用户名: 密码: 验证码:
比特交织编码调制短波跳频通信系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
短波跳频通信系统在现代军事通信领域具有重要的地位和作用,是重要的抗干扰通信手段之一,也是目前西方军事强国重点研究的领域之一。随着现代高科技战争的发展需要,改善和提高短波跳频通信系统的性能对适应现代电子作战具有积极的意义,因此发展更高性能的短波跳频通信系统是重要的研究课题。本论文研究讨论了短波跳频通信系统的编码调制方案,即比特交织编码调制方案,以此来改善和提高短波跳频通信系统的性能。
     论文在研究短波信道的多径效应、信道衰落、多普勒效应等通信特性的基础上,构建基于比特交织编码调制及其迭代译码技术(BICM-ID)的短波跳频通信系统,分析了影响系统性能的因素,并围绕该通信系统在跳频同步、载波估计、信道估计均衡等关键技术上进行了深入的研究。
     在跳频同步问题上,基于BICM-ID-FH系统提出一种跳频同步方法。该方法分别将混沌序列和TOD信息序列作为密钥对跳频序列进行加密,从而将复杂系统的跳频序列同步问题转化为了系统的TOD信息序列的同步问题,同时也增强了跳频同步信息的抗截获性。
     关于BICM-ID-FH系统的载波估计问题,基于Turbo迭代的思想,提出一种系统的调制载波迭代频偏估计算法。该频偏估计算法初始采用Kay算法,迭代时采用L & R算法进行频偏估计,结合了Kay算法范围大和L & R算法精度高的优点,获得了较好的性能。采用该算法,设计了系统的载波迭代频偏估计校正方案。此外,设计了系统的相偏迭代估计校正方案。
     均衡问题是通信系统的重要问题。在BICM-ID-FH系统中,采用迭代思想对判决反馈均衡进行改进。在BICM-ID-FH系统的Turbo均衡结构中,采用信号的先验概率估计代替传统的假设信号概率均匀分布对SIC算法改进,获得均衡效果的改善。另外,提出MAP算法与SIC算法结合的联合算法。该算法在初始迭代采用MAP算法估计接收信号的先验概率分布以获得较精确的先验概率分布,迭代时采用SIC算法以方便计算和实现,仿真说明该算法有效地提升了系统的均衡效果。
     最后,探讨了关于短波信道估计的问题。在BICM-ID-FH系统中,基于迭代思想,设计了系统的半盲迭代信道估计均衡方案。该方案初始迭代时采用训练序列来估计信道信息,并结合Turbo均衡迭代过程,充分利用译码器的输出信息,实现了系统的信道估计均衡与译码的统一,仿真结果表明该方案具有良好的短波信道适应性。另外,设计了BICM-ID-FH系统的盲迭代信道估计均衡方案,仿真结果表明该方案在信道衰落不严重时具有收敛性。
The High Frequency frequency-hopping communication systems have an important position and role in the modern military communications, and it is an important means of the communication interference, and one of the focus study areas currently in the Western military power. With the development needs of the modern high-tech warfare, it is positive significance to improve and enhance the performance of the HF frequency-hopping communication systems to adapt to the modern electronic warfare, so the development of the more high-performance HF frequency-hopping communication system is an important research topic. This dissertation discusses the coded modulation scheme of the HF frequency-hopping communication systems, called the bit-interleaved coded modulation scheme, to improve and enhance the performance of the HF frequency-hopping communication system.
     After studying the communication features of the high frequency channels, such as multi-path effects, channel fading, Doppler effects, etc, a frequency hopping communication system based on the bit-interleaved coded modulation and iterative decoding techniques (BICM-ID) is constructed over the high frequency channel. The factors that affect the performance have been analyzed in the system. It is focus on the key technologies in this system, such as the synchronization, carrier estimation, channel equalization, and channel estimation, which have been researched deeply.
