用户名: 密码: 验证码:
力学荷载及环境复合因素作用下混凝土结构劣化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土结构物因过早发生性能退化而缩减其服役寿命,往往不是由于强度不够,而是因为耐久性不足。目前国内外对单一环境因素如氯离子侵入、碳化导致的混凝土结构耐久性劣化已有较成熟的研究。但值得注意的是,实际环境中混凝土因耐久性不良服役性能下降大多是荷载、环境和气候等多因素协同作用的结果,这必然与单一环境因素下的混凝土结构劣化规律有显著差异。同时,为深入揭示复合因素作用对混凝土宏观性能力劣化的影响机理,也有必要从微观层面研究混凝土微结构变化、孔溶液化学成分的演变与混凝土中离子传输性能、耐久性宏观劣化之间的相互联系。
     为此,本论文开展了力学荷载作用下混凝土的碳化及氯离子侵入试验研究,揭示了荷载对混凝土碳化及氯离子侵入性能的量化影响规律,并将其应用于混凝土结构可靠度分析中。另外,本论文采用压汞和离子色谱分析技术,研究了复合环境条件下混凝土微结构及其孔溶液化学环境的变化。本论文主要研究内容及结论如下:
     (1)研究了荷载作用下混凝土的碳化性能,试验表明,混凝土的碳化程度随拉应力水平单调提高,随压应力水平先降低后提高,这是由于低应力水平的压荷载使混凝土初始的微裂缝适当闭合,内部趋于密实,碳化程度下降,然而随着压应力水平增大,混凝土内的界面裂缝和砂浆裂缝重新发展,开始导致混凝土碳化程度加剧。硅烷凝胶表面防水处理对提高混凝土抗碳化性有显著作用,但经硅烷表面处理的试块受载后碳化程度有一定的提高。在试验结果基础上建立了荷载作用下混凝土碳化模型。
     (2)研究了荷载作用下混凝土的毛细吸水、毛细氯盐溶液吸收、稳态和非稳态氯离子扩散等性能。对长期受弯曲荷载下的混凝土进行了自然浸泡、干湿循环和实际海洋环境暴露试验。用Fick第一和第二定律分别确定了稳态和非稳态条件下的氯离子扩散系数。结果一致表明,受压区混凝土在30%荷载水平时氯离子扩散系数普遍降低;但随着荷载水平进一步提高,部分结果中氯离子扩散系数开始有所提高,压荷载对混凝土中微裂缝的闭合效应在30%~60%的荷载水平之间已开始转变,较高水平的压应力使混凝土表层及内部产生新的裂缝并开始发展;受拉区的氯离子扩散系数随荷载水平不断增加,但基本不遵循线性关系。对比分析了混凝土在自然浸泡、干湿循环和实际海洋环境暴露下氯离子侵入量的差异。试验还表明,经过硅烷凝胶表面防水处理的试块氯离子侵入量极低。在试验结果基础上建立了荷载作用下混凝土氯离子扩散模型。
     (3)研究了碳化后的混凝土的毛细吸水、毛细氯盐溶液吸收、稳态和非稳态氯离子扩散等性能。试验表明,加速碳化提高了混凝土在纯水和氯盐溶液中的毛细吸收性,提高了混凝土和砂浆的氯离子扩散系数。研究了由于碳化对混凝土密实性的影响而导致抗氯离子渗透性变化的规律,同时全面分析了碳化对硬化水泥浆体孔结构的影响。结果表明,碳化使混凝土硬化水泥浆体的总孔隙率下降了30%~40%;碳化对不同配合比混凝土的硬化水泥浆体孔结构的影响并不一致,对于水胶比低、胶凝材料用量大的混凝土来说,碳化使硬化水泥浆体中>200nm的孔隙比例增加的效应更为显著。本论文还研究了混凝土微结构与混凝土抗氯离子渗透性能的相关关系并建立了相应模型。
     (4)采用孔溶液制取、离子色谱分析的试验手段,定量研究了配合比、龄期、内掺氯离子等因素对孔溶液中的氯离子存在状态的影响规律及相关机理。研究了碳化对混凝土孔溶液的氯离子存在状态以及碱度等方面的影响机理。完全碳化条件下孔溶液中的自由氯离子含量表现出明显增大的趋势,提高幅度在1~11倍;碳化后孔溶液中的氯离子结合率比未碳化试块的孔溶液降低了27%~54%;碳化使得孔溶液的碱度由13.19~13.47范围降至7.6~8.1范围。X射线衍射晶相分析结果也表明,与未碳化试样相比,碳化试样中的CaCO_3衍射峰最明显,Ca(OH)_2和Friedel复盐的衍射峰都消失了。碳化反应消耗了Ca(OH)_2和Friedel复盐,降低了水泥浆体的pH值,释放了Cl~-,由此极大地改变了混凝土内固相及液相化学环境,促进了氯离子对钢筋混凝土的侵蚀。
     (5)采用可靠度计算理论,结合荷载下混凝土的碳化模型和荷载下混凝土氯离子扩散模型,计算了相应的混凝土结构耐久性可靠度指标,分析了影响混凝土结构耐久性可靠度的因素。计算结果表明,荷载对结构基于碳化过程、基于氯离子传输累计至钢筋开始锈蚀的临界浓度的可靠度和服役寿命影响显著,在混凝土结构的耐久性设计中必须予以重视。
In practice it may be frequently observed that reinforced concrete structures need substantial repair or even need to be replaced a long time before the desired or designed service life is reached. That means the service life of many reinforced concrete structures is not sufficient. Early failure is in most cases not due to insufficient strength or stiffness but due to inadequate durability under the given environmental conditions. In this context it must be pointed out that durability under one dominant deteriorating mechanism as for instance chloride penetration or carbonation is taken into consideration for important structures nowadays. But in reality reinforced concrete structures are nearly always exposed to combined mechanical and environmental actions. It may be anticipated that service life can be shortened significantly by simultaneous or subsequent action of combined mechanical and environmental loads. In order to better understand the combined action it is necessary to investigate changes in the nano and micro structure and the migration of pore solution as well as of dissolved ions in the pore solution.
     The micro structure of the cement based matrix has been measured by means of mercury intrusion porosimetry. The composition of the pore solution has been analyzed by ion chromatography. CaCO3 and Ca(OH)2 profiles as well as chloride profiles have been determined. Most important results and the conclusions, which may be drawn are summarized in the following:
     1. The rate of carbonation increases with increasing applied tensile load. Under compressive load the rate of carbonation first decreases up to a load level of approximately 30% of the ultimate load. If, however, the compressive load is further increased the rate of carbonation increases with increasing compressive load. Surface impregnation with silane slows down the rate of carbonation. But an applied load increases the rate of carbonation even after surface treatment with silane. Based on these results a model has been developed which allows predicting the carbonation depth under an applied tensile or compressive load as function of time.
     2. Capillary absorption of water and of salt solutions has been determined. The influence of an applied load has been studied in particular. The chloride diffusion coefficient has been determined by applying Fick′s second law. Concrete has been exposed to salt solutions by immersion, by drying wetting cycles, and in an exposure site in the tidal zone. Under compressive load the chloride diffusion coefficient decreases until about one third of the ultimate load. Further increase of the compressive load increases the chloride diffusion coefficient again. It may be assumed that the micro structure becomes denser first and then formation of micro cracks through which chloride can migrate dominates. Under increasing tensile load the coefficient of diffusion of chlorides increases steadily. Little chloride penetrates specimens with silane impregnated surfaces. Based on these results a model to predict penetration of chloride into mechanically loaded structural elements has been developed.
     3. Capillary absorption of water, chloride absorption and chloride diffusion of carbonated concrete has been determined. After accelerated carbonation, capillary absorption of liquids by concrete is enhanced, and the chloride diffusion coefficient increases. The pore size distribution, total porosity, average pore size and the most probable pore size of carbonated concrete was analyzed. Changes of the microstructure induced by carbonation and their influence on chloride penetration were studied. It could be shown that the total porosity of hardened cement paste decreases by 30% to 40% during carbonation of concrete. The effect of carbonation on pore size distribution depends on the type of concrete. For concrete with a low water-binder ratio and high content of binder, the proportion of pores with a size lager than 200 nm increases in particular. A model describing the relationship between microstructure and chloride transportation in concrete was established based on the experimental results.
     4. After complete carbonation, the amount of free chloride ions in the pore solution increases by a factor ranging between 1 and 11. The amount of chemically bound chloride is lowered by 27% and up to 54%, and the pH value decreases from values in the range between 13.19 and 13.47 to values in the range between 7.6 and 8.1. Results of X-ray diffraction crystallography also show that in the diffraction spectrum of carbonated concrete strong peaks of CaCO_3 can be observed, while the peaks of Ca(OH)_2 and Friedel’s salt nearly disappeared. In addition to lowering the pH value of the pore solution, carbonation will release more chloride from the hydration products into pore solution and the entire chemical environment of concrete is changed considerably. It can be concluded that carbonation facilitates chloride penetration into concrete.
     5. Based on the models which have been developed to describe carbonation and chloride penetration of reinforced concrete structures under the influence of mechanical load, the reliability index of concrete structural elements under combined mechanical and environmental action has been determined. Based on probabilistic reliability theory main factors which influence reliability of concrete structures were analyzed. It turns out that mechanical load has a significant influence on reliability and service life of reinforced concrete structures. Finally it is recommended that in the future, more attention is to be paid on the influence of mechanical load on the long term performance and on service life of reinforced concrete structures.
