用户名: 密码: 验证码:
低温真空下接触界面间传热特性实验与机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在高温超导技术领域,利用GM制冷机的冷头直接冷却超导体,可以减小设备的体积、提高冷却效率,并节省大量冷媒,降低了实现低温环境的成本。由于在低温或高热流密度下,固体间的接触热阻会对界面热输运特性产生很大影响,因此降低接触热阻对提高冷却效率起着非常关键的作用。另外,在半导体发光管(LED)散热、航天器仪表热控制等导热作为热量传递主要方式的领域,接触热阻的存在对热传递过程影响很大,必须要加以考虑。影响界面接触热阻大小的因素较多,包括温度、加载压力、表面粗糙度及两侧接触材料的物性参数随温度变化等,因此不同样品间的接触热阻一般靠实验进行测定,当样品的材料、测试环境变化时,之前得到的数据往往不能直接加以利用,所以造成目前许多材料间的接触热阻数据非常欠缺,特别是在低温下的数据。
     为此,根据激光光热法(Laser Photothermal Method,LPM)测量原理,设计了一套样品间接触热阻快速测量装置,当测量温度环境达到后,就可以在几秒内完成测量过程。选用无氧铜(Oxygen-Free Copper, OFC)、AlN (Aluminum Nitride)陶瓷及SS304(Stainless Steel304)作为测试样品,在70K-300K温度区间内,在0.2MPa-0.75MPa下,测量了样品间的接触热阻,并对接触热阻随温度变化趋势进行了详细分析。最后,对光滑处理界面下样品间的接触热阻与两侧样品的热导率关系进行了分析。
     论文主要工作和结论如下:
     1) LPM方法是一种非稳态测试方法,可以在较短的时间内完成整个测量过程,大大提高了测量效率。首先详细介绍了LPM方法测量样品间接触热阻和样品热扩散系数的原理,并设计了一套LPM测量实验平台,对测量系统的实验装置进行了介绍,并对系统漏热进行了分析计算。然后强调了加热激光调制频率的选择对测量精度的影响,并介绍了样品的厚度选择及机械加工方法,为得到可靠的测量信号,在样品的加热面和探测面分别进行镀碳膜和镀金膜处理。
     2)给出了当利用LPM方法测量样品间接触热阻和样品热扩散系数时,针对不同样品选用的调制频率数值。进而测量了OFC、AlN陶瓷和SS304在30K-300K温度区间内的热扩散系数值,发现在整个测量温度区间内,OFC的热扩散系数随温度升高而不断减小,并且温度越低热扩散系数的变化速率越大。测量结果与已报道的数据非常接近,两者间平均相对误差为6.7%,说明LPM测量方法比较可靠。AlN陶瓷的热扩散系数先随温度升高而增大,并在约70K时出现最大值(0.00135m~2·s~(-1)),而后随温度升高而减小。SS304的热扩散系数也随温度升高而减小。从热扩散系数的定义式出发,分别解释了这三种样品的热扩散系数出现上述变化趋势的原因。
     3)在70K-300K温度区间内,在0.20MPa-0.75MPa下,利用LPM方法分别测量了OFC-OFC、AlN-AlN陶瓷和SS304-SS304间的接触热阻。其中OFC-OFC间的接触热阻随温度升高而不断增大;AlN-AlN陶瓷间的接触热阻先随温度升高而不断减小,而后再随温度的升高而不断增大;SS304-SS304间的接触热阻随温度升高而一直减小。上述三种同种材料间的接触热阻都会随加载压力的不断增大而减小,在实验条件下两者间近似于直线关系。样品表面粗糙度大小会明显改变接触热阻值,并且温度的改变不仅会影响两侧材料的物性参数,还会影响界面的实际接触面积大小。
     4)在相同加载压力下,对于不同材料样品间的接触热阻,其中SS304-OFC和SS304-AlN陶瓷间的接触热阻都是随温度升高而不断减小;OFC-AlN陶瓷间的接触热阻先随着温度升高而减小,而后再随温度升高而增大,并且在低温下的变化速率较大。在相同测量温度下,加载压力越大,上述三种组合间的接触热阻都会减小,并且两者间近似于直线关系。对不同加载压力下,样品间的接触热阻与温度变化间的关系进行拟合,可以较好地描述两者间的关系。
     5)在光滑处理表面相同加载压力下,同种材料相接触时,材料固有的导热能力越强,那么样品间的接触热阻也越小,如OFC-OFC间的接触热阻     6)最后,分析了样品间的接触热阻与其固有热导率间的关系。对于同种材料件的接触热阻而言,在一定加载压力下,材料的固有热导率越大,则接触热阻值越小。在85K-280K的温度区间内,OFC-OFC间的接触热阻与其固有热导率之间呈指数关系变化;在75K-275K温度区间内,SS304-SS304间的接触热阻与其固有热导率间呈直线关系变化;而随着温度的升高,AlN-AlN陶瓷间的接触热阻与其固有热导率间的变化存在“回转现象”。OFC-SS304间接触热阻与其调和平均热导率之间呈乘幂关系;OFC-AlN陶瓷间的接触热阻与其调和平均热导率间呈指数函数。
The advantages of the high-temperature superconducting technology which cool thesuperconductor by refrigerator directly consist of reducing the size of equipment; saving therefrigerant; reducing the cost of cooling the superconductor. The Thermal ContactResistance (TCR) influences significantly the heat transport at the contact surfaces in highheat flux and cryogenic fields. Therefore reducing the TCR plays a critical role during thedesign or optimization of the equipment. Moreover the influence factors of the TCR aremultitudinous, such as temperature, contact pressure, roughness and the variation of thethermal parameters with the temperature, so the measurement of TCR is important. Thevalue of the TCR will change when the type of the specimen or the testing environmentchange. So the measured value is invalid. Above all the data of the TCR are inadequate,especially at cryogenic applications. This paper developed an experimental setup accordingto the principle of Laser Photothermal Method (LPM). This method can complete themeasurement during several seconds. Oxygen-Free Copper (OFC), Aluminum Nitride (AlN)ceramic and Stainless Steel304(SS304) were employed. In the temperature range of70K-300K the TCR between above materials were measured using the LPM. And using theinfluence of temperature on the TCR was analyzed. At last the relationship between theTCR between smooth processing surfaces and the thermal conductivity of contactingmaterials was analyzed.
