用户名: 密码: 验证码:
林间步行机器人的运动特性与动态仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对国内外步行机器人设计理论的历史及现状进行了分析与总结,并对步行机器人的未来发展趋势进行了展望,在此基础上,本文提出了新型林间步行机器人的机械结构设计方案,并根据该方案进行了林间步行机器人的结构设计及运动学仿真分析。
     基于仿生学原理,提出了在农林业具有一定应用价值的新型林间步行机器人的机械部分设计,其中采用腿式行走机构既使步行机器人具有极强的稳定性,又使步行机器人在不平地面和松软地面上的运动速度较高,能耗较小。步行机器人所采用的凸轮减振机构通过凸轮补偿部分的作用,抵消了底部机身产生的垂直方向上的振动,使驾驶台相对于地面垂直方向上的振动接近于零。
     本文在分析步行机器人结构特点的基础上,对林间步行机器人的位置,速度和加速度分别进行了运动学分析,求出了林间步行机器人的运动学方程。
     最后利用Pro/E软件建立了林间步行机器人的虚拟三维装配模型,利用ANSYS软件对减震机构凸轮进行有限元分析和求解,获取了林间步行机器人工作过程中的受力变形情况及各个单元和节点的应力大小,并对其受力结果进行分析。
In this paper, the history and current situation of the design theory for walking robot at home and abroad are analyzed and summarized, and the future development trend of walking robot is predicted, on this basis, this paper presents a new type of mechanical structure design for forest walking robot, and carries out the structure design and kinematics simulation of the forest walking robot under the'program.
     Based on the bionics principle, this paper proposes the mechanical structure of walking climbing machine which has a certain application value in agriculture and forestry, which uses leg-based walking institutions to make the robot stable and get higher velocity and lose less energy consumption in the uneven and soft ground, the walking robot uses cam damping body, offsets the vibration of the vertical direction produced by the bottom of the fuselage through the role of cam compensation part and makes the vibration of the vertical direction for the bridge relative to the ground be zero.
     Based on the analysis of the structural characteristics of walking robot, this paper analyzes the position, velocity and acceleration of walking robot respectively, and solves the kinematic equations of the forest walking robot.
     In the end, the paper builds the 3D model by using Pro/E software, carries on the finite element analysis and solving to the cam by using ANSYS software, gets deformation situation and stress size of each unit and node during the working process of the forest walking robot, and analyzes the stress results.
引文
[1]童辉,张争艳,李文峰.仿生六足机器人的设计研究[J].湖北工业大学学报,2007,(04):52-53.
    [2]苏军.多足步行机器人步态规划及控制的研究[D].武汉:华中科技大学,2004:2-9.
    [3]罗均,谢少荣,翟宇毅等.特种机器人[M].北京:化学工业出版社,2006年:21-22.
    [4]刘静,赵晓光,谭民.腿式机器人的研究综述[J].机器人,2006,(01):81-88.
    [5]苏军.多足步行机器人步态规划及控制的研究[D].武汉:华中科技大学,2004:2-9.
    [6]车翠莲.基于虚拟样机技术的变形移动机器人的动力学研究[D].青岛:山东科技大学,2005:2-3.
    [7]雷静桃,高峰,崔莹.多足步行机器人的研究现状及展望[J].机械设计,2006,(09):1-3.
    [8]Brain Navi著,金晶立译.机器人集锦[M].北京:科学出版社,2003年:3-11.
    [9]李季.基于虚拟样机技术的小型仿人机器人的设计与研究[D].哈尔滨:哈尔滨工业大学,2005:1-2.
    [10]张博.小型双足人形机器人机构设计与步态规划[D].哈尔滨:哈尔滨工业大学,2006:4-6.
    [11]曹曦,赵群飞,马培荪.两足步行椅机器人机械参数与步行稳定性关系研究[J].机器人,2007,29(03):250-255.
    [12]郑承毅,赵群飞,马培荪,张惠卿,缑正.两足步行椅机器人的机构设计[J].机器人,2006,28(03):297-302.
    [13]刘晋浩,陆怀民,葛安华.新型智能伐根清理机器人[J].机器人技术与应用,2001,(02):12-13.
    [14]姜树海,路怀民.林业机器人研究动态[J].森林工程,1998:39-40.刘静,赵晓光,谭民.腿式机器人的研究综述[J].机器人,2006,(01):81-88.
    [15]Jeong-Ki Yoo, Bum-Joo Lee, Jong-Hwan Kim. Recent progress and development of the humanoid robot HanSaRam. Robotics and Autonomous Systems, Volume 57, Issue 10,31 October 2009, Pages 973-981.
    [16]K. Mitobe, G. Capi, Y. Nasu. A new control method for walking robots based on angular nomentum. Mechatronics, Volume 14, Issue 2, March 2004, Pages 163-174.
    [17]刘冬梅.步行爬坡机整机设计及运动学仿真[D].哈尔滨:东北林业大学,2009: 7.
    [18]雷静桃,高峰,崔莹.多足步行机器人的研究现状及展望[J].机械设计,2006,(09):1-3.
    [19]孙付春.步行机器人的行走控制[D].成都:成都理工大学,2006:9.
    [20]刘冬梅,马岩.新型自走式农林机器人的结构分析[J].机器人技术与应用,2007,(06):39-41.
    [21]Yan G Z, Dai Y. A novel biomimetic hexapod micro-robot [A].Proceedings of the 2002 IEEE International Symposium on Micromechatronics and Human Science[C]. USA:IEEE,2002.79-84.