引文
[1.1]数字水泥网. http://www.dcement.com/[OL]
    [1.2]陈肇元.混凝土结构的耐久性设计方法[J].建筑技术, 5, 2003: 328-333
    [1.3]洪定海.沿海地区钢筋混凝土用海砂问题及对策[J].混凝土, 2003. 2
    [1.4]陈肇元.土建结构工程的安全性与耐久性——现状、问题与对策.混凝土结构耐久性设计与施工指南[M].中国建筑工业出版社, 2004
    [1.5]张新越,欧进萍.混凝土结构中FRP筋的耐久性研究[C].沿海地区混凝土结构耐久性及其设计方法科技论坛暨全国第六届混凝土耐久性学术交流会论文集, 2004: 522-528
    [1.6]赵铁军.混凝土渗透性[M].北京:科学出版社, 2005. 11
    [1.7]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社, 2003. 2
    [1.8]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社, 2002. 9
    [1.9] Mehta.“Durability of Concrete-Fifty Years of Progress?”Durability of Concrete[R], SP-126, American Concrete Institute, Farmington Hills, Mich. 1991
    [1.10]中国工程院土木水利与建筑学部工程结构安全性与耐久性研究咨询项目组.混凝土结构耐久性设计与施工指南[M].中国建筑工业出版社, 2004. 5
    [1.11] Adam Neville. Properties of Concrete[M]. Publisher: Wiley, 1963
    [1.12] Adam Neville. Properties of Concrete. (2nd Edition)[M]. Publisher: Pitman, 1973
    [1.13]混凝土结构耐久性设计规范(GB/T 50476-2008)[S].中华人民共和国国家标准.北京, 2008
    [1.14]孙林柱,王铁成,张洪波.海水腐蚀梁抗剪强度及其智能分析[J].天津大学学报, 39(3), 2006: 284-288
    [1.15]阎西康,赵少伟,许素兰.钢筋混凝土梁遭受海水腐蚀后的受弯计算[J].河北工业大学学报, 35(5), 2006: 91-94
    [1.16]范颖芳,黄振国,郭乐工等.硫酸盐腐蚀后混凝土力学性能研究[J].郑州工业大学学报, 20(1), 1999: 91-93
    [1.17]曹双寅,朱伯龙.受腐蚀混凝土和钢筋混凝土的性能[J].同济大学学报, 18(2), 1990: 239-242
    [1.18] B. Gérard, P. C. Gilles, C. Laborderie. Coupled Diffusion-Damage Modeling and the Implications on Failure due to Strain Localization[J]. International Journal of Solids and Structures, 35(31-32), 1998: 4107-4120
    [1.19] Detlef Kuhl, Falko Bangert, Gunther Meschke. Couppled Chemo-mechanical Deterioration of Cementitious Materials. Part 1: Modeling[J]. International Journal of Solids and Structures, 41(1), 2004:15-40
    [1.20] J. F. Shao, Y. Zhang, M. Sibai, etc. An Elastoplastic Damage Model with Chemical Degradation for Cement Paste under Compresses[C]. EUROMECH Colloquium 460: Numerical Modelling of Concrete Cracking. Innsbruck, Austria, 2005
    [1.21] Adam Neville. Consideration of Durability of Concrete Structures: Past, Present, and Future[J]. Materials and Structures, 34(2), 2001: 114-118
    [1.22] T. Sugiyama, T. W. Bremmer, T. A. Holm. Effects of Stress on Gas Permeability[J]. ACI Materials Journal, 93, 1994: 443-450
    [1.23] B. Gérard, H. W. Reinhardt, D. Breysse. Measured Transport in Cracked Concrete. Penetration and Permeability of Concrete: Barriers to Organic and Contaminating Liquids[M]. E&FN Spon, United Kingdom, 1997: 265-324
    [1.24] J. F. Daian, J. Saliba. Transient Moisture Transport in a Cracked Porous Medium[J]. Transport in Porous Media, 13(3), 1993: 239-260
    [1.25] H. R. Samaha, K. C. Hover. Influence of Microcracking on the Mass Transport Properties of Concrete[J]. ACI Materials Journal, 89(4), 1992: 416-424
    [1.26] M. Saito, H. Ishimori. Chloride Permeability of Concrete under Static and Repeated Compressive Loadings[J]. Cement and Concrete Research, 25 (4), 1995: 803-808
    [1.27] Y. H. Loo. A New Method for Microcrack Evaluation in Concrete under Compression[J]. Materials and Structures, 25, 1992: 573-578
    [1.28] C. C. Lim, N. Gowripalan, V. Sirivivatnanon. Micro Cracking and Chloride Permeability of Concrete under Uniaxial Compression[J]. Cement and Concrete Composite, 22(6), 2000: 353-360
    [1.29] B. Gérard, J. Marchand. Influence of Cracking on the Diffusion Propertied of Cement-based Materials, Part 1: Influence of Continuous Cracks on the Steady-State Regime[J]. Cement and Concrete Research, 30, 2000: 37-43
    [1.30] Kejin Wang, Daniel C. Jansen, Surendra P. Shah, etc. Permeability Study of Cracked Concrete[J]. Cement and Concrete Research, 27(3), 1997: 381-393
    [1.31] B. Gérard, D. Breysse, A. Ammouche, etc. Cracking and Permeability of Concrete under Tension[J]. Material and Structures, 29(4), 1996: 141~151
    [1.32] D. Ludirdja, R. L. Berger, J. F. Young. Simple Method for Measuring Water Permeability of Concrete[J]. ACI Materials Journal, 86(5), 1989: 433-439
    [1.33] C. M. Aldea, S. P. Shah, A. Karr. Permeability of Cracked Concrete[J]. Materials and Structures, 32, 1999: 370-376
    [1.34] C. M. Aldea, S. P. Shah. Effect of Cracking on Water and Chloride Permeability of Concrete[J]. J Mater in Civil Eng, 1999, 11(3): 181-187
    [1.35]方永浩,李志清,张亦涛.持续压荷载作用下混凝土的渗透性[J].硅酸盐学报, 33(10), 2005: 1281-1286
    [1.36] Vincent Pic, Abdelhafid Khelidj, Guy Bastian. Effect of Axial Compressive Damage on Gas Permeability of Ordinary and High-Performance Concrete[J]. Cement and Concrete Research, 31(8), 2001: 1525-1532
    [1.37]王中平,吴科如,阮世光.单轴压缩作用对混凝土气体渗透性的影响[J].建筑材料学报, 4(2), 2001: 127-131
    [1.38] A. Castel, R. Francois, G. Arliguie. Effect of Loading on Carbonation Penetration in Reinforced Concrete Elements[J]. Cement and Concrete Research, 29(4), 1999: 561-565
    [1.39]袁承斌.预应力混凝土结构在碳化及氯离子侵蚀环境下的耐久性研究. [D].南京:河海大学, 2002
    [1.40]涂永明,吕志涛.应力状态下混凝土的碳化试验研究[J].东南大学学报(自然科学版), 33(5), 2003: 573-576
    [1.41]杨林德,潘洪科,祝彦知等.多因素作用下混凝土抗碳化性能的试验研究[J].建筑材料学报, 11(3), 2008: 345-348
    [1.42]方永浩,张亦涛,章凯等.弯曲荷载对硬化水泥浆体和砂浆碳化过程的影响[J].材料导报, 18(10), 2004: 97-99
    [1.43]金祖权,孙伟,张云升等.荷载作用下混凝土的碳化深度[J].建筑材料学报, 8(2), 2005: 179-183
    [1.44] R. Francois, J. C. Maso. Effect of Damage in Reinforced Concrete on Carbonation or Chloride Penetration[J]. Cement and Concrete Research, 18(6), 1988: 961-970
    [1.45] R. Francois, A. Konin, I. Lasvaladas. Influence of the Loading on the Penetration of Chlorides in Reinforced Concrete[C]. 1st RILEM Workshop on Chloride Penetration into Concrete. St Rémy lès Chevreuse, France, 15-18 October, 1995: 250-261
    [1.46] A. Konin, R. Francois, Arligie. Penetration of Chlorides in Relation to the Micro-cracking State into Reinforced Ordinary and High Strength Concrete[J]. Materials and Structures, 31(6), 1998: 310-316
    [1.47] Olga Garces Rodriguez, R. Doug Hooton. Influence of Cracks on Chloride Ingress into Concrete[J]. Materials Journal, 100(2), 2003: 120-126
    [1.48] B. Gérard, J. Marchan. Influence of Cracking on the Diffusion Properties of Cement-Based Materials: Part I: Influence of Continuous Cracks on the Steady-State Regime[J]. Cement and Concrete Research, 30(1), 2000: 37-43
    [1.49]邢锋,冷发光,冯乃谦.长期持续荷载对素混凝土氯离子渗透性的影响[J].混凝土, 175(5), 2004: 3-8
    [1.50]李金玉,林莉,曹建国等.高浓度和应力状态下混凝土硫酸盐侵蚀性的研究[M].重点工程混凝土耐久性的研究与工程应用.中国建材工业出版社, 2001
    [1.51]黄战,邢锋,董必钦等.荷载作用下的混凝土硫酸盐腐蚀研究[J].混凝土, (2), 2008: 66-69
    [1.52] Fang Cong-qi. Influence of Corrosion on Bond in Reinforced Concrete under Monotonic and Cyclic Loading[C]. Proc. Int. Workshop on Durability of Reinforced Concrete under Combined Mechanical and Climatic Loads (CMCL), Qingdao, China, Oct. 2005: 207-212
    [1.53] Shahzma J. Jaffer, Carolyn M. Hansson. Chloride-induced Corrosion Products of Steel in Cracked-Concrete Subjected to Different Loading Conditions[J]. Cement and Concrete Research, 39, 2009: 116-125