     The main work and conclusion are as followings:
     LPM is a transient method and can complete the measurement during a very short period,so the measurement efficiency has been greatly improved. The principle of LPM was firstlygiven when the TCR and thermal diffusivity are measured. Then the experimental systemwas set up and the experimental apparatus was introduced. Then the heat leak of theexperimental setup was analyzed. This paper emphasized that the choice of the heatinglaser modulation frequency would influence the measurement accuracy. At last thethickness and machining method of the specimen were introduced. In order to improve themeasurement accuracy, a carbon film was placed on the detection surface and a gold filmwas placed on the heating surface.
     The value of the optimal modulation frequency for different materials were given, whenthe thermal diffusivity or TCR was measured using the LPM. Then the thermal diffusivitiesof OFC, AlN ceramic and SS304were measured in the temperature range of30K-300K.This paper firstly measured the thermal diffusivity of OFC and the thermal diffusivitydecreased with the increasing of the temperature and at lower temperature the thermaldiffusivity changed severely. The average relative error between experimental data and thereference values is6.7%. The thermal diffusivity of AlN ceramic increased with theincreasing of the temperature from30K to70K, and then decreased with the increasing ofthe temperature. The peak value is0.00135m~2·s~(-1)and the temperature was70K. Thethermal diffusivity of SS304decreased with the increasing of temperature which wassimilar with that of OFC. Finally, the variation of the thermal diffusivity with thetemperature was analyzed according to the definition of the thermal diffusivity.
     The TCR of OFC-OFC, AlN-AlN ceramic and SS304-SS304was measured using LPMfrom70K to300K and at the contact pressure of0.20MPa-0.75MPa. The TCR of OFCincreased with the increasing of the temperature. The TCR of AlN ceramic firstlydecreased and then increased with the increasing of the temperature. The TCR of SS304decreased with the increasing of the temperature. The TCR OFC-OFC, AlN-AlN ceramicand SS304-SS304decreased linearly with the increasing of the contact pressure. In addition,the TCR increased with the increasing of surface roughness. The results showed that thechange of the temperature can influence the thermal parameters of the contact materials andcause the real contact area to change.
     At a certain contact pressure, the TCR of OFC-SS304, SS304-ALN ceramic decreasedwith the increasing of the temperature. The TCR of OFC-AlN ceramic firstly decreased andthen increased with the increasing of the temperature and lower the temperature was, moreobvious the impact of the contact pressure on the TCR. At the same temperature the TCRdecreased linearly with the increasing of the contact pressure. At different contact pressurethe relationship between the TCR and the temperature was simulated. And the formulascould well describe the relationship between the temperature and the TCR.
     For the smoothing surface, when the intrinsic thermal conductivity is high, the TCR ofthe same contact materials is large, such that the TCR of OFC was the smallest, and theTCR of SS304was the largest. When the contact materials were different, the change of the TCR was dependent on the material of which the thermal conductivity was smaller. Forexample the TCR of SS304-OFC was smaller than that of SS304-AlN ceramic andmeanwhile the TCR of SS304-SS304was smallest.
     At last, the influence of intrinsic thermal conductivity on the TCR was analyzed. At acertain contact pressure, the TCR decreased with the increasing of the intrinsic thermalconductivity. When the temperature rose from85K to280K, the TCR of OFC-OFCpresented an exponential function of intrinsic thermal conductivity. When the temperaturerose from75K to275K, the TCR of SS304-SS304was a linear relationship with intrinsicthermal conductivity. When the temperature rose, the change of the TCR between AlNceramic with intrinsic thermal conductivity appeared “return phenomenon”. The TCR ofOFC-SS304and harmonic mean thermal conductivity was a exponentiation relationship.The TCR of OFC-AlN ceramic was an exponential function of harmonic mean thermalconductivity.
引文
[1] Baturkin V. Micro-satellites thermal control-concepts and components [J]. ActaAstronautica,2005,56(1-2):161~170.
    [2] Janicki M, Banaszczyk J, Mey D M, et al. Dynamic thermal modeling of a powerintegrated circuit with the application of structure functions [J]. MicroelectronicsJournal,2009,40(7):1135~1140.
    [3] Grujicic M, Zhao C L, Dusel E C. The effect of thermal contact resistance on heatmanagement in the electronic packaging [J]. Applied Surface Science,2005,246(1-3):290~302.
    [4] Okubo H, Wakita M, Chigusa S, et al. Dynamic breakdown characteristics of liquidhelium induced by a quench of superconducting wire and coil [J]. Dielectrics andElectrical Insulation,1997,4(1):120~126.