     At the problem of synchronization, a frequency hopping synchronization method is proposed based on the BICM-ID-FH system. The chaotic sequence and the TOD sequence were used as the key to encrypt the frequency hopping sequence. Then the synchronization of the frequency hopping sequences in complexity system was transformed to the synchronization of the TOD sequence. So the anti-interception of the synchronous information was enhanced at the same time.
     About the estimation of carrier frequency, the carrier frequency offset iterative estimation algorithm is proposed based on the Turbo iteration theory in the BICM-ID-FH system. At the initial iteration of the algorithm, the Kay algorithm was used, and the L&R algorithm was used in the iterative process. So the algorithm has the advantages of the large scope and the high precision, obtained good performance. Using this algorithm, the scheme of the iterative estimation and correction carrier offset was designed in the system. In addition, the scheme of the iterative estimation and correction phase offset was designed in the system.
     The equalization is the very important problem in the communication systems. The Decision Feedback Equalization has been improved based on the iteration theory in the BICM-ID-FH system. In the Turbo equalization structure of the BICM-ID-FH system, the SIC equalization algorithm has been improved, by using the priori probability estimation of the received signal instead of the traditional assumption that the signal probability was uniformly distribution, which effectively improves the BER performance. Otherwise, a joint algorithm is proposed by combining the MAP algorithm and the SIC algorithm in the Turbo equalization scheme of the system. In the initial iteration of the algorithm, using MAP algorithm to estimate the prior probability distribution of the received signal, it is more accurate than using the SIC algorithm. The SIC algorithm was used in the iterative process, to facilitate the calculation and implementation. The simulation results show that the algorithm effectively improve the system equalizing.
     Finally, the problem of the channel estimation was discussed. The semi-blind iterative scheme of the channel estimation and equalization was designed based on the iterative theory in the BICM-ID-FH system. At the initial iteration of the scheme, the training sequences was used to estimate the channel information, and then combining with the Turbo equalization iterative process, and the output of the decoder was fully used to achieve the unification of the channel estimation, channel equalization and decoding. The simulation results show that the scheme has good adaptability for the high frequency channel. In addition, the blind iterative scheme of the channel estimation and equalization was designed and implemented in the BICM-ID-FH system, and the simulation results show that the scheme has a convergence when channel fading is not serious.
引文
[1]胡中豫著.现代短波通信.北京:国防工业出版社,2003:1-27页
    [2]Arapoqlou Pantelis-Daniel M, Panaqopoulos A D, Chatzarakis G E, et al. Diversity techniques for satellite communications:an educational graphical tool. IEEE Antenas Propag Mag,2004,46(3):109-114P
