用户名: 密码: 验证码:
穗重型小麦发育特性及穗粒重性状的遗传模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是我国的第二大作物,对国家粮食安全具有举足轻重的地位。选育高产小麦新品种是增加小麦产量的有效途径。穗重型小麦具有突出的穗部性状和较高的单穗粒重,为我国超级小麦育种带来希望与曙光。然而,作为一个品种类型,穗重型小麦在性状发育特性、穗部性状的遗传传递规律及其分蘖和粒重等性状在发育过程中的动态遗传表现等方面尚缺乏系统的研究。针对这些问题,本研究以近年来黄淮麦区选育和引进的穗重型小麦基因型为试材,对穗重型小麦性状发育特性、穗重型小麦穗部性状遗传分析及分蘖、粒重性状的动态发育遗传规律进行了探讨,以期对穗重型小麦种质资源的合理利用与超级小麦新品种选育提供依据与参考。所取得的主要结果如下:
     1、在群体发育方面,穗重型小麦冬季分蘖、春季分蘖及单位面积穗数都低于对照(多穗型品种),通过密度和播期调节的范围较窄;分蘖偏少的原因是形成一个分蘖所需要的积温更多,对低温的适应性更差。穗重型小麦形成较多小穗的原因在于:幼穗分化时期较短,表现为单棱期短,进入二棱期早,二棱期较长;幼穗分化速率快。穗重型小麦单茎干物质始终高于对照,单株干物质前期(开花前)高后期低,单位面积干物质积累偏少,且茎叶鞘输出的干物质多,向籽粒输入的少,输出输入效率较低。穗重型小麦净光合速率前(灌浆以前)高后低,呼吸速率与蒸腾速率均高于对照,根系吸收能力较强。穗重型小麦籽粒平均灌浆速率、最大灌浆速率均低于对照,灌浆持续期持平,粒鲜重和籽粒体积最大日增量不小于对照,决定穗重型小麦粒重的主要因素是灌浆速率,灌浆持续期起次要作用,平均灌浆速率、叶面积持续期与籽粒饱满指数显著正相关。穗重型小麦群体源相对不足,库容量较大,源、库之间的关系不够协调。穗重型小麦源不足表现为:群体偏小,群体生长率降低;光合产物大部分供应籽粒,叶片营养亏缺,导致叶片功能下降,光合产率降低。穗重型小麦冠层温度偏高,旗叶叶绿素水平偏低且下降迅速,叶片输出功能较低,无法适应潜在库容对光合产物的需要。
     2、利用主基因-多基因混合遗传模型,对穗重型小麦3组合6世代的主要农艺性状分析表明,各性状的遗传模型因组合不同而表现有同有异,相同的情况是所有组合的单株穗数、株高和单穗粒重均一致地符合多基因的加性-显性-上位性遗传模型;符合这一遗传模型的还有:组合Ⅱ、组合Ⅲ的穗长,组合Ⅰ的每穗小穗数,组合Ⅱ的每穗粒数,这些性状均受多基因位点控制,且基因间存在上位性互作。表现各异的情况是:组合Ⅰ的穗长由2对具有加性-显性-上位性互作的主基因所控制,组合Ⅱ、Ⅲ的每穗小穗数由1对负向完全显性主基因+加性-显性多基因控制,组合Ⅰ、Ⅲ的每穗粒数由2对加性-显性-上位性主基因+加性-显性-上位性多基因共同控制,组合间出现的差异可能与亲本类型和遗传背景有关。
     3、穗重型小麦分蘖性状同时受到遗传主效应和基因型×环境互作效应的共同控制,且以遗传主效应为主,其中加性效应和显性效应在分蘖形成的早期(0-7天)、早中期(8-14天)、中期(15-21天)表现得比较活跃,可以检测到显著的条件遗传效应方差分量。净光合速率的遗传以基因型方差为主,发育的中期(5月16日)以前,显性方差是遗传变异的主要分量,中后期加性方差为主要分量,灌浆(5月2日起)开始以后,大量的微效多基因被激活表达,从5月2日到5月16日,是控制净光合速率性状表现的基因表达最为活跃的时期;粒重形成以基因的加性效应、显性效应,显性与环境互作为主,环境对粒重形成的影响也达到显著水平,说明粒重极易受环境条件的影响;灌浆开始,加性效应初现,上位性效应依然存在,而环境效应最大;灌浆初期(5.10︱5.7),加性显性效应短暂消失,上位性效应持续增大;灌浆中期(5.13︱5.105.16︱5.13),加性显性效应再次出现,上位性效应短暂消失,但上位与环境互作却达到最大,说明此时粒重对环境影响非常敏感。
Wheat is the second largest crop planted in China, and plays a very important role fornational food security. The breeding of high-yielding varieties is an effective way to increasewheat production. The high spike weight wheat shows prominent ear characteristics and highgrain weight per ear, which bring hope and dawn for super wheat breeding in China. However,as a cultivar type, some traits of high spike weight wheat have not been systematic studied,such as the features of character development, genetic laws of typical panicle traits passing tothe offspring, dynamic genetic rule on grain weight and tiller traits in the developmentalprocess and so on. In response to these problems, we used high spike weight wheat genotype,breed or introduced to Huanghuai wheat area, as tested materials in this study to investigatetraits development features, spike genetic analysis, tillers and grain weight traits dynamicdevelopmental genetics rule of spike wheat, aiming to provide basis and references for therational use of high spike weight wheat germplasm resources and breeding of new superwheat varieties. The results obtained are as follows:
