用户名: 密码: 验证码:
黄土高寒区主要造林树种抗旱耐盐生理及耗水特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以黄土高寒区主要造林树种沙棘(Hippophae rhamnoides Linn.)、沙木蓼(Atraphaxis bracteata A. Los.)、银水牛果(Shepherdia argentea (Pursh) Nutt.)、白桦(Betula platyphylla Suk.)、华北落叶松(Larix principis-rupprechtii Mayr.)和青海云杉(Picea crassifolia Kom.)为试验材料,通过系统研究不同干旱胁迫、盐胁迫条件下植物的生长形态、叶片水分和光合生理响应以及林木蒸腾耗水规律,深入探讨该区主要造林树种的抗旱耐盐机理及耗水特性,为不同立地条件下植被恢复中抗逆树种的筛选及栽培奠定基础,进而为当地的生态环境建设及退耕还林还草工程提供科学的理论依据。
     本文主要得出以下结论:
     (1)黄土高寒区主要造林树种抗旱特性
     干旱胁迫对沙棘、白桦和银水牛果三种幼苗的株高生长、单株叶面积、生物量均产生了显著抑制,且干旱胁迫程度越高,下降幅度越大。总体来说,白桦的生长及生物量对干旱胁迫反应最剧烈,沙木蓼次之,银水牛果和沙棘的表现最好。
     干旱胁迫下沙棘和银水牛果幼苗光合作用的降低在W1(>22.7%)至W3(7.6%-15.1%)处理下为气孔限制,在W4(<7.6%)处理下为非气孔限制因素所致。沙木蓼幼苗光合作用的降低在W1和W2处理下为气孔限制,在W3和W4处理下为非气孔限制因素所致。而白桦幼苗光合作用的降低在W2(15.1%~22.7%)处理下就转为非气孔限制。
     (2)黄土高寒区主要造林树种耐旱机理判别
     萎蔫试验中,白桦土壤水分下降最快,在萎蔫试验30天、土壤含水量降低至5.75%时,出现严重的萎蔫现象。沙棘的土壤水分下降最慢,且忍耐干旱的时间最久,在45天、土壤含水量降低至3.85%时,才出现萎蔫。沙木蓼和银水牛果在40天时出现萎蔫。由此判断,白桦的耐旱性最弱,银水牛果和沙木蓼的耐旱性强,沙棘的耐旱性最强。根据耗水指数排序,耐旱性强弱为:沙棘>银水牛果>沙木蓼>白桦。
     四种植物的清晨叶水势与土壤含水量的关系可以应用y=a+b/x拟合;叶水势与土壤水势的关系可以应用y=axb拟合。利用土壤水分和土壤水势的两种判别模型,四种植物的判别结果一致,均为低水势忍耐脱水耐旱树种。
     (3)黄土高寒区主要造林树种耐盐生理
     沙棘和白桦幼苗叶片的光合能力即使在最低浓度下(200 mmol·L-1 NaCl)也受到了强烈的抑制,而沙木蓼尤其是银水牛果光合能力仅在最高盐浓度下(600 mmol·L-1 NaCl)受到明显的抑制。从整体表现看,银水牛果的耐盐性最强,沙木蓼次之,沙棘和白桦最弱。盐胁迫下,四树种叶片叶绿素含量均显著下降,植物叶片Na+含量显著增加,而K+、Ca2+的吸收受到抑制,造成植物体内离子不平衡。
     本研究进行了30d的盐胁迫持续观测,结果表明:白桦幼苗在400 mmol·L-1 NaCl处理23 d、600 mmol·L-1 NaCl处理18 d时全部死亡。沙棘幼苗在600 mmol·L-1 NaCl处理22 d时全部死亡。银水牛果和沙木蓼即使在最高盐浓度处理30 d时,叶片特性无明显变化。因此,银水牛果和沙木蓼都可以忍耐600 mmol·L-1 NaCl长达30d左右属于极其耐盐的树种。
     植物在短期盐胁迫时,气孔因素起主要作用,而受长期盐胁迫时,非气孔因素(如叶绿素含量降低、离子失衡、光合机构受损等导致的光合能力的下降)逐渐成为限制光合作用的主要因素,而且树种耐盐性越弱,NaCl浓度越高,由气孔限制转为非气孔限制的时间越早。
     (4)黄土高寒区主要造林树种耗水特性
     青海云杉、华北落叶松两树种各月份液流速率呈明显的节律性。各树种液流通量变化趋势与液流速率一致,但因胸径差异,值差异较大。整个生长季,青海云杉1、青海云杉2、华北落叶松和沙棘耗水总量分别为449.46、3708.65、663.33和75.94 kg。
     四树种边材液流变化与主要环境因子之间存在显著的相关性,青海云杉、华北落叶松和沙棘三树种与太阳辐射、空气温度、风速之间呈极显著正相关,与相对湿度呈极显著负相关,可见树木边材液流受各种气象因子的综合影响。
With main plantation tree species in high-cold region of Loess Plateau:Hippophea rhamnoides Linn., Atraphaxis bracteata A. Los., Shepherdia argentea (Pursh) Nutt., Betula platyphylla Suk., Larix principis-rupprechtii Mayr. and Picea crassifolia Kom. as test materials, this paper comprehensively studied the physiological responses of plant growth, leaf water relations and photosynthetic characteristics to draught and salt stress, as well as the laws of water consumption of these tree species. The aim of this paper was to deeply analyzed the drought and salinity resistant physiology and water consumption characteristics of the four main plantation tree species in order to pave the way for screening and cultivation of adverse-resistant plants during vegetation recovery period in different site conditions and also to provide a scientific theoretical foundation for the ecological environment construction and returning farmland to forests or grassland project. By means of research, main conclusions are elicited as follows:
     (1) Drought resistant characters of the four main plantation tree species in high-cold region of Loess Plateau
     Drought stress significantly decreased stem height, leaf area per plant, biomass yield of H. rhamnoides, B. platyphylla and S. argentea seedlings and the decrement was greater under higher drought stress. Overall, the growth and biomass yield of B. platyphylla seedlings were most sensitive to drought stress, and next was A. bracteata, H. rhamnoides and S. argentea seedlings could well perform under drought stress.