    [1.54] S. Y. Xie, J. F. Shao, N. Burlion. Experimental Study of Mechanical Behaviour of Cement Paste under Compressive Stress and Chemical Degradation[J]. Cement and Concrete Research, 38, 2008: 1416-1423
    [1.55] Tatsuhiko SAEKI. Effect of Carbonation on Chloride Penetration in Concrete[C]. Third RILEM Workshop on Testing and Modelling the Chloride Ingress into Concrete. Madrid, Spain, 9-10 September 2002
    [1.56]马保国,王迎飞,周丽美.负温高性能混凝土抗氯离子渗透性试验研究[J].混凝土, (11), 2002: 18-20
    [1.57]魏广和,慕儒.氯盐溶液与快速冻融共同作用下混凝土的性能[J].建筑技术, 32(10), 2001: 658-660
    [1.58]余红发,慕儒,孙伟等.弯曲荷载、化学腐蚀和碳化作用及其复合对混凝土抗冻性的影响[J].硅酸盐学报, 33(4), 2005: 492-499
    [1.59]张鹏,赵铁军,杨进波等.冻融前后混凝土碳化性能试验研究[J].混凝土, (5), 2007: 6-8, 11
    [1.60]吴中伟.混凝土科学技术的反思[J].混凝土与水泥制品, (6), 1988: 4-5
    [1.61]张驰等.水泥砂浆的孔结构与抗渗性[J].重庆建筑大学学报, 18(3), 1996: 61-66
    [1.62] C. C. Yang, S. W. Cho, L. C. Wang. The Relationship between Pore Structure and Chloride Diffusivity from Ponding Test in Cement-based Materia1[J]. Materials Chemistry and Physics, 100, (2-3), 2006: 203-221
    [1.63] C. C. Yang. On the Relationship between Pore Structure and Chloride Diffusivity from Accelerated Chloride Migration Test in Cement-based Material[J]. Cement and Concrete Research, 36, (7), 2006: 1304-1311
    [1.64] A. J. Katz, A. H. Thompson. Prediction of Rock Electrical Conductivity from Mercury Injection Measurements[J]. Journal of Geophysical Research, 92, 1987: 599-607
    [1.65] K. A. Snyder. The Relationship between the Formation Factor and the Diffusion Coefficient of Porous Materials Saturated with Concentrated Electrolytes: Theoretical and Experimental Considerations[J]. Concrete Science and Engineering, 3, Dec. 2001: 216-224
    [1.66]巴恒静,邓洪卫,高小建.高性能混凝土微裂缝与显微结构的研究[J].混凝土, 22 (1), 2000: 14-17
    [1.67]季欣,傅沛兴.水泥石的碳化深度与孔结构参数的关系[J].四川建材学院学报, 7, (1), 1992: 25-31
    [1.68] E. J. Garboczi1, J. G. Berryman. New Effective Medium Theory for the Diffusivity or Conductivity of a Multi-Scale Concrete Microstructure Model[J]. Concrete Science and Engineering, 2, 2000: 88-96
    [1.69] K. Van Breugel, S. J. Lokhorst. The Role of Microstructure Development on Creep and Relaxation of Hardening Concrete[C]. RILEM International Conference on Early-Age Cracking in Cementitious Systems. K. Kovler and A. Bentur, editors, Haifa, Israel, 2001: 245-257
    [1.70] K. Van Breugel, S. J. Lokhorst. Modelling the Deformational Behaviour and Relaxation of Cement-based Systems– the Role of Hollow Shell Formation[J]. Concrete Science & Engineering, 3 (10), 2001: 78-84
    [1.71] G. Ye, J. Hu, K. van Breugel, etc. Characterization of the Development of Microstructure and Porosity of Cement-Bbased Materials by Numerical Simulation and ESEM Image Analysis[J]. Materials and Structures/Matériaux et Constructions, 35, December 2002: 603-613
    [1.72] Milani S. Sumanasooriya, Narayanan Neithalath. Stereology- and Morphology- Based Pore Structure Descriptors of Enhanced Porosity (Pervious) Concrete[J]. ACI Materials Journal, 106(5), 2009: 429-438
    [1.73] Proposed Recommendation on Durability Design for Concrete Structures[J]. JSCE, Concrete Library of JSCE, No.14, March 1990
    [1.74] Performance Criteria for Concrete Durability[R]. Edi. J Kropp and H.K Hilsdorf, RILEM Report 12, E&FN SPON, 1995
    [1.75] Durability Design of Concrete Structures[R]. Rilem Report 14, Edi. by A. Sarja andE.Vesikari, 1996
    [1.76] A. Sarja. Durability Design of Concrete Structures—Committee report 130-CSL[J]. Materials and Structures, 33(1), 2000: 14-20
    [1.77] DuraCrete (2000) General Guidelines for Durability Design and Redesign[S]. The European Union: Brite EuRamⅢ, Research Project No. BE95-1347:‘Probabilistic Performance Based Durability Design of Concrete Structures’, Document R 15, 10
    [1.78]混凝土结构耐久性设计规程(DBJ14-S6-2005)[S].山东省工程建设标准.济南, 2005
    [2.1]林毓梅,冯琳.在海水中混凝土应力腐蚀试验研究[J].水利科学, (2), 1995: 40-45
    [2.2] Klaus-Christian Werner, Yaoxing Chen and Ivan Odler. Investigations on Stress Corrosion of Hardened Cement Paste[J]. Cement and Concrete Research, 30, 2000: 1443-1451
    [2.3] U. Schneider, S. W. Chen. The Chemomechanical Effect and the Mechanochemical Effect on High-performance Concrete Subjected to Stress Corrosion[J]. Cement and Concrete Research, 28(4), 1998: 509-522
    [2.4]杨林德,潘洪科,祝彦知等.多因素作用下混凝土抗碳化性能的试验研究[J].建筑材料学报, 2008, 11(3): 345-348
    [2.5]涂永明,吕志涛.应力状态下混凝土的碳化试验研究[J].东南大学学报(自然科学版),33(5), 2003: 573-576
    [2.6]方永浩,李志清,张亦涛.持续压荷载作用下混凝土的渗透性[J].硅酸盐学报, 33(10), 2005: 1281-1286
    [2.7]罗小勇,黄素辉.应力状态下混凝土结构抗氯离子侵蚀的耐久性试验研究[C].第十四届全国混凝土及预应力混凝土学术会议论文, 2007: 616-630
    [2.8]黄鹏飞.钢筋混凝土在环境腐蚀与弯曲荷载协同作用下的损伤失效研究[D].中国建筑材料科学研究院博士论文, 2004
    [2.9]张德锋.现代预应力混凝土结构耐久性研究[D].东南大学博士论文, 2001
    [2.10] A. Castel, R. Francois, G. Arliguie. Effect of Loading on Carbonation Penetration in Reinforced Concrete Elements[J]. Cement and Concrete Research, 29, 1999: 561-565
    [2.11]邢锋,冷发光,冯乃谦.长期持续荷载对素混凝土氯离子渗透性的影响[J].混凝土, 2004, 175(5): 3-8
    [2.12] F. Xing, F. LENG, N. Feng, etc. The Influence of Long-term Load on the Chloride Permeability in Reinforced Concrete[C]. Proc. Int. Workshop on Durability of Reinforced Concrete under Combined Mechanical and Climatic Loads (CMCL), Qingdao, China, Oct. 2005: 139-147
    [2.13]慕儒.冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D]. 东南大学博士论文, 2000
    [2.14]刘斯凤.荷载—复合离子—干湿交替下生态混凝土的损伤过程与寿命[D].东南大学博士论文, 2004
    [2.15]普通混凝土力学性能试验方法标准(GBT 50081-2002)[S].中华人民共和国国家标准. 北京, 2002
    [2.16]普通混凝土长期性能和耐久性能试验方法(GBJ82-85)[S].中华人民共和国国家标准. 北京, 1985
    [2.17] S. Kelham. A Water Absorption Test for Concrete[J]. Magazine of Concrete Research, 40(143), 1988: 106-110
    [2.18] N. R. Buenfeld and J. Z. Zhang. Chloride Diffusion through Surface-treated Mortar Specimens[J]. Cement and Concrete Research, 28(5), 1998: 665-674
    [2.19] L. Tong, O. E. Gjorv. Chloride Diffusivity based on Migration Testing[J]. Cement and Concrete Research, 31, 2001: 973-982
    [2.20] Measurement of Hardened Concrete Carbonation Depth[S]. RILEM Recommendation CPC-18
    [2.21] E. E. Pressler, S. Brunauer. Investigation of the Franke Method of Determining Free Calcium Hydroxide and Free Calcium Oxide[J]. Anorg. Allg. Chem, 28, 1956: 896-902
    [2.22]水运工程混凝土试验规程(JTJ270-98)[S].中华人民共和国行业标准.北京, 1998
    [2.23]丁明玉,田松柏.离子色谱原理与应用[M].北京:清华大学出版社, 2001
    [3.1]周瑞忠.混凝土的损伤和断裂计算模式[J].福建建筑, (3, 4), 1992: 17-21
    [3.2]宋玉普.多种混凝土材料的本构关系和破坏准则[M].中国水利水电出版社, 2002
    [3.3] D. C. Spooner, J. W. Dougill. A Quantitative Assessment of Damage Asustained in Concrete during Compressive Loading[J]. Magzine of Concrete Research, 27(92), 1975: 151-160
    [3.4] M. F. Light, A. R. Luxmoore. Detection of Cracks in Concrete by Holography[J]. ibid, 24(80), 1972: 167-172
    [3.5] M. Ohtsu, M. C. Mumwam, H. P. Rossmanith. Crack Extension in Cementitious Materials by Acoustic Emission[J]. Concrete Science and Engineering, 1, Sep. 1999: 157-165