    [5] Demko J A, Lue J W, Gouge M J, et al. Practical AC loss and thermal considerationsfor HTS power transmission cable systems [J]. Applied Superconductivity,2001,11(1):1789~1792.
    [6] Oestergaard J, Okholm J, Lomholt K, et al. Energy losses of superconducting powertransmission cables in the grid [J]. Applied Superconductivity,2001,11(1):2375~2378.
    [7] Masuda T, Kato T, Yumura H, et al. Verification tests of a66kV HTSC cable systemfor practical use (first cooling tests)[J]. Physica C: Superconductivity,2002,378-381(2):1174~1180.
    [8] Masuda T, Ashibe Y, Watanabe M, et al. Development of a100m,3-core114MVAHTSC cable system [J]. Physica C: Superconductivity,2002,372-376(3):1580~1584.
    [9]王惠龄,汪京荣.超导应用低温技术[M].北京:国防工业出版社,2007.
    [10]毕延芳. EAST装置15kA高温超导电流引线研发[J].低温物理学报,2005,27(5):1074~1079.
    [11]李素燕,刘孝坤,王莉.35-100kV高温超导电缆终端低温恒温器热负荷分析[J].低温与超导,2010,38(6):21~25.
    [12] Lee H L, Sun S H, Chang W J, et al. Transient thermal loading induced opticaleffects in tightly jacketed double-coated optical fibers with interlayer thermal contactresistance [J]. Optics Communications,2012,285(4):447~452.
    [13] Pattamatta A. Modeling thermal resistance in carbon nanotube contacts [J].International Journal Thermal Science,2010,49(9):1485~1492.
    [14] Zhu W J, Low T, Perebeinos V, et al. Structure and electronis transport in graphenewrinkles [J]. Nano Letters,2012,12(7):3431~3436.
    [15] Chen Z, Jang W, Bao W, et al. Thermal contact resistance between graphene andsilicon dioxide [J]. Applied Physics Letters,2009,95(16):161910-1~161910-3.
    [16] Jam J E, Fard V N. A novel method to determine tool-chip thermal contactconductance in machining [J]. International Journal of Engineering Science andTechnology,2011,3(12):8491~8501.
    [17] Guillot E, Bourouga B, Garnier B, et al. Measurement of the thermal contactparameters at a workpiece-tool interface in a HSM process [J]. International Journalof Material Forming,2008,1(1):1419~1422.
    [18] Fiedler T, Belova I V, Murch G E. Critical analysis of the experimental determinationof the thermal resistance of metal foams [J]. International Journal of Heat and MassTransfer,2012,55(15-16):4415~4420.
    [19] Jaeger P D, Joen C T, Huisseune H, et al. Assessing the influence of four cutting methods on the thermal contact resistance of open-cell aluminum foam[J].2012,55(21-22):6142~6151.
    [20] Jaeger P D, Joen C T, Huisseune H, et al. Assessing the influence of four bonding methods on the thermal contact resistance of open-cell aluminum foam[J].2012,56(21-22):6200~6210.
    [21] Wei D, Liu D H, Shang X C, et al. Thermomechanical coupling analysis ofheat-pipe-cooled leading edge thermal protection structure with thermal contactresistance [J]. Procedia Engineering,2012,31:580~585.
    [22] Wang Z R, Yang J, Yang M Y, et al. Experimental study of thermal contactconductance based on heat-transfer theory with variable thermal conductivity [J].Journal of Testing and Evaluation,2012,40(4):1~5.
    [23]梁国定,原渭兰.接触热阻对固体火箭发动机烤燃时间的影响[J].海军航空工程学院学报,2007,22(2):272~274.
    [24]杨立.接触热阻对环肋稳态换热的影响[J].上海交通大学学报,1999,33(8):990~992.
    [25]王艳武,杨立,孙丰瑞.接触热阻对异步电动机定子温度场影响分析[J].微特电机,2009(2):26~55.
    [26]解锦婷,陈玲.金属铸造界面传热系数的试验研究及其确定[J].机械设计,2007,24(10):38~40.
    [27] Bowden F P. The friction and lubrication of solids [J]. American Journal of Physics,1951,19(7):428~429.
    [28] Timsit S. Electrical contact resistance: properties of stationary interfaces [C].Proceedings of the Forty-Fourth IEEE Holm Conference on Electrical Contacts,Markham, Canada,1998.1~19.
    [29] Madhusudana C V. Thermal Contact Conductance [M]. New York: MechanicalEngineering Series,1996.
    [30] Bejan A, Kraus D. Heat Transfer Handbook [M]. New York: John Willey,2003.
    [31]殷晓静, Degiovanni A.同心圆柱套筒间接触热阻研究(Ⅰ):数学模型[J].北京科技大学学报,1996,18(4):383~386.
    [32] Colin A. Thermal contact resistance of different materials between0.3K and4.5K[J]. Cryogenics,2008,48(1-2):83~85.
    [33] Xu Ruiping, Xu Lie. An experimental investigation of thermal contact conductanceof stainless steel at low temperatures [J]. Cryogenics,2005,45(10-11):694~704.
    [34] Woodland S, Crocombe A D, Chew J W, et al. A New Method for MeasuringThermal Contact Conductance-Experimental Technique and Results [J]. Journal ofEngineering for Gas Turbines and Power,2011,133(7):071601-1~071601-8.
