用户名: 密码: 验证码:
瞬变扰动在东亚高空西风急流位置经向年际变化中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用1958-2002年NCEP和ERA-40每日4个时次的再分析数据集,首先分析了夏季东亚高空西风急流(East Asian Subtropical Westerly Jet Stream, EAJS)位置与瞬变扰动(Transient Eddy, TE)气候态分布特征以及二者之间的空间配置关系,接着对EAJS位置年际变化与瞬变扰动通量异常之间的关系进行了观测分析,在此基础上,运用季节平均准地转位涡方程对TE异常对大气的影响进行了动力分析,从而揭示出TE异常在EAJS位置变化中的作用。主要结论如下:
     (1)气候平均而言,夏季EAJS与瞬变活动具有较好的空间配置关系。
     本文将急流轴的概念引入到EAJS位置变化的研究中,从而有效地将EAJS位置信号提取出来。气候平均而言,夏季EAJS主要位于40°N对流层高层200hPa附近,其轴线呈东西向分布。同时,统计分析表明,夏季瞬变活动也主要分布在40N附近对流层中高层,瞬变扰动最活跃的区域主要集中在沿EAJS轴线狭长的区域内。然而,统计上简单的空间配置关系并不能证明EAJS与瞬变扰动之间存在直接的因果联系。进一步运用简化后的季节平均纬向动量方程诊断发现,瞬变扰动经向动量通量的大值区域沿EAJS轴线分布,由于瞬变扰动动量通量与西风加速成正比关系,这表明,气候平均而言瞬变扰动有利于EAJS的维持,瞬变扰动与EAJS之间存在着直接的动力学联系。
     此外,观测分析发现夏季大气斜压性最强区域主要位于EAJS正下方和正上方,EAJS上方温度随纬度增加而增加,EAJS下方温度随纬度增加而减小,而中纬度200hPa大气斜压性相对较弱。
     (2)夏季EAJS位置年际变化特征及与之相伴随的典型异常环流型
     研究表明夏季EAJS位置的年际变率是夏季EAJS位置变化的强信号。通过对EAJS位置年际变化信号进行EOF分解发现,其主模态空间型反映了夏季EAJS位置具有整体一致南北振荡特征,不仅如此,该方法还揭示出EAJS位置南北振幅具有空间分布不均匀性,陆地上空EAJS振幅小于太平洋上空振幅。其时间系数表明EAJS具有显著的年际变化,我们将该时间序列PC1定义为EAJS位置指数。
     伴随EAJS南北移动,环流场也相应发生改变。将EAJS位置指数回归到风场上发现,当EAJS偏北(南)时,在气候平均EAJS区域附近伴随有一纬向伸长的反气旋式(气旋式)异常环流,该异常环流基本关于EAJS轴线对称;与之相对应,高度场异常主要表现为在气候平均EAJS区域附近伴随有一纬向伸长的位势高度正(负)变高。从异常环流的垂直结构来看,位势高度异常中心位于200hPa EAJS轴线附近,异常东、西风中心分列对流层高层EAJS的南、北两侧。异常风场和异常位势高度场均具有相当正压结构,它们之间较好地满足准地转关系。
     将PC1回归到大气斜压场,发现当EAJS偏北(南)时,EAJS北侧大气斜压性增强(减弱),其南侧大气斜压性减弱(增强)。
     (3)与夏季EAJS年际变化相伴随的瞬变扰动异常
     中纬度大气运动过程可以用准地转位涡方程来近似描述,在准地转位涡方程中,瞬变扰动与基本流之间的相互作用是通过基本流对瞬变涡度输送和瞬变热量输送的组织以及瞬变涡度输送和瞬变热量输送对基本流的反馈的方式来实现的。气候平均而言,瞬变扰动将瞬变涡度从EAJS主体区域向其两侧输送,从而在EAJS主体区域形成瞬变涡度通最辐散(负瞬变涡度强迫),在其两侧形成瞬变涡度通量辐合(正瞬变涡度强迫);同时,瞬变扰动将瞬变热量从EAJS主体区域主要向其北侧输送,从而在EAJS主体区域形成瞬变热量通量辐散(负瞬变热力强迫),在其北侧形成瞬变热量通最辐合(正瞬变热力强迫),向南的瞬变热量输送并不明显,因此,瞬变热量输送使EAJS主体区域因失去热量而冷却,其北侧因得到热量而升温。瞬变涡度输送及瞬变热量输送均在主要集中在对流层中上层。
     当EAJS偏北时,瞬变扰动最活跃的区域也随之移至EAJS轴线北侧,瞬变活动异常一方面将使EAJS轴线北侧因瞬变扰动的增强而失去更多的涡度,从而在EAJS轴线偏北区域形成异常的负瞬变涡度强迫,其南侧和其北侧更远的地区因得到瞬变涡度而形成异常的正瞬变涡度强迫;另一方面,EAJS轴线北侧因异常瞬变扰动将更多的瞬变热量输送至其北侧更远的区域而形成冷异常,其北侧更远的区域因得到热量而形成暖异常。当EAJS偏南时,与上述情况相反。
     (4)基于简单的准地转模型,利用数值求解方法进一步分析瞬变扰动异常对基本流的反馈,从而揭示瞬变扰动异常在EAJS南北位置年际变化中的作用。
     大气系统内部瞬变扰动总是与大气内部涡度和热量自动重新分配相伴随,将这种由于瞬变扰而形成的瞬变涡度及瞬变热量源(汇)视为大气的内强迫因子,大气对其的响应即为瞬变扰动对基本流的反馈。当EAJS发生南北摆动时,瞬变扰动也随之发生变化,进而导致大气内部涡度和热量的空间分布也发生异常变化,从而在大气内部形成异常的强迫源。
     当EAJS偏北时,大气对关于气候平均EAJS轴线反对称分布的异常瞬变涡度强迫产生正压响应,主要表现为:在气候平均EAJS主体区域对流层整层为异常的东风所占据,在其两侧为异常的西风所占据,瞬变涡度所激发的异常风场与EAJS相伴随的异常风场相差π/2位相,这表明瞬变涡度强迫有让EAJS更加偏北的趋势;大气斜压场表现为EAJS北侧大气斜压性异常增强,EAJS正上(下)方,斜压性异常减弱,EAJS南侧斜压性异常增强,即瞬变涡度强迫有利于瞬变扰动在远离EAJS轴线的区域发生发展,不利于瞬变扰动在EAJS轴线附近发展。当EAJS偏南时,与上述情况相反。因此,瞬变涡度强迫在EAJS位置变化中起着正反馈作用,即瞬变扰动始终有时使EAJS位置更加偏北(南)的趋势。
     当EAJS偏北时,大气对瞬变异常热力强迫的响应主要表现为,在气候平均EAJS主体区域200hPa以下为异常的东风所占据,在其两侧为异常的西风所占据,而EAJS主体区域200hPa以上为东风异常;大气斜压场表现为EAJS正下方对流层中高层斜压性异常减弱,EAJS南侧斜压性异常增强。这表明瞬变热力强迫削弱了EAJS主体区域大气的垂直风切变,即大气的斜压性,最终将抑制EAJS主体区域及其北侧的瞬变扰动活动。当EAJS偏南时,与上述情况相反。因此,瞬变热力强迫在EAJS的南北移动中起负反馈作用。
The climatological distributions of East Asian subtropical westerly jet stream (EAJS) and transient eddy (TE) activity, as well as their spatial matching relations, are firstly investigated using NCEP and ERA-404-times daily reanalysis data for the period of1958-2002. Then the spatio-temporal characters of the interannual meridional displacement of the EAJS and the TE activities associated with the EAJS are documented with the observed data. The feedbacks of the TE activities on the EAJS are examined finally by computing the budget of the relevant terms of the seasonal-mean form of the quasi-geostrophic potential vorticity(QGPV) equation. The roles, played by TE activities in the meridional displacement of the EAJS, are revealed finally. The main conclusions are as follows:
     (1) Climatologically, the spatial distribution of the EAJS matches the maximum of TE activities well during boreal summer.