    [3.6] H. Elaqra, N. Godin, G. Peix, etc. Damage Evolution Analysis in Mortar, during Compressive Loading using Acoustic Emission and X-ray Tomography: Effects of the Sand/Cement Ratio[J]. Cement and Concrete Research, 37(5), 2007: 703-713
    [3.7] P. Antonaci, C. L. E. Bruno, P. G. Bocca, etc. Nonlinear Ultrasonic Evaluation of Load Effects on Discontinuities in Concrete[J]. Cement and Concrete Reasearch, 40, 2010: 340-346
    [3.8] Y. H. Loo. A New Method for Micro cracking in Concrete[J]. Materials and Structures, 25, 1992: 573-578
    [3.9] C. C. Lim, N. Gowripalan, V. Sirivivatnanon. Microcracking and Chloride Permeability of Concrete under Uniaxial Compression[J]. Cement and Concrete Composites, 22, 2000: 353-360
    [3.10]普通混凝土力学性能试验方法标准(GBT 50081-2002)[S].中华人民共和国国家标准. 北京, 2002
    [3.11] D. W. Hobbs. The Dependence of the Bulk Modulus, Young's Modulus, Creep, Shrinkageand Thermal Expansion of Concrete upon Aggregate Volume Concentration[J]. Matériaux et Constructions, 4(10), 1971: 107-114
    [3.12] H. Pan, Y. Liu, W. Tsai. Micromechanics Approach for Long-term Stress-strain Relationships of Cement-matrix Composites[C]. 2nd International Symposium on Advances in Concrete through Science and Engineering 11-13 September 2006, Quebec City, Canada
    [3.13]过镇海.钢筋混凝土原理[M].清华大学出版社, 1999
    [3.14]郝恩海,刘杰,王忠海等.混凝土超声声速与强度和弹性模量的关系研究[J].天津大学学报, 35(3), 2002: 380-383
    [3.15]王元丰,梁亚平.高性能混凝土的弹性模量与泊松比[J].北方交通大学学报, 28(1), 2004: 5-7, 16
    [3.16]吴礼贤,霍津海.混凝土抗压强度与弹模关系式的理论基础[J].重庆建筑工程学院学报, 15(1): 31-35
    [3.17] Andrew Logan, Wonchang Choi, Amir Mirmiran, etc. Short-term Mechanical Properties of High-strength Concrete[J]. ACI Materials Journal, 106(5), 2009: 413-418
    [3.18]关萍,王清湘.双向等比例加载下的混凝土动态抗压性能[J].沈阳工业大学学报, 30(6): 700-704
    [3.19] Standard Definitions of Terms Relating to Methods of Mechanics Testing[S]. E 6, American Society for Testing and Materials, 1973
    [3.20]成厚昌.高性能混凝土的力学性能研究[J].重庆建筑大学学报, 21, (3), 1999: 74-77
    [3.21]顾培英,陈迅捷,葛洪.高性能混凝土本构关系研究[J].水利水运科学研究, (3), 1999: 241-247
    [3.22]李瑞璟,何锦云,赵喜敬等.高强粉煤灰陶粒混凝土弹性模量及泊松比的试验研究[J]. 煤炭工程, (8), 2003: 29-31
    [3.23]闫东明,林皋,王哲等.不同环境下混凝土动态直接拉伸特性研究[J].大连理工大学学报, 45(3), 2005: 416-421
    [3.24] J. M. Nichols, Y. Z. Totoev. Experimental Determination of the Dynamic Modulus of Elasticity of Masonry Units[J]. 15th Australian Conference on the Mechanics of Structures and Materials, Melbourne, Victoria, Dec. 1997
    [3.25] M Kumar, V Kanwar, S Kumar. Non-destructive Evaluation of Dynamic Properties of Concrete[J]. IE (I) Journal.CV, 86, Aug. 2005: 53-57
    [3.26]罗骐先, J. H. Bungey.用纵超声波换能器测量混凝土表面波速和动弹模量[J].水利水运科学研究, 69(3), 1996: 254-270
    [3.27] Ala Malaikah, Khalid Al-Saif, Rajeh Al-Zaid. Prediction of the Dynamic Modulus of Elasticity of Concrete under Different Loading Conditions[C]. International Conference on Concrete Engineering and Technology, 2004
    [3.28] Vagelis G. Papadakis, Costas G. Vayenas, Michael N. Fardis. Fundamental Modeling and Experimental Inestigation of Concrete Carbonation[J]. ACI Materials Journal, 88(4), 1991: 363-373
    [3.29] Vagelis G. Papadakis, Costas G. Vayenas, Michael N. Fardis. Experimental Investigation and Mathematical Modeling of the Concrete Carbonation Problem[J]. Chemical Engineering Science, 46(5-6), 1991: 1333-1338
    [3.30] T. C. Powers. A Working Hypothesis for Further Studies of Frost Resistance of Concrete[J]. ACI Materials Journal, 41(1), 1945: 245-272
    [3.31]姬永升,赵光思,樊振生.混凝土碳化过程的相似性研究[J].淮海工学院学报, 11(3), 2002: 60-63
    [3.32]张令茂,江文辉.混凝土自然碳化及其与人工加速碳化的相关性研究[J].西安冶金建筑学院学报, 22(3), 1990: 207-214
    [3.33]李果,袁迎曙,耿欧.气候条件对混凝土碳化速度的影响[J].混凝土, 2004, (11): 49-51, 53
    [3.34]张云升,孙伟,陈树东等.弯拉应力作用下粉煤灰混凝土的1D和2D碳化[J].东南大学学报(自然科学版), 37(1), 2007: 118-122
    [3.35] Linhua Jiang, Baoyu Lin, Yuebo Cai. A Model for Predicting Carbonation of High-volume Fly Ash Concrete[J]. Cement and Concrete Research, 30(5), 2000: 699-702
    [3.36]周啸尘,施惠生.利用气体渗透性评价高性能混凝土的碳化性能[J].建筑材料学报, 7(2), 2004: 150-155
    [3.37]牛荻涛,董振平,浦聿修.预测混凝土碳化深度的随机模型[J].工业建筑, 29(9), 1999: 41-45
    [3.38]李清富,刘晨光,张艳丽.混凝土碳化耐久性模糊分析[J].郑州工业大学学报, 17(3), 1996: 7-12
    [3.39] Seung-Jun Kwon, Ha-Won Song. Analysis of Carbonation Behavior in Concrete using Neural Network Algorithm and Carbonation Modeling[J]. Cement and Concrete Research, 40, 2020: 119-127
    [3.40]混凝土结构耐久性评定标准CECS 220:2007[S].中国工程建设标准化协会标准.北京:中国建筑工业出版社, 2007
    [3.41]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社, 2003
    [3.42] DuraCrete (2000) General Guidelines for Durability Design and Redesign[S]. The European Union:Brite EuRamⅢ, Research Project No.BE95-1347:‘Probabilistic Performance Based Durability Design of Concrete Structures’,Document R 15,10
    [3.43]张誉,蒋利学.基于碳化机理的混凝土碳化深度实用数学模型[J].工业建筑, 28(1), 1998: 16-19, 47
    [3.44]刘志勇,孙伟.多因素作用下混凝土碳化模型及寿命预测[J].混凝土, (12), 2003: 3-7
    [3.45]涂永明,吕志涛.应力状态下混凝土的碳化试验研究[J].东南大学学报(自然科学版), 33(5), 2003: 573-576
    [3.46] M. Castellote, C. Andrade. Modeling the Carbonation of Cementitious Matrixes by Means of the Untreacted-Core Model, UR-CORE[J]. Cement and Concrete Research, 38, 2008: 1374-1384
    [3.47] Anna V. Saetta, Renato V. Vitalia. Experimental Investigation and Numerical Modeling of Carbonation Process in Reinforced Concrete Structures: Part II. Practical Applications[J]. Cement and Concrete Research, 35(5), 2005: 958-967
    [3.48] Anna V. Saetta, Bernhard A. Schrefler, Renato V. Vitaliani. The Carbonation of Concrete and the Mechanism of Moisture, Heat and Carbon Dioxide Flow through Porous Materials[J]. Cement and Concrete Research, 23(4), 1993: 761-772
    [3.49] Anna V. Saetta, Bernhard A. Schrefler, Renato V. Vitaliani. 2-D Model for Carbonation and Moisture/heat Flow in Porous Materials[J]. Cement and Concrete Research, 25(8): 1703-1712
    [3.50] Anna V. Saetta, Renato V. Vitalia. Experimental Investigation and Numerical Modeling of Carbonation Process in Reinforced Concrete Structures: Part I. Theoretical Formulaion[J]. Cement and Concrete Research, 34(4), 2004: 571-579
    [3.51] B. Bary, A. Sellier. Coupled Moisture—carbon Dioxide–calcium Transfer Model for Carbonation of Concrete[J]. Cement and Concrete Research, 34(10), 2004: 1859-1872
    [3.52] O. Burkan Isgor, A. Ghani Razaqpur. Finite Element Modeling of Coupled Heat Transfer, Moisture Transport and Carbonation Processes in Concrete Structures[J]. Cement and Concrete Composite, 26(1), 2004: 57-73
    [3.53] Yunping Xi, Zden ek P. Ba ant, Hamlin M. Jennings. Moisture Diffusion in Cementitious Materials Adsorption Isotherms[J]. Advanced Cement Based Materials, 1(6), 1994: 248-257[3.54] Yunping Xi, Zden ek P. Ba ant, Larissa Molina, etc. Moisture Diffusion in Cementitious Materials Moisture Capacity and Diffusivity[J]. Advanced Cement Based Materials, 1(6), 1994: 258-266