    [35] Prasher R S, Phelan P E. Microscopic and macroscopic thermal contact resistances ofpressed mechanical contacts [J]. Journal of Applied Physics,2006,100(6):06358-1~06358-8.
    [36] Zhang G, Liu C H, Fan S S. Temperature dependence of thermal boundaryresistances between multiwalled carbon nanotubes and some typical counterpartmateriasl [J]. ACS Nano,2012,6(4):3057~3062.
    [37] Wang J L. Temperature dependence of thermal resistance of a bare joint [J].International Journal of Heat and Mass Transfer,2010,53(23-24):5350~5354.
    [38] Fujishiro H, Okamoto T, Hirose K. Thermal contact resistance between high-Tcsuperconductor and copper [J]. Physica C: Superconductivity,2001,357-360(Part1):785~788.
    [39] Wolff E G, Schneider D A. Prediction of thermal contact resistance between polishedsurfaces [J]. International Journal of Heat and Mass Transfer,1998,41(22):3469~3482.
    [40] Milo evi′c N D. Determination of Transient Thermal Interface Resistance BetweenTwo Bonded Metal Bodies using the Laser-Flash Method [J]. International Journal ofThermophysics,2008,29(6):2072~2087.
    [41] Ocariz A., Sanchez-Lavega A, Salazar A. Photothermal study of subsurfacecylindrical structures II. Experimental results [J], Journal of Applied Physics,1997,81(11):7561~7566.
    [42]范有明,宁练,时章明,等.热线法快速测量微粒导热系数的研究[J].工业计量,2006,16(6):1~3.
    [43] Franco A. An apparatus for the routine measurement of thermal conductivity ofmaterials for building application based on a transient hot-wire method [J]. AppliedThermal Engineering,2007,27(14-15):2495~2504.
    [44] Malinari S. Parameter estimation in dynamic plane source method [J]. MeasurementScience and Technology,2004,15(5):807~813.
    [45]周刁民,朱再兴,谢东江等.常功律平面热源法测试耐火材料热物性的研究[J].中南大学学报,2011,42(5):1467~1472.
    [46] Log T, Gustafsson S E. Transient plane source (TPS) technique for measuringthermal transport properties of building materials [J]. Fire and Materials,1995,19(1):43~49.
    [47] Liu C H, Huang H, Wu Y, et al. Thermal conductivity improvement of siliconeelastomer with carbon nanotube loading [J]. Applied Physics Letters,2004,84(21):4248~4250.
    [48] Shojaefard M H, Goudarzi K. The numerical estimation of thermal contact resistancein contacting surfaces [J]. American Journal of Applied Sciences,2008,5(11):1566~1571.
    [49] Bourouga B, Bardon J P. Thermal contact resistance at the interface of double tubesassembled by plastic deformation [J]. Experimental Thermal and Fluid Science,1998,18(2):168~181.
    [50]徐烈,张涛,赵兰萍,等.双热流法测定低温真空下固体界面的接触热阻[J].低温工程,1999(4,总第110期):185~189.
    [51] Milo evi c N D. Determination of transient thermal interface resistance between twobonded metal bodies using the laser-flash method [J]. International Journal ofThermophysics,2008,29(6):2072~2087.
    [52] Milo evi N D, Raynand M, Magli K D. Estimation of thermal contact resistancebetween the materials of double-layer sample using the laser flash method [J].Inverse Problems in Engng,2002,10(1):85~103.
    [53] Casalegno V, Vavassori P, Valle M. Measurement of thermal properties of aceramic/metal joint by laser flash method [J]. Journal of Nuclear Materials,2010,407(2):83~87.
    [54] Li B C, Pottier L, Roger J P, et al. Thermal characterization of film-on-substratesystems with modulated thermoreflectance microscopy [J]. Review of ScienceInstruments,2000,71(5):2154~2160.
    [55] Lahmar A, Nguyen T P, Sakami D, et al. Experimental investigation on the thermalcontact resistance between gold coating and ceramic substrates [J]. Thin Solid Films,2001,389(1):167~172.
    [56] Smith A N, Hostetler J L, Norris P M. Thermal boundary resistance measurementsusing a transient thermoreflectance technique [J]. Nanoscale and MicroscaleThermophysical Engineering,2000,4(1):51~60.
    [57] Bu W F, Tang D W, Wang Z L, et al. Modulated photothermal reflectance techniquefor measuring thermal conductivity of nano film on substrate and thermal boundaryresistance [J]. Thin Solid Films,2008,516(23):8359~8362.
    [58] Khalatnikov I M. Heat transfer between a solid body and Helium Ⅱ [J]. Zhur. Eksptl'.i Teoret. Fiz.1952,22:687~704.
    [59] Swartz E T, Pohl RO. Thermal boundary resistance[J]. Review of Modern Physics,1989,61(3):605~668.
    [60] Little W A. The transport of heat between dissimilar solids at low temperatures [J].Canadian Journal of Physics,1959,37(3):334~349.
    [61] Cahill D G, Ford W K, Goodson K E. Nanoscale thermal transport [J]. Journal ofApplied Physics,2003,93(2):793~818.
    [62] Prasher R S, Phelan P E. A scattering-mediated acoustic mismatch model for theprediction of thermal boundary resistance [J]. Journal of Heat Transfer,2001,123(6):105~112.