     In boreal summer (including June, July and August), the EAJS is located at around40ON in the upper levels of atmosphere, with its axis orientating in west-east direction. Meanwhile, the TE activities are prosperous within an elongated belt in the midlatitudes, and the maximum of the TE activities concentrates in a narrow area along the axis of the EAJS. This coherent spatial distribution could indicated that a close relationship might exist between the EAJS and TE activities. Hence, their relationship is further analysed with the seasonal-mean simplified zonal momentum equation, in which the TE activities may expressed in terms of TE momentum fluxes and the acceleration of time-mean zonal wind is proportional to the convergence of the horizontal momentum fluxes. It is indicated that the distribution of the meridional TE momentum fluxes oriented west-east along the climatological axis of the EAJS. Thus, the the meridional TE momentum fluxes act to accelerate the zonal component of wind.
     In addition, it is found that the strongest baroclinicity of atmosphere mainly lies in the levels above and under the EAJS, respectively. Among all the levels, at the level near200hPa the baroclinicity of atmosphere is weaker.
     (2) The interannual meridional displacement of the EAJS in boreal summer and the associated circulations.
     It is found that the interannual variability of the meridional displacement is the strong signal of the EAJS location variation. By introducing the approach of defining the axis of jet to depict the position of EAJS, the meridional displacement of the EASJ is defined as anomalous deviation from its climatological axis in latitude. A2-8yr band-pass filter is applied to extract its interannual variation. Performing the EOF analysis on the filtered anomalies of axes in latitude then leads to the spatial and temporal distribution of the variation of the EASJ. The results exhibit that in summertime the EASJ axis features a significant longitudinally-unanimous interannual meridional displacement, and the amplitude of the EASJ over the Pacific is larger than that over the mainland. The corresponding principal component time series is defined as the EAJS location index (PC1).
     Atmospheric anomalous circulation pattern associated with EASJ interannual variations can be identified by regressing the geopotential height and zonal wind against the normalized PC1. It is shown that accompanying the meridional wandering of the EASJ, the regressed geopotential height anomalies with equivalent barotropic structure are found to be in the vicinity of the climatological EASJ axis, and the zonal wind, however, exhibits a dipole pattern asymmetric about the axis. These patterns suggest that a positive geopotential height anomaly near the climatological EASJ axis can result in a westerly acceleration (deceleration) on the poleward (equatorward) side of the climatological EASJ axis, thus leading to a poleward shift of the EASJ; and vice versa. Certainly, the geopotential height and zonal wind anomalies satisfy the quasi-geostrophic relation.
     Also, atmospheric baroclinicity to the south (north) of the climatological axis of EAJS strengthens (weakens) accompanied by poleward (equatorward) shift of the EAJS.
     (3) The anomalous activities of the TE associated with the meridional displacement of the EAJS.
     The atmospheric movement in the midlatitudes can be described by the quasi-geotrophic potential vorticity equation (QGPV). Under the framework of the QGPV equation, the interaction between the TE activities and the time-mean flow in the manner that the time-mean flow organized the TE activities and the TE impacted on the time-mean flow by redistribution of the TE fluxes. Climatologically, the TE transports vorticity from the climatological axis to the poleward and equatorward sides of the EAJS, consequently resulting in a divergence of TE vorticity near the EAJS and a convergence of TE vorticity far away from EAJS. Meanwhile, the TE transports the TE heat from the area near the EAJS to the north side of the EAJS, which leads to a divergence of TE heat near the EAJS and a. convergence of TE heat on the northern side of the EAJS.
     As the EAJS shifts poleward, the most prosperous area of TE activities moves northward. On the one hand, the anomalous TE activities transport much more TE vorticity from the area near the climatological EAJS'axis to its both sides far away, hence leading to meridional dipole structure asymmetric about the climatological EASJ axis; on the other hand, the anomalous TE activities transport much more TE heat from the area near the climatological EAJS'axis to poleward of the EAJS, consequently resulting in a anomalous cooling in the vicinity of the EAJS, and a anomalous warming to the northern side of the EAJS.
     (4) Based on the QGPV equation, the feedback of the anomalous TE activities on the EAJS may be examined by solving the numerical solution of the QGPV equation, and the role, played by the TE in the movement of the EAJS, is revealed eventually.
     The effect of TE on time-mean flow may be approached by treating the convergences of TE fluxes as virtual sources or sinks of heat and vorticity and then seeking for the responses to these sources or sinks. In this study, we examine initial atmospheric responses to the TE forcing anomalies by solving QGPV equation together with appropriate boundary conditions.
     The geopotential height tendencies induced by TE vorticity forcing anomalies are characterized by a dipole pattern with distinct equivalent barotropic structure. Consequently, under the geostrophic balance, the zonal wind tendencies exhibit a sandwich-like pattern. These patterns indicate that, in accordance with a positive PC1(i.e., a northward displacement of the EASJ), there is a significant positive geopotential height tendency north of the climatological EASJ axis which produces a negative zonal wind tendency (decelerating zonal wind) near the climatological axis and a positive zonal wind tendency (accelerating zonal wind) far north of the axis. By comparing the anomalous circulation regressed on PC1with the initial tendency forced by TE vorticity, it can be easily found that the geopotential height and zonal wind tendencies induced by the TE vorticity forcing possess a phase that meridionally leads the geopotential height and zonal wind anomalies themselves roughly by π/2phase. This suggests that the TE vorticity forcing anomalies act to reinforce further northward progression of the EASJ as it moves northward; and vice versa. Thus, the TE vorticity forcing tends to play a positive feedback role in the interaction between the TE and the time-mean flow.