    [3.55] Adrian Muntean. On the Interplay between Fast Reaction and Slow Diffusion in the Concrete Carbonation Process: a Matched-asymptotics Approach[J]. Meccanica, 44(1), 2009: 35-46
    [3.56] Alexander Steffens, Dieter Dinkler, Hermann Ahrens. Modeling Carbonation for Corrosion Risk Prediction of Concrete Structures[J]. Cement and Concrete Research, 32, 2002: 935-941
    [3.57]洪乃丰.混凝土碱度与钢筋锈蚀[J].混凝土及水泥制品, (5), 1991: 16-18
    [3.58] Jeffrey J. Chen, Jeffrey J. Thomas, Hal F.W. Taylor, etc. Solubility and Structure of Calcium Silicate Hydrate[J]. Cement and Concrete Research, 34, 2004: 1499-1519
    [3.59]钟白茜,程麟,郭斌.用IR方法研究硅酸钙水化产物的碳化[J].南京工业大学学报(自然科学版), (2), 1982: 39-43
    [3.60]李纹纹.水泥硅酸钙(CSH相)在碳化过程中的相变[J].上海硅酸盐, (3), 1992: 179-185
    [3.61] L. J. Parrott. A Study of Carbonation-induced Corrosion[J]. Magazine of Concrete Research, 46, 1994: 23-28
    [3.62]杨静.混凝土的碳化机理及其影响因素[J].混凝土, (5), 1995: 23-28
    [3.63]蒋利学,张誉.混凝土部分碳化区长度的分析与计算[J].工业建筑, 29(1), 1999: 4-7, 19
    [3.64]崔鹏飞,李兴贵.混凝土碳化分析及其耐久性预测研究[J].水利与建筑工程学报, 1(4), 2003: 49-51, 64
    [3.65]鄢飞,金伟良,张亮.碳化反应区对混凝土碳化规律的影响[J].工业建筑, 29(1), 1999: 12-16
    [3.66] P. C. Kreijger. The Skin of Concrete——Composition and Properties[J]. Materials and Structures, 17 (4), 1984: 275-283
    [3.67]温连军.青岛地区混凝土碳化性能研究[D].硕士学位论文.青岛理工大学, 2005
    [3.68]徐善华,牛荻涛,王庆霖.钢筋混凝土结构碳化耐久性分析[J].建筑技术开发, (8), 2002
    [3.69]阿列克谢耶夫著,黄可信,吴兴祖等编译.钢筋混凝土结构中钢筋腐蚀与保护[M].北京:中国建筑工业出版社, 1983
    [3.70] P. Sulapha, S. F. Wong, T. H. Wee, etc. Carbonation of Concrete Containing Mineral Admixtures[J]. Journal of Materials in Civil Engineering, MARCH/APRIL, 2003: 134-143
    [3.71] Y. F. Houst, F. H. Wittmann. Depth Profile of Carbonates Formed during Natural Carbonation[J]. Cement and Concrete Research, 32, 2002: 1923-1930
    [3.72] Husain Al-Khaiat, Nijad Fattuhi. Carbonation of Concrete Exposed to Hot and Arid Climate[J]. Journal of Materials in Civil Engineering, MARCH/APRIL, 2002: 97-107
    [3.73]赵铁军.渗透型涂料表面处理与混凝土耐久性[M].北京:科学出版社, 2009
    [3.74] Kejin Wang, Daniel C. Jansen, Surendra P. Shah, etc. Permeability Study of Cracked Concrete[J]. Cement and Concrete Research, 27(3), 1997: 381~393
    [4.1]金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社, 2002
    [4.2] S. Nerpin, B. Derjaguin. Role of Capillary and Surface Forces in Moisture Transfer in Porous Bodies[J]. Bulletin RILEM, (27), 1965
    [4.3] Z. P. Ba?ant, L. J. Najjar. Nonlinear Water Diffusion in Nonsaturated Concrete. Matériaux et Constructions, (25), 1972
    [4.4] S. Kelham. A Water Absorption Test for Concrete[J]. Magazine of Concrete Research, 40(143), 1988: 106-110
    [4.5] B. J. Lampacher, G. E. Blight. Permeability and Sorption Properties of Mature Near-Surface Concrete[J]. Journal of Materials in Civil Engineering, 21, 1998: 21-25
    [4.6]赵铁军.混凝土渗透性[M].科学出版社, 2006
    [4.7] J. D. Shane, C. M. Aldea, N. F. Bouxsein, etc. Microstructural and Pore Solution Changes induced by the Rapid Chloride Permeability Test Measured by Impedance Spectroscopy[J]. Concrete Science and Engineering, 1, June 1999: 110-119
    [4.8] Patrick F. McGrath, R. Doug Hooton. Re-evaluation of the AASHTO T259 90-day Salt Ponding Test[J]. Cement and Concrete Research, 29(8), 1999: 1239-1248
    [4.9] W Prince, R Gagne. The Effect of Types of Solutions used in Accelerated Chloride Migration Tests for Concrete[J]. Cement and Concrete Research, 31, 2001: 775-780
    [4.10] S. Sahu, S. Badger. Thaulow N. Evidence of Thaumasite Formation in Southern California concrete[J]. Cement and Concrete Composites, 24, 2002: 379-384
    [4.11]王绍东,黄煜镔,王智.水泥组分对混凝土固化氯离子能力的影响[J].硅酸盐学报, 28(6), 2000: 570-574
    [4.12] P. B. Martin, H. Zibara, R. D. Hooton. A Study of the Effect of Chloride Binding on Service Life Predictions[J]. Cement and Concrete Research: 30(8), 2000: 1215-1223
    [4.13] L. O. Nillson, M. Massat, L. Tang The Effect of Non-line Chloride Binding on the Prediction of Chloride Penetration into Concrete Structures. Malhotra V. M. (Ed.), Durability of Concrete[M], ACI sp-145, Detroit, 1994: 469-486
    [4.14] A. V. Saetta, R. V. Sotta, R. V. Vitaliani. Analysis of Chloride Diffusion into Partially Saturated Concrete[J]. ACI Material Journals, 90(5), 1993: 441-451
    [4.15] L. O. Nilsson, E. Poulsen, P. Sandberg, H. E. Sorensen, etc. Chloride Penetration into Concrete, State of the Art, Transport Processes, Corrosion Initiation, Test Methods and Prediction Models[R]. The Road Directorate Copenhagen, 1996
    [4.16] L. Tang, L. O. Nilsson. Chloride Binding Capacity and Binding Isotherms of OPC Pastes and Mortars[J]. Cement and Concrete Research, 23(2), 1993: 247-253
    [4.17] P. Sandberg. Factors Affecting the Chloride Thresholds for Uncracked Reinforced Concrete Exposed in a Marine Environment. Part I: Field Exposure Tests of Reinforced Concrete[J]. Concrete Science and Engineering, 1, June 1999: 92-98
    [4.18] P. Sandberg, H. E. S?rensen. Factors Affecting the Chloride Thresholds for Uncracked Reinforced Concrete Exposed in a Marine Environment. Part II: Laboratory- and Field Exposure of Corrosion Cells[J]. Concrete Science and Engineering, 1, June 1999: 99-109
    [4.19] Odd E. Gj?rv著.赵铁军译.严酷环境下混凝土结构的耐久性设计[M].北京:中国建材工业出版社, 2010
    [4.20] C. Alonso, C. Andrade, M. Castellote, etc. Chloride Threshold Values to Depassivate Reinforcing Bars Embedded in a Standardized OPC Mortar[J]. Cement and Concrete Research, 30(7), July, 2000: 1047-1055
    [4.21] David Trejo, Radhakrishna G. Pillai. Accelerated Chloride Threshold Testing—Part II:Corrosion-Resistant Reinforcement[J]. ACI Materials Journal, January-February, 2004: 57-64
    [4.22] P. V. Nygaard, M. R. Geiker. A Method for Measuring the Chloride Threshold Level Required to Initiate Reinforcement Corrosion in Concrete[J]. Materials and Structures, 38, May 2005: 489-494
    [4.23] Ueli Angst, Bernhard Elsener, Claus K. Larsen, etc. Critical Chloride Content in Reinforced Concrete—A Review[J]. Cement and Concrete Research, 39, 2009: 1122-1138
    [4.24] F. Fluge. Marine Chlorides: A Probabilistic Approach to Derive Provisions for EN 206-1[C]. Third Workshop on Service Life Design of Concrete Structures: From Theory to Standardisation, DuraNet, Troms?, 2001: 47-68
    [4.25]中国工程院土木水利与建筑学部工程结构安全性与耐久性研究咨询项目组.混凝土结构耐久性设计与施工指南[M].中国建筑工业出版社, 2004. 5
    [4.26]混凝土结构耐久性设计规范(GB/T 50476-2008)[S].中华人民共和国国家标准.北京, 2008
    [4.27] Anne Sofie ?STERDAL, Henrik Madsen, Bo Friis Nielsen. A Non-parametric Method for Estimation of the Diffusion Coefficient of Chloride in Concrete[C]. 1st RILEM workshop on Chloride Penetration into Concrete, 15-18, October, 1995, St Rémy lès Chevreuse, France
    [4.28] J. Arsenault, J. -P. Bigas, J. -P. Ollivier. Determination of Chloride Diffusion Coefficient using Two Different Steady-state Methods: Influence of Concentration Gradient[C]. 1st RILEM workshop on Chloride Penetration into Concrete, 15-18 October, 1995, St Rémy lès Chevreuse, France