     1. In Population development,the winter tillers, spring tillers and panicles in high spikeweight wheat were lower than those of in the control (panicle varieties), the scope ofregulation was more narrow by the density and sowing date, formation of a tiller needed moreaccumulated temperature, and adaptability to low temperature was worse, controlled bymulti-panicle varieties. High spike weight wheat spike differentiation period was generallyless than that of the control, a short single ridge stage period, the two-ridge stage period wasearlier and last longer. The spike differentiation rate also was faster than the control, whichresulted in more spikes of the high spike weight wheat. The single stem dry matteraccumulation was higher than that of the control, but single plant dry matter accumulationearly stage (before flowering) was higher than late stage, dry matter accumulation of per unitarea had no advantage. Most varieties of high spike weight wheat outputted more dry matterfrom the stem sheath and leaf sheath, but inputted less to the grain, input-output rate also waslow, indicating that some problems exited in its material flow. The net photosynthetic rate ofhigh spike weight wheat was higher than that of the control before grain filling and then reduced, but both of the respiratory rate and transpiration rate were higher, meaning that highspike weight wheat belonged to the high photosynthetic and high breathing consumption type,while its root absorption ability was better. The average grain filling rate and the maximumgrain-filling rate of high spike weight wheat were lower, grain-filling period equal to thecontrol, the maximum daily increment of fresh weight and grain volume were close to orgreater. Analysis showed that, the main factor deciding high spike weight wheat grain weightwas the grain-filling rate, the grain-filling duration played a secondary role. Average fillingrate and leaf duration positively correlated to grain full index. High spike weight wheat had arelatively inadequate population source, a large storage capacity, but the relationship betweensource and storage was not coordination enough, which was the main reason for its grainunsaturated. There were two possible reasons for inadequate source of high spike weightwheat: A. the small population and low population growth rate, B. most of photosyntheticproducts was supplied to grain due to its large storage, while leaves got less nutrients causingthe blade decline and functional period shortened as well as the photosynthetic yield declined.High spike weight wheat had the higher canopy temperature, the shorter period of leaves’output function and the lower level of the flag leaf chlorophyll, which could not fulfill theneeds of photosynthetic products of the potential storage capacity.
     2. According to the major gene and poly-genes mixed inheritance model, we analyzedhigh spike weight wheat’s main agronomic traits of its six generations of the threecombinations. The analysis showed that they are in line with the polygenic additive–dominance-epistasis model, including plant ears, plant height and grain weight per ear of allcombinations, the ear length of combination II and III, spikelets per ear of combination Iand grains per ear of combination II, being controlled by multiple loci and gene epistasis. Earlength of combinatio I was under the control of two pairs of additive–dominant–epistaticmajor genes. Spikelets per ear of combination II and III is controlled by one pair of negativecomplete dominant major gene and additive-dominant polygenes. Grains per ear ofcombination I and III was determined by two pairs additive-dominant-epistatic major geneand additive-dominant-epistatic polygenes. The appearing of differences betweencombinations may be related to the type of parent.