     The TE thermal forcing tends to give rise to a baroclinic response. There are negative geopotential tendencies on the poleward side under the axis of the EASJ, and smaller positive geopotential tendencies on the equatorward side beneath the axis of the EASJ. Resultantly, the zonal geostrophic wind tendencies are characterized by westerly acceleration beneath the axis but deceleration above the axis, especially north of the climatological EASJ axis. This suggests that the TE thermal forcing anomalies act to reduce the vertical shear of zonal wind and thus reduce the atmospheric baroclinicity, which eventually suppresses the TE activity, as the EASJ moves northward. Thus, the TE thermal forcing tends to play a negative feedback role in the interaction between the TE and the time-mean flow.
引文
[1]Berggren, R., W. J. Gibbs, C. W. Newton, observational characteristics of the jet stream, a survey of the literature. WMO, Technical Note,1958,19.
    [2]叶笃正、陶诗言、李麦村,在六月和十月大气环流的突变现象,气象学报,1958,29(4),249-263.
    [3]Ramage C. S. Monsoon meteorology. In, Boer E, Stokes C, eds. International Geophysics Series, Vol.15, New York:Academic Press,1971.
    [4]李崇银、王作台、林十哲、禚汉如,北半球夏季副热带西风急流变异及其对东亚夏季风气候异常的影响,地球物理学报,2004,47,10-18.
    [5]杜银、张耀存、谢志清,高空西风急流东西向形态变化对梅雨期降水空间分布的影响,气象学报,2008,66,566-576.
    [6]况雪源,东亚副热带西风急流季节、年际变化特征及其热力机制和气候效应研究[D],南京,2006,南京大学,159pp.
    [7]陶诗言、赵煜佳、陈小敏,东亚的梅雨与亚洲上空大气环流季节变化的关系,气象学报,1958,29(2),119-134.
    [8]Tao S. Y., L. X., Chen. A review of recent research of the east summer monsoon in China. In:Chang C. P., Krishinamurti T. N., eds. Monsoon Meteorology, Cam-bridge:Oxford University Press,1987.60-92.
    [9]Lu Riyu. Associations among t he component s of t he East Asian Summer Mon-soon System in t he meridional direction. J. Meteor. Soc. Japan,2004,82,155-165.
    [10]Lin Zhongda, Lu Riyu. Interannual meridional displacement of t he East Asian Upper tropospheric jet stream in summer. Advances in Atmospheric Sciences,2005,22, 199-211.
    [11]况雪源、张耀存,东亚副热带西风急流位置异常对长江中下游降水的影响,高原气象,2006,25(3),382-389.
    [12]况雪源、张耀存,东亚副热带西风急流季节变化特征及其热力影响机制探讨,气象学报,2006,64(5),564-575.
    [13]Lau, K.-M., K.-M. Kim, S. Yang. Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Climate,2000,13,2461-2482.
    [14]廖清海、高守亭、王会军等,北半球夏季副热带西风急流变异及其对东亚夏季风气候异常影响,地球物理学报,2004,47(1),10-18.
    [15]廖清海、陶诗言、王会军,东亚地区夏季7-8月大气环流季节演变异常的内部动力学过程,地球物理学报,2006,49(1),28-36.
    [16]Lu Riyu, Jai-Ho Oh, Beak-Jo Kim, et al. Associationa with the interannual variations of onset and withdrawal among the Changma. Adv. Atmos. Sci.,2001,18,1066-1080.
    [17]董敏、朱文妹、魏凤英,欧亚地区500hPa上纬向风特征及其与中国天气的关系,气象科学研究院院刊,1987,2(2),166-173.
    [18]徐海明、何金海、董敏,江淮入梅的年际变化及其与北大西洋涛动和海温异常的联系,气象学报,2001,59(6),694-706.
    [19]孙安健,江淮旱涝年份准定常行星波分布于平均纬向风速的差异,应用气象学报,1994,5(1),68-76.
    [20]Liang P. D., A. X., Liu. Winter Asia Jetstream and seasonal precipitation in East China. Adv. Atmos. Sci.,1994,11(3),311-318.
    [21]Liang X. Z., W. C, Wang. Association between China monsoon rainfall and tropospheric jets. Q.J.R. Meteo. Soc,1998,124 (6),2597-262.
    [22]董敏、余健锐、高守亭,东亚西风急流变化与热带对流加热关系的研究,大气科学,1999,23(1),62-70.
    [23]Chen, B., S. R. Smith, D. H. Bromwith. Evolution of the tropospheric split jet over Pakistan along the meridional 76oE in winter. Tell us,1996,2,56-62.
    [24]陆日宇、华北汛期降水量年际变化与赤道东太平洋海温。科学通报,2005,50,1131-1135.
    [25]任雪娟、杨修群、韩博,北太平洋冬季海-气耦合的主模态及其与瞬变扰动异常的关系,气象学报,2007,65(1),52-62.
    [26]任雪娟、张耀存,冬季200hPa西太平洋急流异常与海表加热和大气瞬变扰动的关系探讨,气象学报,2007,65(4),550-560.
    [27]Shaman J.,and E.Tziperman,2007:Summertime ENSO-North African-Asian jet teleconnection and implications for the Indian monsoons. Geophys. Res. Lett.,34, LI 1702,doi,10.1029/2006GL029143.
    [28]况雪源、张耀存、刘健、郭兰丽,冬季黑潮暖流区加热异常对东亚副热带西风急流影响的数值研究,大气科学,2009,33(1),81-89.
    [29]Wu R. A mid-latitude Asian circulation anomaly pattern in boreal summer and its connection with the Indian and East Asian summer monsoon. lnt.J.Climate,2002,22, 1879-1895.
    [30]Wu R.,and B.Wang. A contrast of the East Asian summer monsoon-ENSO relationship between 1962-77 and 1978-93,7. Climate,2002, 15,3266-3279.
    [31]Lu R.,Jai-oh OH.and Beak-Jo Kim. A teleconnection pattern in upper-level meridional wind over the North Africa and Eurasian continent in summer. Tellus,2002, 54A,44-55.
    [32]Ding Q., and B. Wang. Circumglobal teleconnection in the Northern Hemisphere summer, J.Climate,2005,18,3483-3505.
    [33]杨莲梅、张庆云,夏季东亚西风急流扰动异常与副热带高压关系研究,应用气象学报,2007,18(4),452-459.
    [34]林中达,东亚夏季高空西风急流变异及其机理,博十学位论文,P2.
    [35]宇如聪、周天军、李建,中国东部气候年代际变化三维特征的研究进展,大气科学,2008,32(4),893-905.
    [36]孙凤华、张耀存、郭兰丽,中国东部降水与同期东亚副热带急流年代际异常的关系,高原气象,2009,28(6),1308-1315.