    [4.29]范宏.混凝土结构中的氯离子侵入与寿命预测[D].博士学位论文.西安建筑科技大学, 2009
    [4.30]赵铁军,万小梅.一种预测混凝土氯离子扩散系数的方法[J].工业建筑, 31(332), 2001: 40-42
    [4.31] Miguel A. Bermúdez, Pilar Alaejos. Models for Chloride Diffusion Coefficients of Concrete in Tidal Zone[J]. ACI Materials Journal, January-February, 2010: 3-11
    [4.32] P. B. Bamforth. A New Approach to the Analysis of Time-Dependent Changes in Chloride Profiles to Determine Effective Diffusion Coefficients for Use in Modelling of Chloride Ingress. Nilsson L. O., Ollivier J. P. (Eds.) Chloride Penetration into Concrete[M]. Rilem France, 42, 195-205
    [4.33] J. H. M. Visser, G. C. M. Gaal, M. R. de Rooij. Time Dependency of Chloride Diffusion Coefficients in Concrete[C]. Third RILEM workshop on Testing and Modelling the Chloride Ingress into Concrete, Madrid, Spain, 9-10 September, 2002
    [4.34] G. Achari, S. Chatterji, R. C. Joshi. Evidence of the Concentration Dependent Ionic Diffusivity through Saturated Porous Media[C]. 1st RILEM workshop on Chloride Penetration into Concrete, St Rémy lès Chevreuse, France, 15-18, October, 1995
    [4.35] V. B. Bouny, T. Chaussadent, A. Raharinaivo. Experimental Investigations on Binding of Chloride and Combined Effects of Moistures and Chloride in Cementitious Materials[C]. 1st RILEM workshop on Chloride Penetration into Concrete, St Rémy lès Chevreuse, France, 15-18, October, 1995
    [4.36] G. de Vera, M. A. Climent, J. F. López, etc. Transport and Binding of Chlorides through Non-saturated Concrete after an Initial Limited Chloride Supply[C]. Third RILEM workshop on Testing and Modelling the Chloride Ingress into Concrete, Madrid, Spain, 9-10 September, 2002
    [4.37] DuraCrete (2000) General Guidelines for Durability Design and Redesign[S]. The EuropeanUnion: Brite EuRamⅢ, Research Project No. BE95-1347:‘Probabilistic Performance Based Durability Design of Concrete Structures’, Document R 15, 10
    [4.38] L. O. Nilsson. Concepts in Chloride Ingress Modelling[C]. Third RILEM workshop on Testing and Modelling the Chloride Ingress into Concrete, Madrid, Spain, 9-10 September, 2002
    [4.39] Pascale Bégué, Sylvie Lorente, Xavier Bourbon. Chloride Diffusion Coefficient through Porous Materials: A Disturbing Parameter[C]. 2nd International Symposium on Advances in Concrete through Science and Engineering, Quebec City, Canada, 11-13 September, 2006
    [4.40] A. A?t-Mokhtar, O. Amiri. Electrical Double Layer Effect on Chloride Migration in Cement-based Materials[C]. Third RILEM workshop on Testing and Modelling the Chloride Ingress into Concrete, Madrid, Spain, 9-10 September, 2002
    [4.41] Seung-Woo Pack, Min-Sun Jung, Ha-Won Song, etc. Prediction of Time Dependent Chloride Transport in Concrete Structures exposed to a Marine Environment[J]. Cement and Concrete Research, 40, 2010: 302-312
    [4.42] T. Zhang, Odd E. Gj?rv. Diffusion Behavior of Chloride Ions in Concrete[C]. 1st RILEM workshop on Chloride Penetration into Concrete, St Rémy lès Chevreuse, France, 15-18 October, 1995: 53-63
    [4.43] S. Chatterji. On the Non-applicability of Unmodified Fick’s Laws to Ion Transport through Cement Based Materials[C]. 1st RILEM workshop on Chloride Penetration into Concrete, St Rémy lès Chevreuse, France, 15-18, October, 1995
    [4.44] C. Tognazzi, J.-M. Torrenti, M. Carcasses, etc. Coupling between Diffusivity and Cracks in Cementbased Systems[C]. Concrete Science and Engineering, 2, December 2000: 176-181
    [4.45] B. Johannesson. Mixture Theory Applied to Chemical Reactions and Diffusion of Different Mediums in Mature Concrete: A Hypothetical Model, PartⅡ[C]. 1st RILEM workshop on Chloride Penetration into Concrete, St Rémy lès Chevreuse, France, 15-18, October, 1995
    [4.46] David Conciatori, Francine Laferrière, Eugen Brühwiler. Comprehensive Modeling of Chloride Ion and Water Ingress into Concrete Considering Thermal and Carbonation State for Real Climate[J]. Cement and Concrete Research, 40, 2010: 109-118
    [4.47] David Conciatori, Hamid Sadouki, Eugen Brühwiler. Capillary Suction and Diffusion Model for Chloride Ingress into Concrete[J]. Cement and Concrete Research, 38, 2008: 1401-1408
    [4.48] Jian-jun Zheng, Hong. S. Wong, Nick R. Buenfeld. Assessing the Influence of ITZ on the Steady-state Chloride Diffusivity of Concrete using a Numerical Model[J]. Cement and Concrete Research, 39, 2009: 805-813
    [4.49] P. J. Tumidajski, G. W. Chan. Boltzmann-Matano Analysis of Chloride Diffusion into Blended Cement Concrete[J]. Journal of Materials in Civil Engineering, November, 1996: 195-200
    [4.50] L. Tang. Engineering Expression of the ClinConc Model for Prediction of Free and Total Chloride Ingress in Submerged Marine Concrete[J]. Cement and Concrete Research, 38, 2008: 1092-1097
    [4.51] Ha-Won Song, Seung-Jun Kwon. Evaluation of Chloride Penetration in High Performance Concrete using Neural Network Algorithm and Micro Pore Solution[J]. Cement and Concrete Research, 39(9), 2009: 814-824
    [4.52] A. Ababneh, Y. Xi. An Experimental Study on the Effect of Chloride Penetration on Moisture Diffusion in Concrete[J]. Materials and Structures, 35, December 2002: 659-664
    [4.53] Mokhtar M. Aburawi, R. N. Swamy. Influence of Salt Weathering on The Properties of Concrete[J]. The Arabian Journal for Science and Engineering, 33(1B), 2008: 105-110
    [4.54] Tarek Uddin Mohammed, Hidenori Hamada, Toru Yamaji. Concrete after 30 Years ofExposure—Part II: Chloride Ingress and Corrosion of Steel Bars[J]. Materials Journal, 101(1), 2004: 13-18
    [4.55] S. Bonnet, M. Diaw, B. Perrin. Experimental Study of Coupled Transport of Moisture and Salt into Unsaturated Mortars and Terracotta[J]. Concrete Science and Engineering, 2, June 2000: 117-124
    [4.56] E. L. Cussler. Diffusion: Mass Transfer in Fluid Systems[M]. Cambridge University Press, 1984
    [4.57] C. L. Page, V. T. Ngala. Steady-state Diffusion Characteristics of Cementitious Materials[C]. 1st RILEM Workshop on Chloride Penetration into Concrete. St Rémy lès Chevreuse, France October 1995: 77-84
    [4.58] C. Andrade, J. M. Diez, C. Alonso. Modelling of Skin Effects on Diffusion Processes in Concrete[C]. 1st RILEM workshop on Chloride Penetration into Concrete, 15-18 october, 1995, St Rémy lès Chevreuse, France
    [4.59]何世钦,贡金鑫.弯曲荷载作用对混凝土中氯离子扩散的影响[J].建筑材料学报. 8 (2), 2005: 134-138
    [4.60]邢锋,冷发光,冯乃谦等.长期持续荷载对素混凝土氯离子渗透性的影响[J].混凝土, (5), 2004: 3-8
    [4.61] Ton Siemes, Rob Polder, Hans de Vries. Design of Concrete Structures for Durability. Example: Chloride Penetration in the Lining of a Bored Tunnel[J]. Heron, 43(4), 1998: 227-244