    [3]Zhang M M, Hurst P J, Levy B C, Lewis S H. Gain-error calibration of a pipelined ADC in an adaptively baseband reiver. IEEE Trans.Circuits Syst ‖, Exp.Briefs,2009,56(10):768-772P
    [4]Raheli R, Polydoros A and C K Tzou. Per-survivor processing:a general approach to MLS in uncertain environments. IEEE Transactions on Communications,1995,43(2):354-364P
    [5]Bakir Mohanned,李外云等.衰落性AWGN信道的OFDM性能保护间隔的优化.华东师范大学学报:自然科学版,2005(3):37-43页
    [6]芮华.联合编码调制理论及系统优化设计.南京航空航天大学博士学位论文,2005:1-15页
    [7]Tran Nqhi H, Nquyen Ha H, Le-Nqoc Tho. Performance analysis and design criteria of BICM-ID with signal space diversity for keyhole Nakagami-m fading channels. IEEE Trans.Inf.Theory,2009,55(4): 192-1602P
    [8]聂远飞.比特交织编码传输技术研究.西安电子科技大学博士学位论文,2007:1-7页
    [9]任宇辉.比特交织编码调制技术的研究.哈尔滨工业大学硕士学位论文,2006:1-6,20-24页
    [10]Che S, Tong S. Low-complexity LDPC coded BICM-ID with orthogonal modulations. Electronics Letters,2009,45(16):845-846P
    [11]Batra Arun, Zeidler James. Narrowband interference mitigation in BICM OFDM systems. Preceedings of IEEE Int Conf Acoust Speech Signal Process Proc, Taipei,Taiwan,2009:2605-2608P
    [12]Nasri Amir, Schober Robert and Lampe Lutz. Performance of BICM-OFDM systems in UWB interference. IEEE Trans.Wireless Commun.,2009,8(9):4386-4392P
    [13]Nasri Amir, Schober Robert. Performance of BICM-OFDM systems in non-gaussian noise and interference. Proceedings of 2008 IEEE Global Telecommunications Conference, New Orleans,USA,2008:4566-4571P
    [14]Ng S X, Chung J Y, Cherriman P, et al. Burst-by-burst adaptive decision feedback equalized TCM, TTCM, and BICM for H.263-assisted wireless video telephony, IEEE Transactions on Circuits and Systems for Video Technology,2006,16(3):363-374P
    [15]禹永植,张兴周,陈峰等.BICM-OFDM中一种新型迭代信道估计算法.哈尔滨工程大学学报,2008,5(29):499-522页
    [16]朱毅超,甘良才,熊俊俏,郭见兵.BICM在差分跳频系统中的应用,电波科学学报,2009,24(1):15-21页
    [17]梅文华,王淑波,邱永红,杜兴民.跳频通信.北京:国防工业出版社,2005:8-27页
    [18]陈智.差分跳频通信系统的性能分析.电子科技大学博士学位论文,2006:1-7页
    [19]David L H, Paul K L. CHESS:a new reliable high speed HF radio. IEEE Proceedings of the Tactical Communications Conference, Washington DC, 1996:684-690P
    [20]曾兴雯,刘乃安,孙献璞.扩展频谱通信及其多址技术.西安:西安电子科技大学出版社,2004:21-33页
    [21]Diane G Mills, Dianne E Egnor. A performance comparison of differential frequency hopping and fast frequency hopping. Proceedings of IEEE Military Communications Conference,Monterey,USA,2004:445-446P
    [22]Ungerboek G. Channel coding with multilevel/pahase signals, IEEE Transactions on Information Theory,1982,28:55-67P
    [23]Ungerboeck G. Trellis-coded modulation with redundant signal sets:part I: introduction and Part Ⅱ, state of the art. IEEE Communication Magazine, 1987,25(2):5-11P and 12-21P
    [24]Zehavi Ephriam. On trellis codes for peak shift magnetic recrding channel, Proceedings of the 1993 IEEE International Symposium on Information Theory. San Antonio, TX, USA.1993:239P
    [25]Caire G, Taricco G, Biglieri E. Bit-interleaved coded modulation, IEEE Transactions on Information Theory,1998,44(3):927-946P
    [26]Zehavi Ephriam.8-PSK Trellis Codes for a Rayleigh Channel, IEEE Trans Communications,1992,40(5):873-883P
    [27]Xiaodong Li, Janes A Ritcey. Bit-interleaved coded modulation with iterative decoding, IEEE Communications Letters,1997,1(6):169-171P