    [22]Tee T W, Low K H, Ng H Y, etal. Mechatronics design and gait in plem entation of a quadruped legged robot [A]. The Seventh International Conference on Control, Automation, Robotics and Vision[C]. USA:IEEE, 2002:826-832.
    [23]张锦荣.基于虚拟样机技术的四足机器人仿真研究[D].西安:西北工业大学,2007:4-5.
    [24]Pyung Hun Chang, Hyung-Soon Park. Time-varying input shaping technique applied to vibration reduction of an industrial robot. Control Engineering Practice, Volume 13, Issue 1, January 2005, Pages 121-130.
    [25]S. K. Tso, T. W. Yang, W. L. Xu, Z. Q. Sun. Vibration control for a flexible-link robot arm with deflection feedback. International Journal of Non-Linear Mechanics, Volume 38, Issue 1, January 2003, Pages 51-62.
    [26]Joono Cheong, Youngil Youm, Wan Kyun Chung. Accessibility and identifiability of horizontal vibration in 3-D two-link flexible robots: system mode approach. Journal of Sound and Vibration, Volume 269, Issues 3-5,22 January 2004, Pages 489-509.
    [27]W Book. ROBOT VIBRATIONS. Encyclopedia of Vibration,2004, Pages 1055-1063.
    [28]J. Lin, Z. Z. Huang, P. H. Huang. An active damping control of robot manipulators with oscillatory bases by singular perturbation approach. Journal of Sound and Vibration, Volume 304, Issues 1-2,10 July 2007, Pages 345-360.
    [29]Pyung Hun Chang, Hyung-Soon Park. Time-varying input shaping technique applied to vibration reduction of an industrial robot. Control Engineering Practice, Volume 13, Issue 1, January 2005, Pages 121-130.
    [30]王沫楠,孟庆鑫.步行机器人控制方案及单足控制实验研究[J].林业机械与木工设备,2003:10-14.
    [31]Xuan-yin Wang, Yang Zhang, Xiao-jie Fu, Gui-shan Xiang. Design and Kinematic Analysis of a Novel Humanoid Robot Eye Using Pneumatic Artificial Muscles. Journal of Bionic Engineering, Volume 5, Issue 3, September 2008, Pages 264-270.
    [32]M. Saeed Varziri, Leila Notash. Kinematic calibration of a wire-actuated parallel robot. Mechanism and Machine Theory, Volume 42, Issue 8, August 2007, Pages 960-976.
    [33]童忠钫,俞可龙.机械振动学[M].浙江大学出版社,1992,(09):177-182.
    [34]Z. Mohamed, M.O. Tokhi. Command shaping techniques for vibration control of a flexible robot manipulator [J]. Department of Automatic Control and Systems Engineering,2003:77-82.
    [35]Jadran Lenarc ic, Bojan Nemec, Uros Stanic, Pavel Oblak. Design of robot manipulators based on kinematic analyses. Robotics and Computer-Integrated Manufacturing, Volume 4, Issues 1-2,1988, Pages 203-209
    [36]Dar-Zen Chen. Kinematic Analysis of Geared Robot Manipulators by the Concept of Structural Decomposition. Mechanism and Machine Theory, Volume 33, Issue 7,1 October 1998, Pages 975-986.
    [37]王知行.机械原理[M].北京:高等教育出版社,1999年:11-12.
    [38]凯德.PRO/ENGINEER中文野火版4.0技术应用从业通[M].北京:中国青年出版社,2008年:2-4.
    [39]StevenG. Smith. Advaneed Pro/ENGINEER Design:Release2.0, HARRISBURG PENNSYLVANIA,1999.
    [40]MECHANISM/Pro Reference Manual. MSC. Software,1999.
    [41]杨彦龙.液压挖掘机工作装置的虚拟样机仿真分析[D].天津:河北工业大学,2007:19.
    [42]臧辉.基于虚拟样机的地面移动机器人技术研究[D].南京:南京理工大学,2006:17-19.
    [43]傅友宾.基于PRO/E和ADAMS的变速器动力学仿真[D].大连:大连理工大学,2007:20-22.
    [44]胡楠.基于PRO/E和ADAMS的新型筛分设备的设计及其运动仿真[D].西安:西安建筑科技大学,2008:21-23.
    [45]徐芝纶.弹性力学简明教程[M].高等教育出版社,2002年:105.
    [46]周长城,胡仁喜,熊文波.ANSYS11.0基础与典型范例[M].电子工业出版社,2007年:6.
    [47]Muammer Koc, Taylan Altan. Application of two dimensional (2D) FEA for the tube hydroforming process. International Journal of Machine Tools and Manufacture, Volume 42, Issue 11, September 2002, Pages 1285-1295.
    [48]Jingshu Wu, Ray Ruichong Zhang, Steve Radons, Xiaole Long, Karl K. Stevens. Vibration analysis of medical devices with a calibrated FEA model. Computers & Structures, Volume 80, Issue 12, May 2002, Pages 1081-1086.
    [49]Wan-peng DONG, Jun CHEN.3D FEA simulation of 4A11 piston skirt isothermal forging process. Transactions of Nonferrous Metals Society of China, Volume 18, Issue 5, October 2008, Pages 1196-1200.
    [50]Alireza Maheri, Siamak Noroozi, John Vinney. Application of combined analytical/FEA coupled aero-structure simulation in design of wind turbine adaptive blades. Renewable Energy, Volume 32, Issue 12, October 2007, Pages 2011-2018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700