    [4.62] L. Tong, O. E. Gj?rv. Chloride Diffusivity based on Migration Testing[J]. Cement and Concrete Research, 31, 2001: 973-982
    [5.1] H. Al-Khaiat, M. N. Haque. Carbonation of Some Coastal Structures in Kuwait[J]. ACI Material Journal, 94 (6), 1997: 602-607
    [5.2] A. Costa, J. Appleton. Concrete Carbonation and Chloride Penetration in a Marine Environment[J]. Concrete Science and Engineering, 3, Dec. 2001: 242-249
    [5.3] S. J. H. Meijers, J. M. J. M. Bijen, R. de Borst, etc. Computational Results of a Model for Chloride Ingress in Concrete including Convection, Drying-wetting Cycles and Carbonation[J]. Materials and Structures 38, Mar. 2005: 145-154
    [5.4] Tatsuhiko Saeki. Effect of Carbonation on Chloride Penetration in Concrete[C]. Third RILEM Workshop on Testing and Modelling the Chloride Ingress into Concrete. Sep, 2002, Madrid, Spain
    [5.5] L.-O. Nilsson. Long-term Moisture Transport in High Performance Concrete[J]. Materials and Structures/Matériaux et Constructions, 35, Dec. 2002: 641-649
    [5.6]方憬,梅国兴,陆采荣.碳化对混凝土性能影响的研究[J].水利水电技术. (2), 1996
    [5.7] V. T. Ngala, C. L. Page. Effects of Carbonation on Pore Structure and Diffusional Properties of Hydrated Cement Pastes[J]. Cement and Concrete Research, 27(7), 1997: 995-1007
    [5.8]赵铁军,李淑进.碳化对混凝土渗透性及孔隙率的影响[J].工业建筑, 33(1), 2003: 46-47, 16
    [5.9] Peter A. Claisse, Hanaa El-Sayad, Ibrahim G. Shaaban. Permeability and Pore Volume of Carbonated Concrete[J]. ACI Materials Journal, 96(3), 1999: 378-381
    [5.10] P. J. Dewaele, E. J. Reardon, R. Dayal. Permeability and Porosity Changes Associated with Cement Grout Carbonation[J]. Cement and Concrete Research, 1991: 441-454
    [5.11]方永浩,张亦涛,莫祥银等.碳化对水泥石和砂浆的结构及砂浆渗透性的影响[J].河海大学学报(自然科学版), 33(1), 2005: 104-107
    [5.12] W. Puatatsananon, V. E. Saouma. Nonlinear Coupling of Carbonation and Chloride Diffusion in Concrete[J]. Journal of Materials in Civil Engineering, May/June, 2005: 264-275
    [5.13] E. N. Landis, A. L. Petrell, S. Lu, etc. Examination of Pore Structure using Three Dimensional Image Analysis of Microtomographic Data[J]. Concrete Science and Engineering, V. 2, Dec. 2000: 162-169
    [5.14] Edward W. Washburn. The Dynamics of Capillary Flow[J]. Phys. Rev., 17(3), 1921: 273-283
    [5.15]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999
    [5.16] Y. F. Houst. The Role of Moisture in the Carbonation of Cementitious Materials[C]. International Zeitschrift fur Bauinstandsetzen 2. Jahrgang. Heft. 1996: 49-66
    [5.17] Bj?rn Johannesson, Peter Utgenannt. Microstructural Changes Caused by Carbonation of Cement Mortar[J]. Cement and Concrete Research, 31, 2001: 925-931
    [5.18]肖婷,方永浩,章凯,等.碳化对粉煤灰水泥石比表面积和孔径的影响[J].建筑材料学报, 8(4), 2005: 452-455
    [5.19] N. R. Short, A. R. Brough, A. M. G. Seneviratne, etc. Preliminary Investigations of the Phase Composition and Fine Pore Structure of Super-critically Carbonated Cement Pastes[J]. Journal of Materials Science, 39, 2004: 5683-5687
    [5.20] N. R. Shout, P. Purnell, C. L. Page. Preliminary Investigations into the Supercritical Carbonation of Cement Pastes[J]. Journal of Materials Science, 36, 2001: 35-41
    [5.21] Ana Hidalgo, Concha Domingo, Carlos Garcia, etc. Microstructural Changes induced inPortland Cement-based Materials due to Natural and Supercritical Carbonation[J]. Journal of Materials Science, 43, 2008: 3101-3111
    [5.22] D. Lange-Kornbak, B. L. Karihaloo. Role of Microstructural Parameters in the Properties of Plain Concrete[J]. Concrete Science and Engineering, 1, December 1999: 238-252
    [5.23] S. G. Patil, B. Bhattacharjee. Size and Volume Relationship of Pore for Construction Materials[J]. Journal of Materials in Civil Engineering, 20(6), 2008: 410-418
    [5.24] B. Kondraivendhan, B. Bhattacharjee. Effect of Age and Water-Cement Ratio on Size and Dispersion of Pores in Ordinary Portland Cement Paste[J]. ACI Materials Journal, 107(2), 2010: 147-154
    [5.25] Zheng Liu, Douglas Winslow. Sub-distributions of Pore Size: A New Approach to Correlate Pore Structure with Permeability[J]. Cement and Concrete Research, 25 (4), 1995: 769-778
    [5.26] Tetsuji Yamaguchi, Kumi Negishi, Seiichi Hoshino, etc. Modeling of Diffusive Mass Transport in Micropores in Cement Based Materials[J]. Cement and Concrete Research, 39, 2009: 1149-1155
    [5.27] L. Tang, L. -O. Nilsson. A New Approach to the Determination of Pore Distribution by Penetrating Chlorides into Concrete[J]. Cement and Concrete Research, 25 (4), 1995: 695-701
    [5.28] K. A. Snyder. The Relationship between the Formation Factor and the Diffusion Coefficient of Porous Materials Saturated with Concentrated Electrolytes: Theoretical and Experimental Considerations[J]. Concrete Science and Engineering, 3, Dec. 2001: 216-224
    [5.29] M. Koichi, C. Rajesh, K. Toshiharu. Modeling of Concrete Performance, Hydration, Micro-structure Formation and Mass Transport[M]. E&FN Spon, London, 1999
    [5.30] P. K. Mehta, C. Manmhan. Pore Size Distribution and Permeability of Hardened Cement Paste[C]. Proceedings of the 7th International Congress Chemistry of Cement, Paris, 1980, (3): 1-5
    [5.31] A. J. Katz, A. H. Thompson. Quantitative Prediction of Permeability in Porous Rock[J]. Phys. Rev. B, 1986, 34(11): 8179-8181
    [5.32] E. J. Garboczi, D. P. Bentz. Modeling of the Microstructure and Transport Properties of Conrete[J]. Constructure Building and Materials, 1996, 10(5): 293-300
    [5.33] D. S. McLachlan, M. Blaszkiewicz, R. E. Newnham. Electrical Resistivity of Composites[J]. J. Am. Ceram. Soc., 1990, 73(8): 2187-2203
    [5.34] Lu Cui, Jong Herman Cahyadi. Permeability and Pore Structure of OPC Paste[J]. Cement and Concrete Research, 31, 2001: 277-282
    [5.35] E. J. Garboczi, D. P. Bentz. Diffusivity-porosity Relation for Cement Paste. Materials Science of Concrete: Sulfate Attack Mechanisms[M]. Edited by Jacque Marchand and Jan P. Skalny. The American Ceramic Society, Westerville, 1999: 259-264
    [5.36] E. J. Garboczi, D. P. Bentz. Computer Simulation of the Diffusivity of Cement-Based Materials[J]. Journal of Materials Science, 27, 1992: 2083-2092
    [6.1] K. Andersson, B. Allard, M. Béngtsson, etc. Chemical Composition of Cement Pore Solutions[J]. Cement and Concrete Research, 19, 1989: 327-332
    [6.2] F. Hunkeler. The Resistivity of Pore Water Solution—A Decisive Parameter of Rebar Corrosion and Repair Methods[J]. Construction and Building Materials, 10(5), 1996: 381-389
    [6.3]陆平.水泥材料科学导论[M].同济大学出版社, 1991
    [6.4] C. L. Page, ?. Vennesland. Pore Solution Composition and Chloride Binding Capacity of Silica-fume Cement Pastes[J]. Materials and Structures, 16(1), 1983: 19-25
    [6.5] A. Moragues, A. Macias, C. Andrade. Equilibria of the Chemical Composition of the Concrete Pore Solution. Part I: Comparative Study of Synthetic and Extracted Solutions[J]. Cement and Concrete Research, 17(2), Mar, 1987: 173-182