    [28]Brink S, Speidel J, Yan R. Iterative demapping and decoding for multilevel modulation, Proceedings of GLBOECOM1998.1998:579-584P
    [29]Thomas W S, Richard D W, Keith J. Superposition Turbo TCM for multi-rate broadcast, IEEE Transactions on Communications,2004,52(3): 368-371P
    [30]Li Xiaodong, Ritcey J A. Trellis-coded modulation with bit interleaving and iterative decoding, IEEE Journal on Selected Areas in Communications. 1999,17(4):715-724P
    [31]Ng SX, Liew T H, Yang L L, et al. Comparative study of TCM, TTCM, BICM and BICM-ID schemes, Proceedings of the IEEE Vehicular Technology Conference, Rhodes, Greece,2001:2450-2454P
    [32]Zhao Lu, Huber Johannes, Gerstacker Wolfqang. Design and analysis of bit interleaved coded space-time modulation, IEEE Transactions on Communications,2008,56(6):904-914P
    [33]Hong Z, Hughes B L. Bit-interleaved space-time coded modulation with iterative decoding, IEEE Transactions on Wireless Communications,2004, 3(6):1912-1917P
    [34]Lee Wookbong, Cho Junqho, Sunq Chang-Kyung, et al. Mapping optimization for space-time bit-interleaved coded modulation with iterative decoding, IEEE Transactions on Communications,2007,55(4):650-655P
    [35]Akay E, Ayanoglu E. Achieving full frequency and space diversity in wireless systems via BICM, OFDM, STBC, and viterbi decoding. IEEE Transactions on Communications,2006,54(12):2164-2172P
    [36]Rende Deniz, Wong Tan F. Bit interleaved space-frequency coded modulation for OFDM systems, Proceedings of 2003 International Conference on Communications(ICC2003),2003,4:2827-2831P
    [37]Leee Inkyu, Chan Albert M, Sundberq Carl-Erik W. Space-time bit-interleaved coded modulation for OFDM systems, IEEE Transactions on Signal Processing,2004,52 (3):820-825P
    [38]Gresset Nicolas, Brunel Loic, Boutros Joseph J. Space-time coding techniques with bit-interleaved coded modulations for MIMO block-fading channels, IEEE Transactions on Information Theory,2008,54(5): 2156-2178P
    [39]唐岚,王树勋,梁应敞.多入多出系统中的自适应比特交织编码调制,系统仿真学报,2005,17(12):3065-3069页
    [40]Collings Lain B, Butler Michael R G, Mckay Matthew R. Low complexity receiver design for MIMO bit-interleaved coded modulation. Proceedings of the ISSSTA2004. Sydney, Australia.2004:12-16P
    [41]郭扬.短波信道建模及扩频-OFDM技术研究.吉林大学博士学位论文,2009:1-5页
    [42]Salaman R. A New lonospheric Multipath Reduction Factor (MRF). Communications Systems, IRE Transactions on.1962,10(2):220-222P
    [43]孙凤娟,焦培南,李铁成.短波信道衰落特性试验研究与仿真.中国电子科学研究院学报,2009,4(4):399-403页
    [44]John G. Proakis. Digital Communications,3rd ed. Beijing:Publishing House of Electronics Industry,1999:654-682P
    [45]魏国柱,李林,杜安.普通情况下的多普勒效应表达式.东北大学学报(自然科学版),2004,25(6):601-605页
    [46]Hoffmeyer J A, Vogler L E, Mastrangelo J F, et al. A new HF channel model and its implementation in a real-time simulator. Proceedings of the IEEE Fifth HFRST Int. Conf. Edinburgh, UK,1991:173-177P
    [47]Giles T C, Wiloughby I. Simulation of High Frequency Voice Band Radio Channels. Proceedings of IEEE Military Communications Conference, Boston, USA,1993:342-348P
    [48]Watterson C C, Juroshek J R, Bensema W D. Experimental confirmation of an HF channel model. IEEE Transactions on Communications,1970,18(6): 792-803P
