AC Microgrid: Online PSO-Based Fuzzy Tuning Approach. Smart Grid, IEEE Transactions on,2012,3(4):1935-1944.
    [150]陈卫民,陈国呈,崔开涌,等.分布式并网发电系统在孤岛时的运行控制.电力系统自动化,2008,32(9):88-91
    [151]王成山,李鹏.分布式发电、微网与智能配电网的发展与挑战.电力系统自动化,2010,34(2):10-14
    [152]马添翼,金新民,梁建钢.孤岛模式微电网变流器的复合式虚拟阻抗控制策略.电工技术学报,2013,(12):304-312.
    [153]朱征宇,朱庆生.有限状态机研究的矩阵模型方法.计算机科学,2001,28(4):46-47.
    [154]史雪飞,王志良,张琼.基于有限状态机矩阵模型的人工情绪模型.计算机工程,2010,36(18):24-28
    [155]史雪飞,王志良,张琼.模糊数学和有限状态机矩阵形式描述的人工情绪模型.北京科技大学学报,2010,32(9):1238-1242.
    [156]赵冬梅,张楠,刘燕华,等.基于储能的微电网并网和孤岛运行模式平滑切换综合控制策略.电网技术,2013,37(2):301-306.
    [157]Khan M S, Iravani M R. Supervisory Hybrid Control of a Micro Grid System:Electrical Power Conference,2007. EPC 2007. IEEE Canada, Montreal, Que.,2007[C].2007,25-26.
    [158]广西壮族自治区质量技术监督局.DB45/T 864-2012.微电网接入10kV及以下配电网技术规范[S].北京:中国标准出版社,2012.
    [159]Augugliaro A, Dusonchet L, Favuzza S, et al. A simple method to assess loadability of radial distribution networks:Power Tech,2005 IEEE Russia, St. Petersburg,2005[C].2005,27-30.
    [160]吴福保,王湘艳.太阳能光伏发电技术的特点及其发展.电力与能源,2011,1(1):74-79
    [161]中华人民共和国国家发展与改革委员会.变电站通信网络和系统第7部分:变电站和馈线设备基本通信结构-兼容逻辑节点类和数据类.北京:2006.
    [162]IEC. IEC/TR 61850-90-7, Communication networks and systems for power utility automation-Part 90-7. Switzerland:2013.[163]范建忠,战学牛,王海玲.基于IEC61850动态建立IED模型的构想.电力系统自动化,2006,(09):76-79.
    [164]张冉,任春梅,贺春.IEC61850报告控制模型及应用问题讨论.电力系统保护与控制,2009,37(6):93-97.
    [165]周鑫.基于IEC61850的微电网通信的研究:[硕士论文]燕山大学,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700