    [6.6] T. Yonezawa, V. Ashworth, R. P. M. Proctor. Pore Solution Composition and Chloride Effectson the Corrosion of Steel in Concrete[J]. Corrosion (Houston), 44(7), Jul, 1988: 489-499
    [6.7] T. C. Powers. A Working Hypothesis for Further Studies of Frost Resistance of Concrete[J]. Journal Proceedings, American Concrete Institute, 41, 1945: 245-272
    [6.8] T. C. Powers. Void Spacing as a Basis for Producing Air-Entrained Concrete[J]. Journal Proceedings, American Concrete Institute, 50(9), 1954: 741-760
    [6.9] G. Fagerlund. The Significance of Critical Degree of Saturation at Freezing of Pore and Brittle Materials. Scholer C F, Durability of Concrete[M]. Detroit; American Concrete Institute, 1975
    [6.10] Michel Pigeon, Martin Lachance. Critical Air Void Spacing Factors for Concretes Submitted to Slow Freeze-Thaw Cycles[J]. Journal Proceedings, American Concrete Institute, 78(4), 1981: 282-291
    [6.11] S. Diamond. Chloride Concentrations in Concrete Pore Solutions Resulting from Calcium and Sodium Chloride Admixtures[J]. Cement, Concrete and Aggregates, 8(2), 1986: 97-102
    [6.12] P. Lambert, C. L. Page, P. R. W. Vassie. Investigations of Reinforcement Corrosion. 2. Electrochemical Monitoring of Steel in Chloride-Contaminated Concrete[J]. Materials and Structures, 24(5), 1991: 351-358
    [6.13]储炜,史苑芗,魏宝明.钢筋在混凝土模拟孔溶液及水泥净浆中的腐蚀电化学行为[J]. 南京化工学院学报, 17(3), 1995: 14-19
    [6.14]刘志勇,孙伟.与钢筋脱钝化临界孔溶液pH值相关联的混凝土碳化理论模型[J].硅酸盐学报, 35(7), 2007: 899-903
    [6.15]林玮,路新瀛.基于混凝土孔溶液pH的最小水泥用量探讨[J].混凝土与水泥制品, 3, 2002: 10-12
    [6.16] A. Gerdes, F. H. Wittmann. Evolution of pH Value of the Pore Solution after Realkalisation of Carbonated Concrete[J].建筑材料学报, 6(2), 2003: 111-117
    [6.17] C. Shi, J. A. Stegemann, R. J. Caldwell. Effect of Supplementary Cementing Materials on the Specific Conductivity of Pore Solution and its Implications on the Rapid Chloride Permeability Test (AASHTO T277 and ASTM C1202) Results[J]. ACI Materials Journal, July-August, 1998: 389-394
    [6.18] T. H. Wee, A. K. Suryavanshi, S. S. Tin. Evaluation of Rapid Chloride Permeability (RCPT) Results for Concrete Containing Mineral Admixtures[J]. ACI Materials Journal, March-April, 2000: 221-232
    [6.19] T. Zhao, J. Zhu, P. Chi. Modification of Pore Chemicals in the Evaluation of HPC Permeability[J]. ACI Materials Journal, 96(1), January-February, 1999: 84-89
    [6.20] S. Brendle, M. R. de Rooij, K. van Breugel. Pore Solution Evolution during the Early Portland Cement Hydration[J]. Restoration of Buildings and Monuments, 14(2), 2008: 141-152
    [6.21] F. Beltzung, F. H. Wittmann, X. Wan. Influence of Alkali Content on Creep and Shrinkage of Cement-based Materials[C]. Proc. 1st Int. Conf. Microstructure Related Durability of Cementitious Composites, RILEM Proceedings PRO 61, W. Sun, K. van Breugel, C. Miao, G. Ye, and H. Chen, editors, RILEM Publications, 2008: 905-915
    [6.22] R. S. Barneyback, S. Diamond. Expression and Analysis of Pore Fluids from Hardened Cement Paste and Mortars[J]. Cement and Concrete Research, 11, 1981: 279-285
    [6.23] J. Duchesne, M. A. Berube. Evaluation of the Validity of the Pore Solution Expression Method from Hardened Cement Paste and Mortars[J]. Cement and Concrete Research, 24, 1994: 456-462
    [6.24]孟志良,周卫,冯香勉.论萃取孔溶液法测定混凝土有效碱[J].混凝土, (136), 2001: 39-40, 38
    [6.25] M. N. Haque, O. A. Kayyali. Free and Water Soluble Chloride in Concrete[J]. Cement and Concrete Research, 25, 1995: 531-542
    [6.26] C. Arya, J. B. Newman. An Assessment of Four Methods of Determining the Free Chloride Content of Concrete[J]. Materials and Structures, 23(5), 1990: 319-330
    [6.27]柳俊哲.混凝土碳化研究与进展(1)——碳化机理及碳化程度评价[J].混凝土, (193), 2005: 10-13, 23
    [6.28] Tetsuya Ishida, Prince O’Neill Iqbal, Ho Thi Lan Anh. Modelling of Chloride Diffusivity Coupled with Non-linear Binding Capacity in Sound and Cracked Concrete[J]. Cement and Concrete Research, 39, 2009: 913-923
    [6.29] L. Tang, L. -O. Nilsson. Chloride Binding Capacity and Binding Isotherms of OPC Pastes and Mortars[J]. Cement and Concrete Research, 23(2), 1993: 247-253
    [6.30]王绍东,黄煜镔,王智.水泥组分对混凝土固化氯离子能力的影响[J].硅酸盐学报, 28(6), 2000: 570-574
    [6.31] Tarek Uddin Mohammed, Hidenori Hamada, Toru Yamaji. Concrete after 30 Years of Exposure—Part 1: Minearlogy, Microstructure, and Interfaces[J]. Materials Journal, 101(1), 2004: 3-12
    [6.32] S. Go?i, A. Guerrero. Accelerated Carbonation of Friedel's Salt in Calcium Aluminate Cement Paste[J]. Cement and Concrete Research, 33(1), 2003: 21-26
    [6.33] Odd E. Gj?rv著.赵铁军译.严酷环境下混凝土结构的耐久性设计[M].北京:中国建材工业出版社, 2010
    [6.34] P. Sandberg. Factors affecting the Chloride Thresholds for Uncracked Reinforced Concrete Exposed in a Marine Environment. Part I: Field Exposure Tests of Reinforced Concrete[J]. Concrete Science and Engineering, 1, June, 1999: 92-98
    [6.35] P. Sandberg, H. E. S?rensen. Factors affecting the Chloride Thresholds for Uncracked Reinforced Concrete Exposed in a Marine Environment. Part II: Laboratory- and Field Exposure of Corrosion Cells[J]. Concrete Science and Engineering, 1, June, 1999: 99-109
    [6.36] D. A. Hausmann. Steel Corrosion in Concrete: How does it occur?[J] Materials Protection, 6(11), 1967: 19-23
    [6.37]洪乃丰.混凝土碱度与钢筋锈蚀[J].混凝土及水泥制品, (5), 1991: 16-18
    [6.38] C. Alonso, C. Andrade, M. Castellote, etc. Chloride Threshold Values to Depassivate Reinforcing Bars Embedded in a Standardized OPC Mortar[J]. Cement and Concrete Research, 30(7), July, 2000: 1047-1055
    [6.39] D. J. Anstice, C. L. Page, M. M. Page. The Pore Solution Phase of Carbonated Cement Pastes[J]. Cement and Concrete Research, February, 2005: 377-383
    [6.40]蔡跃波,罗睿,王昌义.水泥—磨细矿渣水化产物—F盐的微结构分析[J].水利水运工程学报, (3), 2001: 45-49
    [7.1]高社生,张玲霞.可靠性理论与工程应用[M].北京:国防工业出版社, 2002
    [7.2] Odd E. Gj?rv著.赵铁军译.严酷环境下混凝土结构的耐久性设计[M].北京:中国建材工业出版社, 2010
    [7.3]张明.结构可靠度分析——方法与程序[M].北京:科学出版社, 2009
    [7.4] Rackwitz R, Fiessler B. Structural Reliability under Combined Random Load Sequences[J]. Computers & Structures, 9(5), 1978: 489-494
    [7.5] Hohenbichler M, Rackwitz R. Non-normal Dependent Vectors in Structural Safety[J]. Journal of the Engineering Mechanics Division, ASME, 107(6), 1981: 1227-1238
    [7.6] Paloheimo E, Hannus H. Structural Design based on Weighted Fractiles[J]. Journal of the Structural Division, ASCE, 100(ST7), 1974: 1367-1378
    [7.7]赵国藩.结构可靠度的实用分析方法[J].建筑结构学报, 5(3), 1984: 1-10
    [7.8]牛荻涛,石玉钗,雷怡生.混凝土碳化的概率模型及碳化可靠性分析[J].西安建筑科技大学学报, 27(3), 1995: 252-256
    [7.9]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社, 2000
    [7.10]建筑结构可靠度设计统一标准(GB 50068-2001)[S].中华人民共和国国家标准.北京: 2001
    [7.11]混凝土结构耐久性设计规范(GB/T 50476-2008)[S].中华人民共和国国家标准.北京, 2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700