    [49]Woerner B D, Reed J H, Rappaport. Simulation issues for future wireless modems. IEEE Communication Magazine,1994, (7):42-53P
    [50]Birch S W, Davies N C. An advanced HF communications simulator, Proceedings of Seventh International Conference on HF Radio Systems and Techniques, Nottingham,UK,1997:397-402P
    [51]James M. Real-time software simulation of the HF radio channel. IEEE Transactions on Communications,1982,30(8):1809-1817P
    [52]张尔扬等著.短波通信技术.北京:国防工业出版社,2002:20-25页
    [53]韩志学.连续相位调制短波瞬间通信系统关键技术.哈尔滨工程大学博士学位论文,2007:20-28页
    [54]Lee C S, Ng S X, Piazzo L, et al. TCM, TTCM, BICM and iterative BICM assisted OFDM-based digital video broadcasting to mobile receivers, Proceedings of the IEEE VTC Conf. Rhodes, Greece,2001:732-736P
    [55]Li Xiaodong, Ritcey J A. Bit-interleaved coded modulation with iterative decoding, Proceedings of IEEE ICC'99, Hongkong.1999, (2):858-863P
    [56]Li Xiaodong, Ritcey J A. Bit-interleaved coded modulation with iterative decoding and 8PSK signaling, IEEE Transactions on Communications. 2002,50(8):1250-1257P
    [57]Li Xiaodong, Ritcey James A. Low-complexity map decoding for trellis coded modulation with bit interleaving, Proceeding of 1997 IEEE Global Telecommunications Mini-Conference, Phoenix, AZ, USA.1997,4:28-32P
    [58]Liu Jeff Tai-Lin and Lampe Lutz. Improved BICM iterative decoding with hard-decision feedback, Proceedings of 2005 IEEE PACRIM Int. Conf, Victoria, BC, Canda.2005:73-76P
    [59]Li Tao, Mow WaiHo, Ben Letaief Khaled. Bit-interleaved coded modulation with noncoherent iterative decoding for multiple antenna systems, Proceedings of 2004 Int. Conf. on Communications, Circuits and Systems, Chengdu, China.2004,1:135-139P
    [60]Khoo Boon Kien, Le Goff Stephane Y, Sharif Bayan S and Tsimenidis Charalampos C. Bit-interleaved coded modulation with iterative decoding using constellation shaping, IEEE Transactions on Communications,2006, 54(9):1517-1520 P
    [61]Li Tao, Mow WaiHo, Ben Letaief Khaled. Low complexity iterative decoding for bit interleaved coded modulation, IEEE Transactions on Wireless Communications,2006,5(8):1966-1970P
    [62]Tran Nghi H and Nguyen Ha H. Design and performance of BICM-ID systems with hypercube constellations, IEEE Transactions on Wireless Communications,2006,5(5):1169-1179 P
    [63]宫丰奎.比特交织编码调制迭代译码系统的调制解调技术研究.西安电子科技大学博士学位论文.2007:37-51页
    [64]Richardson T J, Rudiger L U. Effcient encoding of low-density parity check codes, IEEE Transactions on Informations Theory,2001, 47(2):638-656P
    [65]吴湛击,吴伟陵.交织器最优化设计的理论分析基础及其工程仿真,电子学报,2007,30(7):1048-1052页
    [66]Tan J, Gordon L S.Analysis and design of interleaver mappings for iteratively decoded BICM, Int. Conf,ICC, New York,2002,3:1403-1407P
    [67]Gorokhov A M. Optimized labeling maps for bit interleaved transmission with Turbo demodulation, IEEE Conf.VTS 53rd, Tokyo, Japan,2001: 1459-1463P
    [68]Muhammad N S, Speidel J. Joint optimization of signal constellation and bit labeling for bit-interleaved coded modulation with iterative decoding, IEEE Communications Letters,2005,9(9):775-777P
    [69]Liu L N, Fei Z S etal. Novel mapping design coriterion for BICM-ID with square QAM constellations,Journal of Beijing Institute of Technology, 2003,12(4):385-389P