    [37]黄荣辉、徐予红、周连童,我国夏季降水的年代际变化及华北干旱化趋势,高原气 象,1999,18(4),465476.
    [38]周连童、黄荣辉,关于我国夏季气候年代际变化特征及其可能成因的研究,气候与环境研究,2003,8(3),274-290.
    [39]Chang C. P., Y. S. Zhang and T. Li. Inter-annual and inter-decadal variation of the East Asian summer monsoon and tropical pacific SSTs. Part II:Meridional structure of the monsoon. J. Climate,2000,13,4326-4340.
    [40]Gong D. Y., and C. H., Ho. The Siberian high and climate change over middle to high latidude Asia. Theor. Appl. Climatol,2002,72,1-9.
    [41]Menon S, J. Hansen, L. Nazarenko,et al. Climate black carbon aerosla in China and India. Science,2002,297,250-2253.
    [42]Hu Z. Z., S. Yang, R. G, Wu. Long-term climate variation in China and global warming signals. J Geophys Res,2003,108,4614, doi,10,1029/2003JD003651.
    [43]Yang F. L., and K. M., Lau. Trend and variability of China precipitation in spring and summer. Int J Climatol,2004,24,1625-1644.
    [44]Hsieh Y. P. On t he wind and temperat ure fields over western Pacific and eastern Asia in winter. J. Geophys. Res.,1951,2,279-297.
    [45]Ramage C. S. Relationship of general circulation to normal weather over sout hern Asia and the western Pacific during the cool season. J. Meteor.,1952,9,403-408.
    [46]Mohri K. Jet streams and upper front s in t he general circulation and t heir characteristics over t he Far East (Part II). Geophys. Mag.,1959,29,333-412.
    [47]Reiter E. R. Jet Stream Meteorology. Chicago:University of Chicago Press,1963.515 pp.
    [48]Blackmon M, L, Wallace J. M, Lau N. C, et al. An observation study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci.,1977,34,1040-1053.
    [49]Cressman G P. Energy t ransformations in t he East Asia-West Pacific jet stream. Mon. Wea. Rev.,1984,112,563-574.
    [50]Kang I S. Influence of zonal mean flow change on stationary wave fluctuations. J. Atmos. Sci.,1990,47,141-147.
    [51]Kung E. C. and P. H., Chan. Energetics characteristics of the Asian winter monsoon in the source region. Mon. Wea. Rev.,1981,109,854-870.
    [52]Dole R M, Black R X. Life cycles of persistent anomalies. Part I, The development of persistent negative height anomalies over the North Pacific Ocean. Mon. Wea. Rev.,1990, 118,824-846.
    [53]Gao S, Tao S. Acceleration of upper tropospheric jet stream and lower tropospheric frontogenesis. Chinese. J. Atmos.,1991,15,11-21.
    [54]Satio T.Dynamics of the jet stream. Papers Meteor. Phs.,1951,2(2),132-149.
    [55]Palmen, E. and M. A. Alaka. On the budget of angular momentum in the zone between equator and 30N. Tellus,1952,4(4),324-331.
    [54]Sawyer, J. S. Jet stream features of the earth's atmophere. Weather,1957,12(11),333-344.
    [57]Mohri K. On the fields of wind and temperature over Japan and adjacent waters during winter of 1950-1951. Tellus,1953,5,340-358.
    [58]Mohri K. An example of upper frontogenesis over the Far East. Geophysica,1958,6(3-4), 325-333.
    [59]Austin E. E. Upper winds at Aden. Quart J.Roy.Meteor.Soc,1953,79,528-532.
    [60]Bannon J. K. Note on the structure of the high altitude strong-wind belt in the Middle East in winter. Quart J. Roy. Meteor. Soc,1954,80,218-221.
    [61]Suteliffe R. C. and F. K. Bannon. seasonal changes in upper air conditions in the Mediterranean middle-east area, Scientific Proceedings of International Association of Meteorology, Rome,1954,322-334.
    [62]Chaurhuri A. M. On the Vertical Distribution of Wind and Temperature over Indo-Pakistan along the Meridian 76oEin Winter. Tellus,1950,2,56-62.
    [63]Krishna Rao, P. R. Probable regions of Jet Streams in the upper air over India. Current Science,21, March 1952, Current Science Association, Bangalore.
    [64]Krishna Rao, and Ganesan, V. The mean Jet Stream over India and Burma in winter. Ind. Meteor. Geophys.,1953,4. p.193.
    [65]Koteswarapm, P. An analysis of the high tropospheric wind circulation over India in winter. Ind. Meteor. Geophys.,1953,4, p.13.
    [66]Koteswarapm P. and Parthasarathy S. The mean Jet Stream over India in the pre-monsoon and post monsoon seasons and vertical motions associated with sub-tropical Jet Streams. Ind. J. Meteor.Geophys.
    [67]Koteswarapm, P.,1956, The easterly Jet Streams over the Tropics. Research Report, Dept. of Meteor., Univ. Chicago, multigraphed.
    [68]Raw,A.L. Upper winds over Auckland. New Zealand Meteorological Service Technical Note,1951,78.
    [69]Gibbs, W. J. Notes on the mean jet stream over Australia. J. Meteor.,1952,9,279-284.
    [70]Porter, E. M. upper winds over Nandi and Auckland. New Zealand Meteorological Service Technical Note,1952,98.
    [71]Bond, H. G Easterly jet streams over Darvrin.Weather,1953,8,252-253.
    [72]Loewe, F. and V. Radok. A meridional aerological cross-section in the SouthWest Pacific. J. Meteor.,1950,7,58-65.
    [73]Yeh T. C. The circulation of the high troposphere over China in the winter of 1945-46. Tellus,1950b,2,173-183.
    [74]Matsumoto S. H., Itoo and A. Arakawa. On hte monthly mean distribution of temperature, wind and relative humidity of the atmosphere over Japan from March 1951 to February 1952. J. Meteor. Soc. Japan,1953,31,248-258.
    [75]Hess S. L. Some new meridional cross sections through the atmosphere. J. Meteor.,1948,5,293-300.
    [76]Cunningham N. W. The frequency distribution of high velocity wind currents over Texas. The Texas J. Sci.,1956,8(4),157-169.
    [77]Sawyer J. S. Jet stream features of the earth's atmosphere. Weather,\951,12(11),333-344.
    [78]朱乾根、林锦瑞、寿绍文等,天气学原理与方法,2000,北京,气象出版,297pp.
    [79]Rossby C. G Dynamics of steady ocean currents in the light of experimental fluid. Mechanics,Pap. In phys. Oceano. and Met.1936,5.
    [80]Namias J.,and Clapp P. F.Confluence theory of the high tropospheric jet stream. J. Met, 1949,6,330-336.