     3. The tillering traits of high spike weight wheat were jointly controlled by genetic maineffects and genotype-environment interaction effects, mainly genetic main effects, andadditive and dominant effects were dominant at different developmental stages. Genescontrolling tillers were more active in the early formation of tillers (0-7days), the earlymidterm (8-14days) and medium (15-21days), according to the detected variancecomponents of the conditional genetic effect. Net photosynthetic rate was calculated mainly by genotype variance. Before the middle of the development (May16), dominance variance isthe main component of genetic variation, and additive variance was the main component atthe middle and late phase. From the start of grain-filling (May2), a large number of minorgenes are activated and express. From May2to May16, the genes controlling netphotosynthetic rate expressed most actively. Grain Weight Formation was controlled mainlyby additive, dominant effects, as well as dominant and environment interactions, and theimpact of the environment on Grain Weight Formation also reached a significant level,indicating that grain weight were highly vulnerable to the impact of environmental conditions.When grouting begined, the additive effect occurs, the epistatic effect still existed, butenvironment effect was the main. At the early grain filling stage (5.10|5.7), the additivedominance effected briefly disappeared, and the epistatic effects continuously increased. Atthe middle grouting phase (5.13|5.105.16|5.13), the additive dominant effects appearedagain, the epistatic effects briefly disappeared, but the interaction between the epistatic andthe environment reached the maximum, illustrating that the grain weight was very sensitive tothe environmental impact now.
引文
陈青,朱军,吴吉祥.1999.陆地棉(Gossypium hirsutum L.)不同铃期单株成铃数和籽棉产量的遗传动态分析[J].浙江农业大学学报,25(2):155~160
    陈小荣,陈志彬,贺浩华.2011.水稻单株有效穗数主基因+多基因混合遗传分析[J].生物数学学报,26(3):555~562
    范永胜,赵宗武,马华平,蒋志凯,董昀,朱红彩,刘朝辉.2007超级小麦品种穗部性状间相关性分析及穗粒数改良途径的研究[J]中国种业第7期:38~40
    范平,詹克慧,孙建英,王淑凤,赵国山.1999小麦主要性状的遗传模型分析[J]河南农业大学学报Vol.33No.3:231~234
    方先文,姜东,戴延波.2003.小麦籽粒总淀粉及支链淀粉含量的遗传分析[J].作物学报,29(6):925~929.
    冯伟,徐丽娜,朱云集,王晨阳,郭天财.2011.小麦‘兰考矮早八’茎蘖分蘖节的内源激素差异及其密度调控效应[J]植物生理学报47(6):581~588
    盖钧镒,章元明,王建康.2000.QTL混合遗传模型扩展至2对主基因+多基因时的多世代联合分析[J]作物学报26, No.4:385~391
    盖钧镒,章元明,王建康2003.植物数量性状遗传体系[M].,北京:科学出版社224~260
    盖钧镒,王建康.1998.利用回交世代鉴定数量性状主基因-多基因混合遗传模型[J].遗传, S1期:110~111
    盖钧镒,章元明,王建康.2000.QTL混合遗传模型扩展至2对主基因+多基因时的多世代联合分析[J].作物学报,26(4):385~391
    高之仁编著,1986.数量遗传学[M].,成都:四川大学出版社
    郭天财1994河南省及黄淮麦区小麦区试品种产量性状的初步分析[J].河南农业大学学报28(增刊):37~42
    郭文善,封超年,严六零.1995.小麦开花后源库关系分析[J].作物学报,21(3):334~340.