    [70]Brink S T. Convergence behavior of iteratively decoded parallel concatenated codes. IEEE Trans.on Commun.2001,49(10):1727-1737P
    [71]F Schreckenbach, N Gortz etal. Optimization of Symbol Mappings for Bit-Interleaved Coded Modulation with Iterative Decoding, IEEE Commun. Letters,2003,7(12):593-595P
    [72]张鹏.短波跳频通信中基于时间信息TOD的自同步法,空间电子技术,2008,2:73-77页
    [73]金友渔.Logistic混沌序列叠加过程分解模型与弱信号高精度复原.电子学报,2002,30(1):79-82页
    [74]Benedetto S, Montorsi G. Design of parallel concatenated convolutional codes, IEEE Transactions on Communications,1996,44(5):591-600P
    [75]张鹏.跳频通信中跳频图案与跳频同步的研究,西安电子科技大学硕士学位论文,2007:39-41页
    [76]Dicarlo David M, Weber Charles L. Statistic performance of single dwell serial synchronization systems, IEEE Transactions on Communications Systems,1980,28(8):1382-1388P
    [77]葛造坤,李少谦.快速跳频电台同步系统性能分析,电子科技大学学报,1996,25(9):335-338页
    [78]Brown T, Wang M. An iterative algorithm for single frequency estimation, IEEE Transactions on Signal Processing,2002,50:2671-2682P
    [79]J J van de Beek, Sandell M. ML estimation of time and frequency offset in OFDM systems, IEEE Trans.on Signal Processing,1997,45:1800-1805P
    [80]Kay S. A fast and accurate single frequency estimator, IEEE Transactions on Acoustics, Speech, Signal Processing,1989,37(12):1987-1990P
    [81]M Luise, R Reggiannini. Carrier frequency recovery in all-digital modems for burst-mode transmissions, IEEE Transactions on Communications, 1995,43:1169-1178P
    [82]W Oh, K Cheun. Joint decoding and carrier phase recovery algorithm for turbo codes, IEEE Communications Letters,2001,5(9):375-377P
    [83]Wu Xiaofu, Xiang Haige. Iterative carrier phase recovery methods in turbo receivers. IEEE Commun.Lett.2005,8(9):735-737P
    [84]Zhang Li, Burr Auster G. Iterative carrier phase recovery suited to turbo-coded systems. IEEE Trans.Wireless Commun.2004,3(6):2267-2276P
    [85]A P Dempster, N M Laird, D B Rubin. Maximum-likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, Series B,1977,39(1):1-38P
    [86]Bartosz Mielczarek, Arne Svensson. Phase offset estimation using enhanced turbo decoders, IEEE Int Conf Commun, New York,2002,3: 1536-1540P
    [87]N Noels, C Herzet, A Dejonghe, V Lottici, et al. Turbo-synchronization:an EM algorithm approach, IEEE Int Conf Commun,2003,4:2933-2937P
    [88]Umberto Mengali, Aldo N D'Andrea. Synchronization techniques for digital receivers, New York:Plenum Press,1997:267-297P
    [89]郭黎利,张晓林,周凯.通信原理.哈尔滨:哈尔滨工程大学出版社,2003:73-80页
    [90]孙守亮.通信信道均衡理论与应用技术.山东大学硕士学位论文.2005:20-22页
    [91]Gunther Jake, Moon Todd. Minimum bayes risk adaptive linear equalizers. IEEE Trans. Signal Process,2009,57(12):4788-4799P
    [92]Haykin S. Adaptive Filter Theory.第三版.北京:电子工业出版社, 2002:436-463页
    [93]Naofal A D, John M C. MMSE decision-feedback equalizers:finite-length results. IEEE Transactions on Information Theory.1995,41(4):961-975P
    [94]吴晓富,凌聪,吕晶.编码符号串扰信道的迭代判决反馈均衡算法,电子学报,2001,29(9):1192-1194页
    [95]C Douillard, etal. Iterative correction of inter symbol interference:Turbo equalization, Europe Trans on Telecomm,1995,6(5):507-511P
    [96]G Bauch, H Khorram, J Hagenauer. Iterative equalization and decoding in mobile communications system, Proceedings of the Second European Personal Mobile Communiactions Conference,1997:307-312P