    [81]Kuo H. L. The motion of atmospheric vortices and the general circulation. J. Met.,1950,7, 247-258.
    [82]Kuo H. L. Vorticity transfer as related to the development of the general circulation. J. Met.,1951,8,307-315.
    [83]叶笃正、朱抱真,大气环流的若干基本问题,1958,北京,科学出版社.
    [84]伍荣生、党人庆、余志豪、吕克利、巢纪平,动力气象学第四章,上海科学技术出版社,1993.
    [85]郭晓岚,大气动力学,江苏科学技术出版社,1981.
    [86]伍荣生,大气动力学,气象出版社,1990.
    [87]叶笃正、李崇阴、王必魁、动力气象学,科学出版社,1988.
    [88]Charney J. G and A. Eliassen. A numerical method for predictiong the perturbation of the middle latitude westerlies.Tellus,1949,1,38-55.
    [89]Wallace J. M. The Climatological mean stationary waves, Observational evidence. In Large-scale Dynamical Processes in the Atmosphere edited by B. J. Hoskins and P. R. Pearce.1983,22-52.
    [90]Held I. M. Stationary and quasi-stationary eddies in the extratropical troposphere:theory, in Large-scale Dynamical Processes in the Atmosphere, Edited by B J Hoskins and P R Pearce,1983,127-167.
    [91]Huang R. H. and K. Gambo. The response of a hemispheric multilevel model atmosphere to forcing by topography and stationary heat sources, J Meteor. Soc. Japan,1982,60,78-108.
    [92]Chen C. S. and K. E. Trenberth. Forced planetary waves in the northern hemisphere winterwave coupled orographic and thermal forcing. J. Atmos. Sci.,1988,45,682-704.
    [93]Manabe S. and T. B. Terpstra. The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J. Atmos. Sci.,1974,31,3-42.
    [94]Hohn D. G. and S. Manabe. The role of mountains in the south Asian monsoon circulation. JAtmos. Soc,1975,32,1515-1541.
    [95]Murakami T. Orographic influence of the Tibetan Plateau.on the Asiatic winter monsoon circulation, Parti:Large-scale.aspects. Journal of the Meteorological Society of Japan, 1981,59,66-84.
    [96]王安宇等,东亚加热场和大地形对大气环流季节变化影响的数值试验,高原气象,1983,2,30-38.
    [97]王谦谦等,青藏高原大地形对夏季东亚大气环流的影响,高原气象,1984,3,13-26.
    [98]钱永甫、颜宏、王谦谦等,行星大气中地形作用的数值研究,北京,科学出版社,1988,217pp.
    [99]Zheng Qinglin, Wu Jun. Numerical study on the dynamic and thermodynamic effects of the Qinghai-xizang Plateau on the seasonal transition in the early summer in East Asia. ActaMeteor. Sinica.1995,9(l),35-47.
    [100]巩远发、纪立人,西太平洋副热带高压中期变化的数值试验Ⅰ,青藏高原热源的作用,热带气象学报,1998,014(002):106-112.
    [101]吴国雄、李伟平、郭华等,青藏高原感热气泵和亚洲夏季风,叶笃正主编,赵九章记念文集,北京,科学出版社,1997,116-126.
    [102]吴国雄、刘还珠,全型垂直涡度倾向方程和倾斜涡度发展,气象学报,1999,(SN 0577-6619).
    [103]吴国雄、刘屹岷,热力适应、过流、频散和副高Ⅰ,热力适应和过流和“过流”现象,大气科学,2000,24:433-446.
    [104]吴国雄、刘新、张琼等,青藏高原抬升加热气候效应研究的新进展,气候与环境研究,2002,7,184-201.
    [105]吴国雄、毛江玉、段安民、张琼,青藏高原影响亚洲夏季气候研究的最新进展,气象学报,2004,62,28-540.
    [106]吴国雄、张永生,青藏高原的热力和机械强迫作用以及亚洲季风的爆发Ⅰ,爆发地点.大气科学,1999,22(6):825-838.
    [107]吴国雄、张永生,青藏高原的热力和机械强迫作用以及亚洲季风的爆发Ⅱ,爆发时间,大气科学,1999,23(1),51-61.
    [108]吴国雄,我国青藏高原气候动力学研究的近期进展,第四纪研究,2004,24(1),1-9.
    [109]Wu Guoxiong, LIU Hui, ZHAO Yu-cheng, and LI Wei-ping, A nine-layer atmospheric general circulation model and its performance. Adv. Atmos. Sci.,1996,13(1),1-18.
    [110]Wu T.W. and Z. A. Qian. The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall,An observational investigation. J. Climate,2003,16, 2038-2051.
    [111]Zhang X. H. G Y. Shi, H. Liu, and Y. Q. Yu.2000:IAP Global Ocean-Atmosphere-Land system Model. Science Press, Beijing, New York,252pp.
    [112]Liu Y. M., et al. Condensation heating of the Asian summer monsoon and the subtropical anticyclone in the Eastern Hemisphere. Clim. Dynam,2001,17(4),327-338.
    [113]Liang Xiaoyun, LiuYimin, Wu Guoxiong. The role of land-sea distribution in the formation of the Asian summer monsoon. Geophys. Res. Lett.,2005,32, No.3,L03708 10.1029/2004GL021587
    [114]李伟平、吴国雄、刘辉,地表反照率的改变影响夏季北非副高的数值模拟,气象学报,1999,57(6),1-9.
    [115]刘屹岷、吴国雄、刘辉等,空间非均匀加热对副热带高压带形成和变异的影响Ⅲ,凝结潜热加热与南亚高压及西太平洋副高,气象学报,1999,57(5),525-538.
    [116]刘屹岷、刘辉、刘平、吴国雄,空间非均匀加热对副热带高压带形成和变异的影响Ⅱ,陆面感热加热与东太平洋北美副高,气象学报,1999,57(4),385-396.
    [117]刘平、吴国雄,1998年夏季长江流域降水异常研究—热带环流Ⅱ,数值试验,严重旱涝与低温的诊断分析和预报方法研究,气象出版社,孙安健、吴国雄、李永康主编,2000,72-77.
    [118]孙岚、吴国雄、孙菽芬,陆面过程对气候影响的数值模拟,SSiB与IAP/LASGL9R15 AGCM耦合及其模式性能,气象学报,2000,58(2),179-193.
    [119]王在志,青藏高原天气气候效应的数值模拟研究,中科院大气物理所,博士论文,2005,7.
    [120]董广涛、张耀存,青藏高原隆升影响东亚副热带西风急流的数值试验,2007,南京大学学报(自然科学),43,199-211.
    [121]Krishnamurti T. N., The subtropical jet stream of winter, J. Meteor,1961.18,172-191.
    [122]Krishnamurti T. N., Compendium of Meteorology, Vol.2, Part 4, Tropical Meteorology, Rep.364, World Meteorological Organization, Geneva,1979.