    河南省小麦高稳优低研究推广协作组1995.小麦穗粒重研究[M].北京:中国农业出版社
    胡中立,刘后利,张修富,1989.质量-数量性状及其遗传基础[J].武汉大学学报(自然科学版),3期:83~89
    黄敬芳,周立伟,陶维海,姜子英.1988.小麦的春化阶段与穗的发育[J].北京农学院学报,3(2):25~30
    黄开红1990小麦开花特性与结实率的研究[J]江苏农业科学(6):5~7
    姜长鉴,莫惠栋.1995.质量—数量性状的遗传分析Ⅳ.极大似然法的应用[J].作物学报,21(6):641~648
    姜长鉴,徐辰武,惠大丰.1995.邵元建.家系间数量性状主基因效应的分析[J].作物学报,21(5):632~636
    靳凤,马翎健,范春燕.2009.非1B/1R和1B/1R类型小麦K型雄性不育系穗长和小穗数性状的遗传分析[J].麦类作物学报29(1):18~23
    李丕珩1983.北方冬小麦高产育种中产量因子设计目标的研究[J].作物学报9(3):189~194
    李维平,宋哲民.1994.冬小麦较多小穗基因型幼穗分化研究[J].西北农业学报3(2):27~30
    李维平,赵文明.2000.小麦增小穗育种方法与新种质资源拓宽研究[J].作物学报,26(2):222~230
    李维平1993.浅论小麦增小穗育种的新进展[J].中国农学通报,19(4):6~8
    李文雄1994.春小麦穗粒数调控途径[J].东北农业大学学报25(1):1~9
    李奕松,黄丕生,黄仲青.2001.两系籼型杂交水稻源库特征的研究[J].西北植物学报,28(4):341~344.
    林志强,郑燕,蔡英杰.2011.水稻长穗大粒RIL群体产量、穗部和谷粒性状的遗传分析[J].福建农林大学学报(自然科学版)9,第40卷第5期:449~454
    刘碧贵1992.穗重型小麦品种选育及粒重遗传分析[J].绵阳农专学报,9(2):7~10
    刘殿英,石立岩,董庆裕.1993.不同时期追施肥水对冬小麦根系、根系活性和植株性状的影响[J].作物学报,24(2):359~364
    刘桂富,徐海明,杨剑,朱军.2006.水稻(Oryza sativa L.)分蘖数和株高的遗传分析(英文)[J]浙江大学学报(农业与生命科学版)32(5):527~534
    刘三才.1995.我国小麦穗粒数及多粒种质的研究进展[J].国外农学-麦类作物,(3):41~43
    罗洪溪,1993.小麦超大穗材料的选育[J]国外农学-麦类作物,(4):34~36
    骆霞虹,卢正中,刘鹏渊.1998.陆地棉棉籽不同发育期容重和种仁率的遗传分析[J].浙江农业学报,410(5):225~229
    马元喜.1993协调小麦幼穗发育三个两极分化过程增加穗粒数[M].中国小麦栽培研究新进展,北京:农业出版社119~126
    莫惠栋.1993a.质量-数量性状的遗传分析Ⅰ.遗传组成和主基因型鉴别[J].作物学报,19(1):1~6
    莫惠栋.1993b.质量-数量性状的遗传分析Ⅱ.世代平均数和遗传方差[J].作物学报,19(3):193~200
    庞红喜,何蓓如.2005.穗重型小麦的源库特征研究[J]麦类作物学报25(3):135~137
    庞红喜,裴阿卫,何蓓如,王怡.2004.穗重型小麦冠层温度及有关生物学性状的研究[J]西北农林科技大学学报(自然科学版)第32卷第12期
    彭静,蔡一林,徐德林,王国强.2009.玉米株型性状多世代联合遗传分析[J].生物数学学报,24(1):149~156
    彭永欣1993.小麦栽培与生理[M],扬州:东南大学出版社125~138
    戚存扣,盖钧锰,章元明2001.甘蓝型油菜芥酸含量的主基因+多基因遗传[J].遗传学报,28(2):182~187
    任明全,徐向阳.不同小麦品种籽粒灌浆特性的研究[J].华北农学报,8(1):28~32
    任正隆,李尧权1993.小麦开花后的物质积累、籽粒相对生长率和灌浆速度在品种间的变异[J].中国农业科学
    阮成江,何祯祥,钦佩2003.我国农作物QTL定位研究的现状和进展[J].植物学通报,1期:10~22
    石春海,吴建国,朱军,樊龙江;吴平2001.;籼稻精米重量性状的发育遗传分析[J].浙江大学学报(农业与生命科学版),27(5):483~488.
    石明亮,洪德林,薛林.2010.玉米新选自交系穗粒重和百粒重的遗传分析[J]南京农业大学学报,33(3):6~12
    孙智开1984.普通小麦穗分枝性遗传研究[J]贵州农业科学1:24~28
    孙智开,王石惠.1994.普通小麦穗分枝性遗传分析与育种初探[J].种子1:10~13
    田纪春.2002超级小麦及其育种方法[J].麦类作物学报,22(1):87~90.