    [63] Swartz E T, Pohl R O. Thermal resistance at interfaces [J]. Applied Physics Letters,1987,51(26):2200~2202.
    [64] Duda J C, Smoyer J L, Norris P M, et al. Extension of the diffuse mismatch modelfor thermal boundary conductance between isotropic and anisotropic materials [J].Journal Physics Letters,2009,95(3):031912-1~031912-3.
    [65] Huang H M, Xu X L. Effect of surface morphology on thermal contact resistance [J].Thermal Science,2011,15(5):33~38.
    [66] Greenwood J A, Williamson J B P. Contact of nominally flat surfaces [C].Procceedings of the Royal Society of London, series A: mathematical and PhysicalSciences. London, UK,1966(295):300~319.
    [67] Song S. Analytical and experimental study of heat transfer through gas layers ofcontact interfaces [D]. Ph.D. Department of Mechanical Engineering, University ofWaterloo, Waterloo, Canada,1988.
    [68] Milanez F H, Yovanovich M M, Culham J R. Effect of surface asperity truncation onthermal contact conductance [J]. IEEE Transaction on Components and PackagingTechnologies,2002,26(1):48~54.
    [69] Jackson R L, Green I. On the modeling of elastic contact between rough surfaces [J].Tribology Transaction,2011,54(2):300~314.
    [70] Majumdar A, Bhushan B. Role of fractal geometry in roughness characterization andcontact mechanics of surfaces [J]. ASME Journal of Tribology,1990,112(1):205~216.
    [71] Majumdar A, Bhushan B. Fractal model of elastic-plastic contact between roughsurfaces[J]. ASME Journal of Tribology,1991,113(1):1~11.
    [72] Majumdar A, Tien C L. Fractal characterization and simulation of rough surface [J].Wear,1990,136(2):313~324.
    [73] Xu R P, Feng H D, Jin T x, et al. Fractal description of thermal contact resistancebetween rough surfaces at low temperature [C]. International Cryogenic EngineeringConference, Beijing, China,2004.
    [74] Xu R P, Feng H D, Zhao L P, et al. Experimental investigation of thermal contactconductance at low temperature based on fractal description [J]. InternationalCommunications in Heat Transfer,2006,33(7):811~818.
    [75] Cooper M G, Mikic B B, Yovanovich M M. Thermal contact conductance[J]. International Journal of Heat and Mass Transfer,1969,12(3):279~300.
    [76] Yovanovich M M. Thermal contact correlations[C]. In:AIAA16th Thermophysics Conference, Palo Alto, California, USA,1981,83~95.
    [77] Mikic B B. Thermal contact conductance: theoretical considerations [J]. InternationalJournal of Heat Mass Transfer,1974,17(2):205~214.
    [78] Johnson K L. Contact mechanics[M]. Cambridge: Cambridge University Press,1985.
    [79] Sridhar M R, Yovanovich M M. Elastoplastic constriction resistance of sphere/flatcontacts: Theory and experiment [J]. ASME Heat Transfer Devision,1993,263:123~134.
    [80] Singhal V, Litke P J, Black A F, et al. An experimentally validated thermo-mechanical model for the prediction of thermal contact conductance [J]. InternationalJournal of Heat and Mass Transfer,2005,48(25):5446~5459.
    [81]钟明,程曙霞,孙承纬,等.接触热阻的蒙特卡罗法模拟[J].高压物理学报,2002,16(4):305~308.
    [82]赵兰萍,徐烈,李兆慈,等.固体界面间接触导热的机理和应用研究[J].低温工程,2000(4,总第116期):29~34.
    [83]徐征,刘增雄. Al与Al之间低温界面热阻的分子动力学仿真[J].科技情报开发与经济,2005,15(12):148~149.
    [84]陈进,徐征,王惠龄. Ar-Kr低温界面传热过程分子动力学模拟[J].低温工程,2005(3,总第145期):45~47.
    [85] Pettersson S, Mahan G D. Theory of the thermal boundary resistance betweendissimilar lattices [J], Physical Review B,42(12):7386~7390.
    [86] Landry E S, McGaughey A J H. Thermal boundary resistance predictions frommolecular dynamics simulations and theoretical calculations [J]. Physical Review B,2009(80):165304-1~165304-11.
    [87] Chen J, Wang H L, Zhou Z X, et al. The logic analyses of heat transfer processbetween solids [J]. Journal of Energy and Power Engineering,2007,11(1):29~33.
    [88] Chen J, Wang H L, Zhou J, et al. The investigation on the computer simulation ofinterfacial thermal resistance between Bi2223and AlN based on pan-boolean algebra
    [C]. Proceedings of the2009International Conference on Information, Electronicand Computer Science, Qingdao, China,2009,578~581.
    [89]饶荣水.固体界面之间接触热阻的辨识研究[J].工业加热,2003,2:16~19.
    [90] Nan C W, Li X P, Birringer R. Inverse problem for composites with imperfectinterface: determination conductivity of constituents, and microstructural parameters[J]. Journal of the American Ceramic Society,2000,83(4):848~854.
    [91] Schuman B, Nitsche F, Paasch G. Thermal Conductance of Metal Interfaces at LowTemperatures [J]. Journal of Low Temperature Physics,1980,38(1-2):167~189.
    [92] Kumar S S, Ramamurthi K. Thermal contact conductance of pressed contacts at lowtemperatures [J]. Cryogenics,2004,44(10):4727~734.