    [123]Bjerknes J. A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus.1966,18,820-829.
    [124]Hou A. Y. Hadley circulation as a modulator of the extratropical climate. J. Atmos. Set. 1998,55,2437-2457.
    [125]Yang S. and P. J. Webster. The effect of summer tropical heating on the location and intensity of the extratropical westerly jet streams. J. Geophys. Res.,1990, 95(Dll),18705-18721.
    [126]Chen W Y and H M Van den dool. Significant change of extratropical natural variability and potential predictability associated with the ENSO. Tellus.1999,51A,790-802.
    [127]Lau K. M. and J. S. Boyle. Tropical and extratropical forcing of the large-scale circulation: A diagnostic study. Mon.wea. Rev.1987,115,400-428.
    [128]董敏、余建锐、高守亭,东亚西风急流变化与热带对流加热关系的研究,大气科学,1999,23(1),62-70.
    [129]Smagorinsky J. The dynamical influence of large-scale heat sources and sinks in the quasi-stationary mean motions of the atmosphere, Quart. J. Roy. Meteor. Soc,1953,79, 342-366.
    [130]蔡尔诚,中国夏季主雨带的形成过程,河南气象,2001,1,6-8.
    [131]朱伟军、孙照渤,冬季太平洋SST异常对风暴轴和急流的影响,南京气象学院学报,1999,22(4),575-581.
    [132]Tompson D. W. J., and J. M. Wallace. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters,l998,25, 1297-1300.
    [133]Thompson D. W. J., and J. M. Wallace. Annular modes in the extratropical circulation, Parti, Month to month variability. J. Climate,2000,13,1000-1016.
    [134]Hurrell J W. Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere. Geophy. Res. Lett.1996,23,665-668.
    [135]Gong D., and Chang-Hoi Ho Arctic Oscillation signals in the East Asian summer monsoon. J. Geophys. Res.,2003,108,4066-4071.
    [136]Juhn Jong-Ghap and Eun-Jeong Lee, A new East Asian winter monsoon index and associated characteristics ofthe winter monsson. J. Climate,2004,17,711-726.
    [137]Blanford H F. On the connection of the Himalayan snowfall with dry winds and seasons of drought in India. Proc. Roy. Soc.1884,37,3-22.
    [138]Clark, M Pad M C Serreze. Effects of variations in East Asian snow cover on modulating atmospheric circulation over the North Pacific Ocean. J. climate,2000,13,3700-3710.
    [139]陈烈庭、阎志新,青藏高原冬春季异常雪盖影响初夏季风的统计分析,1977-1978年 青藏高原气象会议论文集,北京,科学出版社,1979,151-161.
    [140]Lau, K M and S Yang, Precursory signal associated with the interannual variability of the Asian summer monsoon. J. Climate,1996,9,949-964.
    [141]Zwiers F. W. Simulation of the Asian Summer Monsoon with the Ccc Gcm-1. J. Climate 1993,6,470-486.
    [142]Walland D J and I. Simmonds. Modelled atmospheric response to changes in Northern Hemisphere snow cover, climate dynamic,1997,13,25-34.
    [143]董敏、余建锐,青藏高原积雪对大气环流影响的数值模拟研究,应用气象学报,1997,8(增刊),100-109.
    [144]孙照渤、阂锦忠、陈海出,冬季积雪的异常分布型与冬、夏大气环流的耦合关系,南京气象学院学报,2000,23(4),463-468.
    [145]陈海山、孙照渤、闵锦忠,欧亚大陆冬季积雪异常与东亚冬季风及中国冬季气温的关系,南京气象学院学报,1999,22(4),609-615.
    [146]陈海山、孙照渤、朱伟军,欧亚积雪异常分布对冬季大气环流的影响Ⅱ,数值模拟,大气科学,2003,27(5),847-860.
    [147]张顺利、陶诗言,青藏高原对亚洲夏季风的影响的诊断及数值研究,大气科学,2001,25(3),372-390.
    [148]Qian Y. R, et al. Responses of China's summer monsoon climate to snow anomaly over the Tibetan Plateau, Int J Climatol,2003,23(6),593-613.
    [149]Koster, R. D., and M. J. Suarez. Soil moisture memory in climate models. J. Hydrometeor,, 2001,2,558-570.
    [150]Zhang Y. S., et al. Decadal change of the spring snow depth over the Tibetan Plateau,The associated circulation and influence on the East Asian summer monsoon. J. Climate,2004, 17(14),2780-2793.
    [151]高荣,20世纪后期青藏高原积雪和冻土变化及其与气候变青藏高原气候动力学的数值 模拟研究化的关系,高原气象,2003,(SN 1000-0534).
    [152]刘华强、孙照渤、朱伟军,青藏高原积雪与亚洲季风环流年代际变化的关系,南京气象学院学报,2003,26(6),733-739.
    [153]Rossby C G Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J.Marine Research,1939,pp38-55.
    [154]Charney J. G and Eliassen A. A numerical method for predicting the perturbations of the middle latitude westerlies.Tellus,1949,1,38-54.
    [155]Grose W. L., and B. J. Hoskins. On the influence of orography on large-scale atmospheric flow. J. Atmos. Sci.,1979,36,223-234.
    [156]Hoskins B. J., and Karoly D.,The steady linear response of a spherical atmosphere to thermal and orographic forcing.J.Atmos. Sci.,1981,38,1179-1196.
    [157]Yeh Tu-cheng. On energy dispersion in the atmosphere. J Meteor,1949,6,1-16.
    [158]Hoskins B. J., and T. Ambrizzi. Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci.,1993,35,1661-1671.
    [159]Ambrizzi, T., B. J. Hoskins, and H. H.Hsu. Rossby wave propagation and teleconnection patterns in the Austral winter. J. Atmos. Sci.,1995,52,3661-3672.
    [160]高守亭、陶诗言、丁一汇,表征波与流相互作用的广义E-P通量,中国科(B辑),1989,7,774-784.
    [161]高守亭、陶诗言, 高空急流与低层锋生, 大气科学,1991,15(2),11-22.
    [162]冉令坤、高守亭、雷霆,高空急流区内纬向基本气流加速与EP通量的关系,大气科学,2005,29(3),409-416.
    [163]周大军等,亚洲季风区海陆气相互作用对我国气候变化的影响(第四卷),大气环流模式SAMIL及其耦合模式FGOALS-s,北京,气象出版社,2005.
    [164]赵宗慈、丁一汇、李晓东笛,海气藕合模式在东亚地区的可靠性评估,应用气象学 报,1995,6(增刊),9-18.
    [165]Yu R. C, Li W.and H. X. Zhang. Climate features related to eastern China summer rainfalls in the NCAR CCM3. Adv. Atmos. Sci.,2000,17,503-518.