    [97]Glavieux A, Laot C, Labat J. Turbo equalization over a frequency selective channel, Pro Int Conf Symposium on Turbo Codes & Related Topics, Brest, France,1997:96-102P
    [98]Tuchler M, Snger A. Turbo equalization:principles and new Results, IEEE Transactions on Communications,2002,50(5):754-767P
    [99]Vogelbruch F, Haar S. Improved soft ISI cancellation for turbo equalization using full soft output channel decoder's information. IEEE Global Telecom Conf. California, USA,2003:1736-1740P
    [100]L Davis, I Collings, Hoeher. Joint MAP equalization and channel estimation for frequency-selective and frequency-flat fast-fading channels, IEEE Transactions on Communications,2001,49(12):2106-2114P
    [101]S Benedetto, D Divsalar, G Montorsi. Soft-output decoding algorithms in iterative decoding of Turbo codes, JPL TDA Progress Report,1996: 42-142P
    [102]Wang Hao, Yang Hongwen, Yang Dacheng. Improved Log-MAP decoding algorithm for turbo-like codes. IEEE Commun.Lett,2006,3(10):186-188P
    [103]Haley David, Grant Alex. Reversible low-desity parity-check codes. IEEE Tran. Inf. Theory,2009,55(5):2016-2036P
    [104]王单.LDPC码编译码算法研究.西安电子科技大学博士学位论文.2006:13-17页
    [105]曹海燕,李君,韦岗.低密度校验码(LDPC码).电路与系统学报,2008,13(2):95-103页
    [106]Visoz Raphae, Berther Antoine O. Iterative decoding and channel estimation for space-time BICM over MIMO block fading multipath AWGN channel. IEEE Trans.on Commun.,2003,51(8):1358-1367P
    [107]Lin Jian Hung, Parhi K K. Low complexity iterative joint detection, decoding and channel estimation for wireless MIMO system, IEEE Workshop Signal Proc.Syst.Des.Implement,SIPS2006,2006:45-50P
    [108]H Zamiri Jafarian, S Pasupathy. EM-based recursive estimation of channel parameters, IEEE Trans on Commun,1999,47(9):1297-1302P
    [109]周鹏,赵春明.MIMO-OFDM系统中一种新的联合迭代信道估计与符号检测算法.电子与信息学报,2007,29(50):1101-1105页
    [110]Choi Jinho. MIMO-BICM iterative receiver with the EM based channel estimation and simplified MMSE combining with soft cancellation. IEEE Trans. Signal Process,2006,54(8):3247-3251P
    [111]李莉.MIMO-OFDM无线通信系统信道估计研究.吉林大学博士学位论文,2009:1-9页
    [112]M Ghosh, C L Weber. Maximum-likelihood blind equalization. Optical Engineering.1992,31(6):1224-1228P
    [113]Orozcolugo A G, Lara M M, Melernon D C. Channel estimation using implicit training. IEEE Trans on Signal Processing.2004,52(1):240-254P
    [114]Pandey Rajoo. Feedforward neural neural network for blind equalization with PSK signals. Neural Computing Applications.2005,14(4):390-398P
    [115]禹永植,毕文斌,张兴周.BICM-OFDM中基于ML算法的迭代信道估计算法,系统仿真学报,2008,20(1):143-146页
    [116]Ylioinas Jari, Juntti Markku. Iterative joint detection, decoding, and channel estimation in turbo-coded MIMO-OFDM, IEEE Transactions on Vehicular Technology,2009,58(4):1784-1796P
    [117]Huang Y, Ritcey J A. Joint iterative channel estimation and decoding for bit interleaved coded modulation over correlated fading channels, IEEE Trans. Wireless Commun,2005,4(5):2549-2558P
    [118]Shin Changyong, Heath Jr Rober W, Power Edward J. Blind channel estimation for MIMO-OFDM systems. IEEE Trans.Veh.Technol.2007, 56(2):670-685P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700