    [93] Mykhaylyk V B, Burt M, Ursachi C, et al. Thermal contact conductance ofdemouontable in vacuum copper-copper joint between14and100K [J]. Review ofScientific Instruments,2012,83(3):034902-1~034902-6.
    [94] Sartre V, Lallemand M. Enhancement of thermal contact conductance for electronicsystems [J]. Applied Thermal Engineering,2001,21(2):221~235.
    [95] Wu Y, Liu C H, Huang H, et al. Effects of surface metal layer on the thermal contactresistance of carbon nanotube arrays [J]. Applied Physics Letters,2005,87(21):213108~213110.
    [96] Snaith B, O'Callaghan P W, Probert S D. Interstitial materials for controlling thermalconductances across pressed metallic contacts [J]. Applied Energy,1984,16(3):175~191.
    [97] Youngsuk S, Sunil K P, Theodorian B T, et al. Thermal resistance of the nativeinterface between vertically aligned multiwalled carbon nanotube arrays and theirSiO2/Si substrate [J]. Journal of Applied Physics,2009,102(2):024911-1~024911-7.
    [98] Xu Y, Luo X, Chung D D L. Lithium doped polyethylene-glycol-based thermalinterface pasted for high thermal contact conductance [J]. J Electron Packaging,2002,124(3):188~191.
    [99] Leong C K, Chung D D L. Carbon black dispersions as thermal pastes that surpasssolder in providing high thermal contact conductance [J]. Carbon,2003,41(13):2459~2469.
    [100] Slifka A J. Thermal-conductivity apparatus for steady-state, comparativemeasurement of ceramic coatings [J]. Journal of Research of the National Institute ofStandards and Technology,2000,105(4):591~615.
    [101] Mykhaylyk V B, Burt M, Ursachi C, et al. Thermal contact conductance ofdemouontable in vacuum copper-copper joint between14and100K [J]. Review ofScientific Instruments,2012,83(3):034902-1~034902-6.
    [102] Luo X B, Feng H, Liu J, et al. An experimental investigation on thermal contactresistance across metal contact interfaces [C].12thInternational Conference onElectronic Packaging Technology and High Density Packaging, Wuhan, China,2011.
    [103] Mcwaid T, Marschall E. Thermal cont act resistance across pressed metal contacts ina vacuum environment [J]. International Journal of Heat and Mass Transfer,1992,35(11):2911~2920.
    [104]赵兰萍,徐烈,李兆慈等.反复加载情况下低温固体界面间接触导热的研究[J].低温与超导,2000,28(1):51~54.
    [105]冯其波,谢芳,张斌,等.光学测量技术与应用[M].北京:清华大学出版社,2008.
    [106]郭培源,付扬.光电检测技术及应用[M].北京:北京航空航天大学出版社,2006.
    [107] Almond D P. Photothermal science and techniques (Physics and Its Applications)
    [M]. London: Springer,1996.
    [108] Ohsone Y, Wu G, Dryden D, et al. Optical measurement of thermal contactconductance between wafer-like thin solid samples [J]. ASME,1999,121(4):954~63.
    [109] McDonald K R, Dryden J R, Majumdar A, et al. A photothermal technique for thedetermination of the thermal conductance of interface and cracks [J]. Journal of HeatTransfer,2000,122(1):10~14.
    [110] Model SR830DSP Lock-In Amplifier (Version2005)[K]. Stanford ResearchSystems Inc,2005.
    [111]谢苏江.聚四氟乙烯的改性及应用[J].化工新型材料,2002,30(11):26~30.
    [112] Liu F, Wang J F, Wang W. Frequency sensitivity in weak signal detection [J]. Phys.Rev. E,1999,59(3):3453~3460.
    [113] Man C N, Shoemaker D, Tu M P, et al. External modulation technique for sensitiveinterferometric detection of displacements [J]. Physics Letters A,1990,148(1-2):8~16.
    [114]王钊,陈焕新,谢军龙等.低温温度测量与控制系统研究[J].低温工程,2010,178(6):16~18.
    [115] Huang H, Xu X L. Effects of surface morphology on thermal contact resistance [J].Thermal Science,2011,15(1): S33~S38.
    [116]沈军,马骏,刘伟强.一种接触热阻的数值计算方法[J].上海航天2002,4(1):33~36.
    [117]刘冬欢,王飞,曾凡文等.高温接触热阻的有限元模拟方法[J].2012,29(9):375~379.
    [118] Coufal H, McClelland J F. Photothermal and photoacoustic spectroscopy [J]. Journalof Molecular Structure,1988,173:129~140.
    [119] Guo X, Sivagurunathan K, Pawlak M, et al. Laser phtothermal radiametricinstrument for industrial steel hardness inspection [J]. Journsl of Physics: ConferenceSeries,2010,214(1):1~5.
    [120] Braunovic M, Konchits V V, Myshkin N K. Electrical contacts: fundamental,applications and technology [M]. Florida: CRC Press,2007.
    [121] Timsit R S. Electrical contact resistance: properties of stationary interfaces [J]. IEEETransaction on Components, Packaging and Manufacturing Technology. Part A,1999,22(1):85~98.
    [122]闵桂荣,郭舜.航天器热控制[M].北京:科学出版社,1998.
    [123]金捷.检测技术[M].北京:清华大学出版社,2005.
    [124] Power J F, Mandelis A. Frequency-modulation impulse response photothermaldetection through optical reflectance.2: Experimental [J]. Applied Optical,1988,27(16):3408~3417.