    王羽,樊庆琦,张利.2007.小麦K35早熟特性的遗传分析[J].麦类作物学报,27(6):957~960.
    王长发,张嵩午,刘正辉.2001.冷型小麦表现性状研究[J].西北农业学报,10(1):79~83.
    王东阳,姜洁,吴永常.1997.1985~1994年我国若干省份小麦良种对产量贡献的研究[J].中国农学通报,2期:16~19
    王辉1993.提高渭北原区小麦品种产量潜力途径的研究[J].干旱地区农业研究11(2):41~45
    王建康1996.数量性状主基因-多基因混合遗传模型的鉴别和遗传参数估计的研究.[博士学位论文].南京:南京农业大学
    王建康,盖钧镒.1997.利用杂种F_2世代鉴定数量性状主基因-多基因混合遗传模型并估计其遗传效应[J].遗传学报,24(5):432~440
    王建康,盖钧镒.1997.主基因-多基因混合遗传分析中的EM算法[J].生物数学学报,12(5):540~548
    王建康,盖钧镒.1998.数量性状主基因-多基因混合遗传的P1、P2、F1、F2和F2:3联合分析方法[J].作物学报,24(6):651~658
    王建设,王建康,朱立宏,盖钧镒2000.水稻主基因一多基因混合遗传控制白叶枯病抗性的基因效应分析[J]遗传学报27(1):34~38
    王建胜,王辉,刘伟华.2009.小麦-冰草多粒新种质及其多粒性遗传分析[J].中国农业科学,42(6):1889~1895.
    王英,韩天富.2008.大豆生育期性状的遗传及QTL定位研究[J],安徽农业科36(4):1391~1393
    王沅1982.小麦小花发育不同时期土壤干旱对成花与成粒的影响[J]作物学报8(4):229~236
    王月福,于振文,李尚霞,余松烈.2003.小麦籽粒灌浆过程中有关淀粉合成酶的活性及其效应[J]作物学报Vol.29, No.1:75~81
    吴纪中,颜伟,蔡士宾.2005.小麦纹枯病抗性的主基因+多基因遗传分析[J].江苏农业学报,21(1):6~11
    吴兆苏.1994.小麦产量潜力及育种途径述评[J]作物杂志,(1):3~4
    吴兆苏.1990.小麦育种学[M].北京:农业出版社
    向道权,黄烈健,曹永国,戴景瑞.2001.玉米产量性状主基因-多基因遗传效应的初步研究[J].华北农学报16(3):1~5
    肖世和,张秀英,阎长生,海林2002.再论超级麦育种[J]麦类作物学报22(3):71~73
    谢玥,龙海,侯永翠,郑有良.2006.小麦寡分蘖材料H461分蘖性状的遗传分析[J]麦类作物学报26(6):21~23
    严威凯.1998.不同小麦品种库源状况的初步研究[J].西北农业大学学报,16(2):39~44.
    颜济,杨俊良1984.新疆伊犁地区的节节麦[J]作物学报10(1):1~6
    杨先泉,任正隆.2001.小麦穗轴节发育及其与穗部性状的遗传关系[J]四川农业大学学报,19(4):272~275
    叶宝兴,毛达超,刘学春.2005.超级小麦生育后期根系活力与净光合速率相关性的研究[J]山东农业科学第4期:15~18
    叶子弘,朱军.2001.陆地棉开花成铃性状的遗传研究——开花规律及其影响因素[J].浙江大学学报(农业与生命科学版),27(1):62~68
    叶子弘,朱军.2000.陆地棉开花成铃性状的遗传研究[J].遗传学报,27(9):800~809
    于振文1984.不同密度条件对冬小麦小花发育的影响[J].作物学报,10(3):185~194
    于振文主编2003.作物栽培学各论[M]北方本北京:中国农业出版社
    原宗英,武英鹏,李艳芳.2004.小麦叶锈病抗性基因在山西的有效性研究.[J]西北植物学报,24(10):1866~1869
    袁有禄,张天真,郭旺珍.2002.棉花高品质纤维性状的主基因与多基因遗传分析[J].遗传学报,29(9):827~834.