    [166]宇如聪、周天军、李建、辛晓歌,中国东部气候年代际变化三维特征的研究进展,大气科学,2008,32(4),893-905.
    [167]张耀存、郭兰丽,东亚副热带西风急流偏差与中国东部雨带季节变化的模拟,科学通报,2005,50(13),1394-1399.
    [1]叶笃正、陶诗言、李麦村,在六月和十月大气环流的突变现象,气象学报,1958,29(4),249-263.
    [2]李崇银、王作台、林士哲、禚汉如,北半球夏季副热带西风急流变异及其对东亚夏季风气候异常的影响,地球物理学报,2004,47,10-18.
    [3]陶诗言、赵煜佳、陈小敏,东亚的梅雨与亚洲上空大气环流季节变化的关系,气象学报,1958,29(2),19-134.
    [4]Chamey, J. G the dynamics of long waves in a baroclinic westerly current. J. Meteorol,1947, 4,135-163.
    [5]Lindzen, R. S. Farrell.B.,1980:A simple approximate results for the maximum growth rate of baroclinic instability. J. Atmos. Sci,37,1648-1654.
    [6]Holton, J. R. An Introduction to Dynamic Meteorology,3nd ed, Academic Press,1992.
    [7]南京大学动力气象学内部教学教材第五章。
    [1]Holopainen, E. O., L. Rontu, and N. C. Lau,1982:The Effect OF large-Scale Transient Eddies on the Time-Mean Flow in the atmosphere. J. Atmos. Sci.,39,1971-1984.
    [2]Branstator, G. W.,1992:The maintenance of low-frequency atmospheric anomalies. J. Atmos. Sci.,49,1924-1945.
    [3]___,1995:Organization of storm track anomalies by recurring low-frequency circulation anomalies. J. Atmos. Sci.,52,207-226.
    [4]Ren, X., X. Yang, and C. Chu,2010:Seasonal variations of the synoptic-scale transient eddy activity and polar-front jet over East Asia. J. Climate,23:3222-3233.
    [5]Ren, X., X. Yang, T. Zhou, and J. Fang,2011:Diagnostic comparison of wintertime East Asian subtropical jet and polar-front jet:Large-scale characteristics and transient eddy activities. Acta Meteor. Sinica,25,21-33.
    [6]Cai, M., and H. M. Van den Dool,1994:Dynamical decomposition of low-and high-frequency tendencies. J. Atmos. Sci.,51,2086-2100.
    [7]Gao, S., and S. Tao,1991:Acceleration of upper-tropospheric jet stream and lower-tropospheric frontogenesis. Chinese J. Atmos. Soc,15,11-21.
    [8]Illari, L.,1984:A diagnostic study of the potential vorticity in a warm blocking anticyclone. J. Atmos. Sci.,41,3518-3526.
    [9]Kang, I.-S.,1990:Influence of zonal mean flow change on stationary wave fluctuations. J. Atmos. Sci.,47,141-147.
    [10]Lau, N. C, and E. O. Holopainen,1984:Transient Eddy Forcing of the Time-Mean Flow as identified by Geopotential Tendencies. J. Atmos. Sci.,41,313-328.
    [11]Lorenz, D. J., and D. L. Hartmann,2001:Eddy-zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci.,58,3312-3327.
    [12]___, and___,2003:Eddy-zonal flow feedback in the Northern Hemisphere winter. J. Climate,16,1212-1227.
    [13]Pfeffer, R. L.,1981:Wave-Mean Flow Interactions in the Atmosphere. J. Atmos. Sci.,38, 734-744.
    [14]Robertson, A. W., and W. Metz,1989:Three-dimensional instability of persistent anomalous large-scale flows. J. Atmos. Sci.,46,2783-2801.
    [15]___, and___,1990:Transient eddy feedbacks derived from linear theory and observations. J. Atmos. Sci.,47,2743-2764.
    [16]Robinson, W.,1996:Does eddy feedback sustain variability in the zonal index? J. Atmos. Sci.,53,3556-3569.
    [17]___,2000:A baroclinic mechanism for the eddy feedback on the zonal index. J. Atmos. Sci.,57,415-422.
    [18]Shutts, G. J.,1983:The propagation of eddies in diffluent jet streams:Eddy vorticity forcing of blocking flow fields. Quart. J. Roy. Meteor. Soc.,109,737-761.
    [19]Lindzen, R. S. Farrell,B.,1980:A simple approximate results for the maximum growth rate of baroclinic instability. J. Atmos. Sci,37,1648-1654.
    [20]Holton, J. R. An Introduction to Dynamic Meteorology,3nd ed, Academic Press,1992.
    [21]南京大学动力气象学内部教学教材第五章。
    [22]Bretherton, F. B.,1966:Critical Layers Instability in Baroclinic Flows. Quart. J. Roy. Meteor. Soc.,92,325-334.
    [23]黄嘉佑,气象统计分析与预报方法。气象出版社,2004。
    [24]南京大学动力气象学内部教学教材第七章。
    [1]Krishnamurti, T. N.,1961:The subtropical jet stream of winter. J. Meteor.,18,172-191.
    [2]Blackmon, M. L., J. M. Wallace, N. C. Lau, and S. L. Mullen,1977:An observation study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci.,34,1040-1053.
    [3]Murakami, T., and M. Unninayar,1977:Atmospheric circulation during December 1970 through February 1971. Mon. Wea. Rev.,105,1024-1038.
    [4]Cressman, G P.,1984:Energy transformations in the East Asia-West Pacific jet stream. Mon. Wea. Rev,112,563-574.
    [5]Kang, I.-S.,1990:Influence of zonal mean flow change on stationary wave fluctuations. J. Atmos. Sci.,47,141-147.
    [6]Lu Riyu, Jai-Ho Oh, Beak-Jo Kim, Hee-Jeong Beak, and Huang Ronghui,2001: Associations with the interannual variations of onset and withdrawal of the Changma. Adv. Atmos. Sci.,18,1066-1080.
    [7]___, Jai-Ho Oh, and Beak-Jo Kim,2002:A teleconnection pattern in the upper-level meridional wind over the North African and Eurasian continent in summer. Tellus,54A, 44-55.
    [8]Kung, E. C, and P. H. Chan,1981:Energetics characteristics of the Asian winter monsoon in the source region. Mon. Wea. Rev.,109,854-870.
    [9]Dole, R. M., and R. X. Black,1990:Life cycles of persistent anomalies. Part II:The development of persistent negative height anomalies over the North Pacific Ocean. Mon. Wea. Rev.,118,824-846.
    [10]Gao, S., and S. Tao,1991:Acceleration of upper-tropospheric jet stream and lower-tropospheric frontogenesis. Chin. J. Atmos. Soc,15,11-21.