    [125] Palik E D. Handbook of Optical Constants of Solids [M]. San Diego: Academic Press,1998.
    [126]李景镇.光学手册[M].西安:陕西科学技术出版社,1986.
    [127]刘建庆,孙建平,陈跃飞.非稳态法测量材料热扩散率方法综述[J].计量技术,2009,12:26~30.
    [128] Ka′zmierczak-Ba ata A, Bodzenta J, Trefon-Radziejewska D. Determination ofthermal-diffusivity dependence on temperature of transparent samples by thermalwave method [J]. International Journal of Thermophysics,2010,31(1):180~186.
    [129] Blumm J, Opfermann J. Improvement of the mathematical modeling of flashmeasurements [J]. High Temperatures-High Pressures,2002,34(5):515~521.
    [130] Cernuschi F, Lorenzoni L, Bianchi P, et al. The effects of sample surface treatmentson laser flash thermal diffusivity measurements [J]. Infrared Physics&Technology,2002,43(3-5):133~138.
    [131] Kim S K, Kim Y J. Determination of apparent thickness of graphite coating in flashmethod [J]. Thermochimica Acta,2008,468(1-2):6~9.
    [132][日]田沼静一,编,叶士禄,焦正宽,张学栋译.低温[T].北京:低温工程编辑部,1980.
    [133]蔡明忠.金属低温热学和电学性质[M].北京:冶金工业出版社,1981.
    [134][美]Charies Kittel著,项金钟,吴兴惠译.固体物理导论[T].北京:化学工业出版社,2005.
    [135] Borom M P, Slack G A, Szymaszek J W. Thermal conductivity of commercial nitride[J]. American Ceramic Society Bulletin,1972,51(11):852~856.
    [136] Werdecker W, Aldinger F. Aluminum nitride-An alternative ceramic substrate forhigh power applications in microcircuits [J]. IEEE on Components, Hybrids, andManufacturing Technology,1984,7(4):399~404.
    [137] Kurokawa Y, Utsum K, Takamizawa H. Development and microstructuralcharacterization of high–thermal–conductivity aluminum nitride ceramics [J].Journal of American Ceramic Society,1988,71(7):588~594.
    [138] Jackson T B, Virkar A V, More K L, et al. High–thermal–conductivity aluminumnitride ceramics: the effect of thermodynamic, kinetic, and microstructural factors [J].Journal of American Ceramic Society,1997,80(6):1421~1435.
    [139]郭广艳,薛健.氮化铝陶瓷热扩散率的测定[A].湖南省科协首届青年学术年会执行委员会编,湖南省科学计数协会首届青年学术年会论文集,长沙:湖南科学技术出版社,1992.
    [140]薛健, R.Taylor.氮化铝样品厚度与热扩散率关系研究[J].中南大学学报(自然科学版),1991,22(4):413~419.
    [141] Behn U. Ueber die specifische W rme einiger Metalle bei tiefen Temperaturen [J].Annalen der Physics,1898,302(10):237~244.
    [142] Slack G A, Tanzilli R A, Pohl R O, et al. The intrinsic thermal conductivity of AIN[J]. Journal of Physics and Chemistry of Solids,1987,48(7):641~647.
    [143] Watari K, Nakano H, Urabe K, et al. Thermal conductivity of AlN ceramic with avery low amount of grain boundary phase at4to1000K [J]. Journal of MaterialsResearch Society,2002,17(11):2940~2944.
    [144] Leibfried G, Schl mann E. W rmeleitung in elektrisch isolierenden Kristallen [J].Nachr. Ges. Wiss. Goett. Math. Phys.,1954, K1(2):71~93.
    [145] Figgea S, Kr ncke H, Hommel D, et al. Temperature dependence of the thermalexpansion of AlN [J]. Applied Physics Letters,2009,94(10):101915-1~101915-3.
    [146] Ivanov S N, Popov P A, Egorov G V, et al. Thermophysical properties of aluminumnitride ceramic [J]. Physics of the Solid State,1997,39(1):81~83.
    [147] Cryogenics Technologies Group. Material Properties:304Stainless (UNS S30400)
    [EB/OL].http://cryogenics.nist.gov/MPropsMAY/materialproperties.htm.
    [148] Soumik B. Molecular simulation of nanoscale transport phenomena [D]. EngineeringScience and Mechanics,2008.
    [149]肖福根.低温技术在国外航天领域应用发展情况[J].航天器工程,2006,15(1):49~56.
    [150]邵宝东,孙兆伟,王丽凤.微纳卫星的微尺度传热问题及其解决方法[J].哈尔滨工业大学学报,2007,39(9):1361~1365.
    [151]王惠龄,饶荣水,李敬东等.超导电力低温技术展望[J].电力系统自动化,2001,25(17):65~68.
    [152]王粟,王雪波.氮化铝陶瓷与铜界面传热计算机仿真[J].武汉理工大学学报,2006,28(6):14~16.
    [153]田金颖. CPU热管散热器的实验研究与数值模拟[D].天津:天津商业大学,2008.
    [154] Chang Y W, Cheng C H, Wang J C, et al. Heat pipe for cooling of electronicequipment [J]. Energy Conversion and Management,2008,49(11):3398~3404.
    [155] Rajainm ki H, Helenius A, Kolehmainen M. The production and application ofoxygen-free copper [J]. Jom Journnal of the Minerals, Metals and Materials Society,1993,45(3):68~70.