    袁文业.1993.穗分枝小麦的研究和利用[J],国外农学-麦类作物,(6):36~39
    张勇,张伯桥,高德荣.2005.小麦抗病新材料S42抗赤霉病性的主基因+多基因遗传分析[J].江苏农业学报,21(4):272~276
    张安静,张俊祖,刘凤琴.2006.超大穗小麦穗长和小穗数的配合力及遗传模型分析[J].麦类作物学报26(4):41~43
    张国泰.1989.小麦顶小穗的形成特点及其与大穗的关系[J].作物学报,15(4):349~353
    张利平,2004. Booroola羊多胎基因FecB的研究进展[J].中国草食动物, S1期:48~50
    张立平,赵昌平,单福华,2007.小麦光温敏雄性不育系BS210育性的主基因+多基因混合遗传分析[J].作物学报,33(9):1553~1557
    张倩辉,张晓科,刘伟华.2008.小麦有效分蘖数的遗传分析[J].麦类作物学报,28(4):573~576.
    张嵩午,王长发.1991.冷型小麦及其生物学特征研究[J].作物学报,25(5):608~615.
    张嵩午.1998.小麦潜在库容的研究[J].西北农业学报,8(2):16~19.
    张嵩午.1997.小麦温型现象研究[J].应用生态学报,8(5):471~474.
    张宪政主编.1992.作物生理研究法[M]北京:农业出版社
    张晓龙1982.小麦品种籽粒灌浆研究[J].作物学报,8(2):87~93
    张晓燕,宋哲民.1994.陕西关中小麦品种更替中性状演变及其发展方向[J].西北植物学报,14(4):295~301
    张正斌编著.2001.小麦遗传学[M]北京:中国农业出版社
    章元明,盖钧镒.2000.数量性状分离分析中分布参数估计的IE CM算法[J].作物学报,26(6):699~706
    赵刚,昂沃,郝小琴,吴子恺.2010.微胚乳超高油玉米籽粒含油率的主基因+多基因遗传分析[J].中国油料作物学报,32(1):053~056
    赵会杰,郭天财,邹琦,于振文,董中东.2002不同穗型小麦品种分蘖发育的代谢基础研究[J]西北植物学报,22(2):215~220
    赵微平编著.1993.小麦生理学与分子生物学[M]北京:北京农业大学出版社
    郑有良1994.小麦多小穗品系10-A单株籽粒产量染色体效应研究[J]遗传16(4):27~30
    周卫文,张国平.1999.不同小麦品种库源特征分析[J].浙江大学学报(农业与生命科学版),25(5):467~472
    周羊梅,郭文善,封超年2004.不同生育时期小麦茎、光合产物的分配[J].麦类作物学报,24(3):60~63
    朱军.1993.作物杂种后代基因型值和杂种优势的预测方法[J].生物数学学报,8(1):32~44
    朱军.1998.数量性状基因定位的混合线性模型分析方法[J].遗传,20(增刊):137~138
    朱军.2000.数量性状遗传分析的新方法及其在育种中的应用[J].浙江大学学报(农业与生命科学版),26(1):1~6
    朱军,季道藩,许馥华.1993.棉株不同果枝节位开花和成铃的遗传分析[J].棉花学报,5(1):25~32
    Akaike,H. On entropy maximum principle[J]. In: Krishnaiah P. R. ed. Applications of Statistics.Amesterdam: North-Holland Publishing Co.1977,27~41
    Allard;Robert Wayne.1960. Principles of plant breeding JOHN WILEY&SONS(London)
    Araki E, Miura H&Sawada S.Identification of genetic loci affecting amylose content and agronomic traitson chromosome4A of wheat[J]. Theoretical and Applied Genetics199998:977~984
    Baker,R. J. Issues in diallel analysis[J]. Crop Sci.1978,18:5335~5336
    Bauer A. Estimation of spring wheat grain dry matter assimilation from air temperature[J]. Agron. J.1985,77:743~752
    Chojecki A.J.S&Gale M.D. Genetic control of glucose phosphate isomerase in wheat and relatedspecies[J].Heredity198249:339~349
    Cockerham C.C. Effects of linkage on the covariance between relatives[J]. Genetics195641:138~141
    Comstock R.E., H. F. Robinson and P. H. Harvey,1952. A breeding procedure designed to make maximumuse of both general and specific combining ability[J]. Agron. J.41:360~367
    Comstock R.E. and H. F. Robinson.1952. Estimation of average dominance of genes. Heterosis, J. W.Gowen, ed,. The Iowa State College Press,Ames, Iowa, pp:494~516
    East E M., A Mendelian interpretation of variation that is apparently continuous[J]. Am.Nat,1910.44:65~82
    Eberhart,S. A.,Debela,Seme,Hallauer,A. R. Reciprocal recurrent selection in the BSSS and BSCB1maizepopulations and half-sib selection in BSSS[J].Crop Sci,1973,13:451~456
    Elkind,Y. and A. Cahaner. A mixed model for the effects of single gene,polygenes and their interaction onquantitative traits.1. The models and experimental design. Theor. Appl. Genet.1990,72:377~383