    [11]Bell, G D., and Coauthors,2000:Climate assessment for 1999. Bull. Amen Meteor. Soc.,81, S1-S50.
    [12]Yeh, T. C, S. Y. Tao, and M. T. Li,1959:The abrupt change of circulation over the Northern Hemisphere during June and October. The Atmosphere and the Sea in Motion, B. Bolin, Ed., Rockefeller Institute Press,249-267.
    [13]Tao, S. Y., and L. X. Chen,1987:A review of recent research of the east Asian summer monsoon in China. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press,60-92.
    [14]Ding, Y.-H.,1992:Summer monsoon rainfalls in China. J. Meteor. Soc. Japan,70,373-396.
    [15]Yang, S., and P. J. Webster,1990:The effect of summer tropical heating on the location and intensity of the extratropical westerly jet streams. J. Geophys.Res.,95,18705-18721.
    [16]Liang, X. Z., and W. C. Wang,1998:Associations between China monsoon rainfall and tropospheric jets. Quart. J. Roy. Meteor. Soc,124,2597-2623.
    [17]Lau, K. M., and J. S. Boyle,1987:Tropical and extratropical forcing of the large-scale circulation:A diagnostic study. Mon. Wea. Rev.,115,400-428.
    [18]___, K. M. Kim, and S. Yang,2000:Dynamic and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Climate,13,2461-2482.
    [19]Lu Riyu,2004:Associations among the components of the East Asian summer monsoon systems in the meridional direction. J. Meteor. Soc. Japan,82,155-165.
    [20]Shutts, G J.,1983:The propagation of eddies in diffluent jet streams:Eddy vorticity forcing of blocking flow fields. Quart. J. Roy. Meteor. Soc,109,737-761.
    [21]Illari, L.,1984:A diagnostic study of the potential vorticity in a warm blocking anticyclone. J. Atmos. Sci.,41,3518-3526.
    [22]Robertson, A. W., and W. Metz,1989:Three-dimensional instability of persistent anomalous large-scale flows. J. Atmos. Sci.,46,2783-2801.
    [23]___, and___,1990:Transient eddy feedbacks derived from linear theory and observations. J. Atmos. Sci.,47,2743-2764.
    [24]Robinson, W.,1996:Does eddy feedback sustain variability in the zonal index? J. Atmos. Sci., 53,3556-3569.
    [25]Branstator, G W.,1992:The maintenance of low-frequency atmospheric anomalies. J. Atmos. Sci.,49,1924-1945.
    [26]___,1995:Organization of storm track anomalies by recurring low-frequency circulation anomalies. J. Atmos. Sci.,52,207-226.
    [27]Yu, J.-Y., and D. L. Hartmann,1993:Zonal flow vacillation and eddy forcing in a simple GCM of the atmosphere. J. Atmos. Sci.,50,3244-3259.
    [28]Cai, M., and H. M. Van den Dool,1994:Dynamical decomposition of low-and high-frequency tendencies. J. Atmos. Sci.,51,2086-2100.
    [29]Lorenz, D. J., and D. L. Hartmann,2001:Eddy-zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci.,58,3312-3327.
    [30]___, and___,2003:Eddy-zonal flow feedback in the Northern Hemisphere winter. J. Climate,16,1212-1227.
    [31]Feldstein, S. B., and S. Lee,1996:Mechanisms of zonal index variability in an aquaplanet GCM. J. Atmos. Sci.,53,3541-3555.
    [32]Lee, S., and S. B. Feldstein,1996:Mechanisms of zonal index evolution in a two-layer model. J. Atmos. Sci.,53,2232-2246.
    [33]Robinson, W.,1996:Does eddy feedback sustain variability in the zonal index? J. Atmos. Sci., 53,3556-3569.
    [34]___,2000:A baroclinic mechanism for the eddy feedback on the zonal index. J. Atmos. Sci., 57,415-422.
    [35]Kravtsov, S., and A. W. Robertson,2002:Midlatitude ocean-atmosphere interaction in an idealized coupled model. Climate Dyn.,19,693-711.
    [36]Fyfe, J. C, and D. J. Lorenz,2005:Characterizing Midlatitude Jet Variability:Lessons from a Simple GCM. J. Climate,18,3400-3405.
    [37]Yanai,M.,S.Esbensen and J. H.,Chu,1973:Determination of Bulk Properties of Tropical Cloud Clusters Large-Scale Heat and Moisture Budgets. J. Atmos. Sci.,30,611-627.
    [38]Bretherton, F. B.,1966:Critical Layers Instability in Baroclinic Flows. Quart. J. Roy. Meteor. Soc,92,325-334.
    [39]Lau, N. C, and E. O. Holopainen,1984:Transient Eddy Forcing of the Time-Mean Flow aslindentified by Geopotential Tendencies. J. Atmos. Sci.,41,313-328.
    [40]Hoskins, B. J., and I. N. James and G H. White,1983:The Shape, Propagation and Mean-Flow Interation of Large-Scale Weather Systems. J. Atmos. Sci.,40,1595-1612.
    [l]叶笃正、陶诗言、李麦村,在六月和十月大气环流的突变现象,气象学报,1958,29(4),249-263.
    [2]李崇银、王作台、林士哲、禚汉如,北半球夏季副热带西风急流变异及其对东亚夏季风气候异常的影响,地球物理学报,2004,47,10-18.
    [3]陶诗言、赵煜佳、陈小敏,东亚的梅雨与亚洲上空大气环流季节变化的关系,气象学报,1958,29(2),119-134.
    [4]Yeh, T. C, S. Y. Tao, and M. T. Li,1959:The abrupt change of circulation over the Northern Hemisphere during June and October. The Atmosphere and the Sea in Motion, B. Bolin, Ed., Rockefeller Institute Press,249-267.
    [5]Tao, S. Y, and L. X. Chen,1987:A review of recent research of the east Asian summer monsoon in China. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press,60-92.
    [6]Ding, Y.H.,1992:Summer monsoon rainfalls in China. J. Meteor. Soc. Japan,70, 373-396.
    [7]Yang, S., and P. J. Webster,1990:The effect of summer tropical heating on the location and intensity of the extratropical westerly jet streams.J. Geophys.Res.,95,18705-18721.
    [8]Liang, X. Z., and W. C. Wang,1998:Associations between China monsoon rainfall and tropospheric jets. Quart. J. Roy. Meteor. Soc,124,2597-2623.
    [9]Lau, K. M., and J. S. Boyle,1987:Tropical and extratropical forcing of the large-scale circulation:A diagnostic study. Mon. Wea. Rev.,115,400-428.
    [10]___, K. M. Kim, and S. Yang,2000:Dynamic and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Climate,13,2461-2482.
    [11]Lu Riyu,2004:Associations among the components of the East Asian summer monsoon systems in the meridional direction. J. Meteor. Soc. Japan,82,155-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700