    [156] Chung D D L. Materials for thermal conduction [J]. Applied Thermal Engineering,2001,21(16):1593~1605.
    [157] Tomioka A, Bohno T, Nose S. Experimental Results of the Model Coil for CoolingDesign of a1T Cryocooler-Cooled Pulse Coil for SMES [J]. IEEE Transactions onApplied Superconductivity,1999,9(2):932~935.
    [158] Fleurial J P, Borshchevsky A, Ryan M A. Thermoelectric microcoolers for thermalmanagement application [C].16th International Conference on Thermoelectrics,1997.
    [159] Baddoo N R. Stainless steel in construction: A review of research, applications,challenges and opportunities [J]. Journal of Constructional Steel Research,2008,64:1199~1206.
    [160] Gardner L. The use of stainless steel in structures [J]. Prog Struct Eng Mater,2005,7(2):45~55.
    [161]谢华清,奚同庚编著.低维材料热物理[M].上海:上海科学技术文献出版社,2008.
    [162]徐烈,张涛,熊炜,等.真空低温下接触表面对接触热阻的影响[J].真空与低温,1998,4(1):1-4.
    [163] Ponnappan R, Ravigururajan T S. Contact thermal resistance of Li-ion cell electrodestack [J]. Journal of Power Sources,2004,129(1):7~13.
    [164] Abadi P P S S, Leong C K, Chung D D L. Factor that govern the performance ofthermal interface materials [J]. Journal of Electronic Materials,2009,38(1):175~192.
    [165] Yu J, Yee AL, Schwall R E. Thermal conductance of OFC/OFC and OFC/Siinterfaces from85K to300K [J]. Cryogenics,1992;32(7):610~615.
    [166] Slack G A. The thermal conductivity of nonmetallic crystals [A]. In: Solid StatePhysics [C]. New York: Academic Press,1979,34:1~71.
    [167] Peckner D, Bemstein I M.顾守仁,周有德,译.不锈钢手册(第一版)[M].北京:机械出版社,1987.
    [168] Al-Astrabadi F R, Jones A M, Prober S D, et al. Effect of surface distortions uponthe thermal resistance of pressed contacts [J]. Journal of Mechanical EngineeringScience,1979,21:317~322.
    [169] Gmelin E, Asen-Palmer M, Reuther M, et al. Thermal boundary resistance ofmechanical contacts between solids at sub-ambient temperatures [J]. Journal ofPhysics D: Applied Physics,1999,32(6):R19~R43.
    [170] Al-Astrabadi F R, Jones A M, Probert S D, et al. Effect of surface distortions uponthe thermal resistance of pressed contacts [J]. Journal of Mechanical EngineeringScience,1979,21:317~322.
    [171] Shi L, Wang H L. Investigation on thermal contact resistance by photothermaltechnique at low temperature [J]. Heat Mass Transfer,2007,43(11):1179~1184.
    [172] Woodcraft A L. Comment on 'thermal boundary resistance of mechanical contactsbetween solids at sub-ambient temperatures [J]. Journal of Physics D: AppliedPhysics,2001,34(18):2932~2934.
    [173] Wang J, Wang H L, Zhuang H R. Thermal contact conductance of ceramic AlN andoxygen-free high-conductivity copper interfaces under low temperature and vacuumfor high-temperature superconducting cryocooler cooling [J]. Review of Scientificinstruments,2006,77(2):024901-1~024901-5.
    [174] Jarrige J, Joyeux T, Lecompte J P, et al. Comparison between two processes usingoxygen in the Cu/AlN bonding [J]. Journal of the European Ceramic Society,2007,27(2):855~860.
    [175] Eriksson M, Bergman F, Jacobson S. Surface characterization of brake pads afterrunning under silent and squealing conditions [J]. Wear,1999,232:163~167.
    [176] Dmitriev A M, Kavun O Y, Moshchenko M G, et al. Investigation of the thermalinertia and thermal stresses of heat-transferring elements in a solid-coolant nuclearreactor [J]. Atomic Energy,2011,110(5):332~338.
    [177]费业泰.误差理论与数据处理[M].北京:机械工业出版社,2004.
    [178] Li W G, Li L, Cheng T B, et al. Effective thermal conductivity of ultra-hightemperature ceramics with thermal contact resistance [J]. Physica Scripta,2012,86(5):055402-1~055402-6.
    [179] Ochterbeck J M, Peterson G P, Fletcher L S. J. Heat Transfer114,21(1992).
    [180] Ochterbeck JM, Peterson GP, Fletcher LS. Thermal contact conductance of metalliccoated BiCaSrCuO superconductor/copper interfaces at cryogenic temperatures [J].Journal of Heat Transfer,1992,114(1):21~29.
    [181] Wang J, Wang H, Zhuang H. Thermal contact conductance of ceramic AlN andoxygen-free high-conductivity copper interfaces under low temperature and vacuumfor high-temperature superconducting cryocooler cooling [J]. Review of ScientificInstruments,2006,77(2):024901-1~024901-5.
    [182] Maddren J, Marschall E. Finite element modeling of heat transfer across bolted joints[J]. Int. J. Microelectro Packag Mater Technol,1995,1(1):51~61.
    [183]廖江平,刘登辉.统计学原理[M].北京:中国农业大学出版社,2009.
    [184]张高明.平均数构造的数列性质[J].辽宁科技大学学报,2010,33(4):337~343.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700