    Elkind Y and A Cahaner. A mixed model for the effects of single gene, polygenes and their interaction onquantitative traits[J].1.The model and experimental design. Theor Appl Gene,1986.72:377~383
    Elkind Y and A Cahaner. A mixed model for the effects of single gene, polygenes and their interaction onquantitative traits.2. The effects of the major gene and polygenes on tomato fruit softness[J]. Heredity,1986.64:205~213
    Elkind,Y.and A.Cahaner,1986,Theor.Appl.Genet.72,377~383
    Elston,R. C. The genetic analysis of quantitative trait difference between two homozygouse lines.Genetics,1984,108:733~744
    Elston R C, J Stewart. The analysis of quantitative traits for simple genetic models from parental, F1andbackcross data [J].Genetics,1973,73(4):695~711
    Falconer D.S.,1981.Introduction to Quantitative Genetics. Longman: London and New York.
    Fehr W.R. Principles of cultivar development, I. Theory and Technique. New York:MaCmillan PublishingCompany1987
    Fehr, Robert Wayne. Principles of plant breeding. New York:: Wiley,1982
    Femando,R. L.,et al.,The finite polygenic mixed model:an alternative formulation for the mixed model ofinheritance[J]. Theor. Appl. Genet.1994,88:573~580
    Fisher R. A.&Hille Rislambers. Effect of environment and cultivar on source limitation to grain weight inwheat[J]. Aust.J. Agric. Res.1978,29:443~458
    Fisher R. A. The correlation between relatives on the supposition of Mendelian inheritance[J]. R. Soc.Trans.1918.52:399~433
    Griffing B. Ageneralize treatments of the using of diallele crosses in quantitative inheritance [J].Heredity1956.10:31~45
    GRIFFING B. Concept of general and specific combining ability in relation to diallel crossing systems[J]. Aust J Biol Sci,1956,9:463~493.
    Hayman B.I. The theory and analysis of diallel cross [J]. Genetics,1954,139:799~809.
    Hull F.G. Recurrent selection and specific combing ability in corn[J]. J Am Soc Agron37:134~145
    Johansen W., Dose Hybridisation increase fluetuating variability. Report of the third InternationalConference on Genetics1908
    Johnson V.A. Comparison of yield components and agronomic characteristics of four winter wheatvarieties differing in plant height [J]. Agron. J.1966,58:438~441
    Kearsey M J, Jinks J L. A general method of detecting additive, dominance and epistatic variation formetrical traits[J]: I. Theory. Heredity,1968,23:403~409
    Kearsey M J, Pooni H S, Syed N H. Genetics of quantitative traits in Arabidopsis thaliana. Heredity,2003,91:456~464
    Kheiralla AI, Whittingtom AJ. Genetic analysis of growth in tomato: the F1generation[J]. Ann Bot,1962,26(114):489~504.
    Kim Garland Campbell, Bergman C.J.&D.G. Gualbert Quantitative trait lociassociated with kernel traits insoft×hard wheat cross[J]. Crop Sci.1999,39:1184~1195
    Lelley. Wheat Breeding theory and Practice,1976
    Loisel P,B Goffinet,H Monod and G M De Oca, Detecting a major gene in an F2population[J].Biometrics,1994,50:512~516
    Mather K.and J L.jinks.l982.Biometries Geneties,3rd edition. London: Chapman and Hall Ltd.
    Mather. K Biometrical Genetics, Mathuen1949
    Mathias Regine,1980.A new dominant gene fo rmale sterility in rapeseed[J], Brassica nops.Z.Planzenzuchtig,94:170~173
    Matzinger D.F, MANN J.and CLARK COCKERHAM. Genetic Variability in Flue-Cured Varieties ofNicotiana tabacum. II. Dixie Bright244x Coker139[J]Crop Science;0011183X;1966,6(5):476~483
    Mclachlan, G. J. Mixture Models: Inference and Applications to Clustering[J]. Marcel Dekker, Inc.,1988
    Miura H, Parker B.B&Snape J.W The location of major genes associated with quantitative trait loci onchromosome arm5BL of wheat[J].Theoretical and Applied Genetics199285:197~204
    Morris R&Sears E.R. The cytogenetics of wheat and its relatives[J]. In, Wheat and WheatImprovement.American Society of Agronomy,1967(Quisenberry KS&Reitz LP eds):19~87
    Morton N.F and C.J MacLean.1974.Analysis of family resemblance. Ⅲ. Complex segregation ofquantitative traits[J]. Am J Hum Genet,26:489~503
    Muchow R C, Carberry D S1Enviromental control of phenedlingy and leaf growth in arropicallyaspected maize [J] Field Crop Research,1989,20:221~236
    Nass H.G., Reiser B. Grain filling Period and grain yield relationships in spring wheat[J]. Can. J. Plant Sci.,1975,55:673~678
    Peat W.E, Whittongton AJ. Genetic analysis of growth in tomoto: segerating generation[J]. Ann Bot,1965,29(116):735~744
    Rahman M.S. Genetic control of spikelet number in hexaploid wheat[J].Crop. Sci.197717:296~299
    Rajaram S. M. van Ginkel.1991Bread wheat breeding at CIMMYT: A globel perspective[J]. One of theCIMMTY publications.37~39
    Randhawa A S, Kah lon P S, Dhaliwal H S. Rate and duration of grain filling in whea[tJ]. Indian Journal ofGenetics&P lant Breeding,1992,52(2):161~163
    Riley R&Chapman V. The inheritance in wheat of crossability with rye.Genetical Research[J],Cambridge19679:259~267
    Robinson A. The effect of inbreeding on the variation due to recessive genes[J]. Genetics.195237:189~203
    Sears E.R. The aneuploids of common wheat.Missouri Agricultural Experiment Station ResearchBulletin.1954572:59~64
    Sears E.R. The sphaerococcum gene in wheat[J].Genetics194732:102~103
    Singh V. P. Genetics of kernel weight in wheat under different environments[J]. Wheat Inf. Serv.1985,60:21~25
    Spagnoletti Zeuli P. L. Germplasm resources in durum wheat: Extreme variants for some guantitativesspike characters in the USDA world collection[J].Wheat Inf. Serv.1988,67:30~34
    Sprague G. F. Corn and corn improvernent.Madison,Wisconsin, USA: American Society of Agronomy, Inc,1977,:305~354.
    Sprague, G. F. and Tatum, L. A., General vs Specific Combining Ability in Single Crosses of Corn [J]. J.Amer. Soc1.Agron.,1942(34):923~933.
    Svetka Koric小麦穗部高生产力的遗传基础[J]国外农学---麦类作物1983,3:15~18
    Unrau J.The use of monosomes and nullisomes in cytogenetic studies in common wheat[J].ScientificAgriculture195030:66~89
    Wernsman E. and Matzinger D.F. A Breeding Procedure for the Utilization of Heterosis inTobacco-Related Species Hybrids[J]. Crop Science;1966,6(3)298~305
    Worland A.J.&Law C.N Genetic analysis of chromosome2D of wheat I. The location of genes affectingheight, day-length insensitivity,hybrid dwarfism and yellow-rust resistance [J].Zeitschrift fürPflanzenzüchtung198696:331~345
    Wright S.,1921.Systems of mating.1. The biometric relations between parents and offspring[J]. Genetics6:111~134
    Yule G. U.1903. On the theory of inheritance of quantitative compound characters on the basis ofMendel’s laws---A preliminary note.Int. Conf. Genet.1906,3rd, Rep., W. Wilks, ed.,RoyalHorticultural Society, London. pp:140~142
    Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics [J].Genetics,1995,141(4):1633~1639

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700