     Drought-induced inhibition of photosynthesis in the leaves of H. rhamnoides and S. argentea seedlings was attributed to stomatal limitations under W1 (> 22.7%), W2 (15.1%-22.7%) and W3 (7.6%-15.1%) treatments, and attributed to non-stomatal factors under W4 (< 7.6%) treatment. The decrease of photosynthesis in the leaves of A. bracteata seedlings was caused by stomatal limitations under W1 and W2 treatments, and caused by non-stomatal factors under W3 and W4 treatments. In contrast, non-stomatal limitations became a leading factor in the decline of photosynthesis in the leaves of B. platyphylla seedlings from W2 to W4 treatments.
     (2) Discrimination results of drought tolerant mechanism of the four tree species
     In the wilting experiment, the largest decline of soil relative water content of B. platyphylla seedlings was found and serious wilting symptoms occurred on 30 d when soil relative water content dropped to 5.75%. H. rhamnoides seedlings had the highest enduring capability to drought stress compared to other three tree species and wilting symptoms were obtained on 45 d when soil relative water content dropped to 3.85%. Meanwhile, A. bracteata and S. argentea seedlings could endure drought stress for 40 days. According to soil water depleted index, and the magnitude of drought tolerance in decreasing order was H. rhamnoides> S. argentea> A. bracteata> B. platyphylla.
     Relationships between leaf water potential of the seedlings and soil water content and soil water potential were studied in detail. For the optimum effect, this relationship can be expressed by regression equation:y= a+blx for leaf water potential and soil water content and regression equation:y= axb for leaf water potential and soil water potential. Mechanism and types of drought tolerance of tree species can be recognized using the existing models and the discrimination results of drought tolerant mechanism of the four tree species are the same, i.e. drought tolerance by dehydration tolerance at low tissue water potential.
     (3) Salt resistant physiology of the four main plantation tree species in high-cold region of Loess Plateau
     Significant salt-induced suppression of leaf photosynthetic capacity of A. bracteata and S. argentea seedlings appeared only at the highest salinity level (600 mmol·L-1 NaCl solution), whereas rapid decline of photosynthesis of H. rhamnoides and B. platyphylla seedlings was found even at the lowest salinity level (200 mmol·L-1 NaCl solution). Compared with the control, the content of chlorophyll a (Chla), chlorophyll b (Chlb), chlorophyll (Chi) and carotenoid (Car) decreased significantly under salt stress. Salinity also induced an excessive accumulation of Na+ and a severe inhibition of K+ and Ca2+ in the leaves of plants, consequently leading to ionic imbalance. On the whole, the magnitude of salinity tolerance in decreasing order was S. argentea> A. bracteata> H. rhamnoides> B. platyphylla.
     This experiment was performed for 30 d under native condition in the open air and our results showed that, morphological symptoms of salt injury in H. rhamnoides seedlings occurred on the 10th day, and all seedlings were dead on the 20th day under 600 mmol-L-1 NaCl solution. As for B. platyphylla seedlings, all seedlings were dead on the 23th day under 400 mmol·L-1 NaCl concentration and on the 18th day under 400 mmol·L-1 NaCl. In contrast, S. argentea and A. bracteata seedlings could survive at the highest salinity level (600 mmol·L-1 NaCl solution) for above 30 days without obvious change of leaf characters, indicating that the two species are highly tolerant to salinity.
     Sanility-induced inhibition of photosynthesis in the leaves was mainly attributed to the stomatal efficient closure predetermined by a low water potential in leaves (i.e. stomatal limitations) in short term, and was mainly due to non-stomatal limitations in long run, including disorder of physiological metabolic of leaves, suppression of chloroplast capacity to fix CO2 caused by severe cellular dehydration, photosynthetic capacity decline caused by degradation of the photosynthetic pigment, ionic imbalance and toxicity, and so on. Moreover, the higher NaCl concentration, the earlier time changing from stomatal limitations into non-stomatal limitations.
     (4) Water consumption characteristics of the four main plantation tree species in high-cold region of Loess Plateau
     Sap flow fluctuations of H. rhamnoides, L. principis-rupprechtii and P. crassifolia were measured continuously with Granier's thermal dissipation probe (TDP). It was obtained that sap flow velocity of L. principis-rupprechtii and P. crassifolia had circadian rhythmicity during growing season. Sap flow flux of these three species had the same change rule as sap flow velocity but there were remarkable differences in value of sap flow flux among species because of the breast height. Total water consumption of the tree species during growing season was 449.46 kg for P. crassifolia No.1,3708.65 kg for P. crassifolia No.2,663.33 kg for L. principis-rupprechtii and 75.94 kg for H. rhamnoides, respectively.
     Correlation analysis between meteorological factors and sap flow velocity of different plants indicated that sap flow velocity was closely related to the fluctuation of meteorological factors. Sap flow velocity had an obviously positive correlation with solar radiation, air temperature and wind speed, but it had a highly negative correlation with relative humidity, indicating that sap flow velocity of tree species was comprehensively impacted by meteorological factors.
引文
[1]卜崇峰,刘国彬,许明祥.陕北黄土区狼牙刺水势研究[J].西北植物学报,2003,23(8):1393-1397.
    [2]曹帮华.刺槐抗旱抗盐特性研究[D].北京林业大学,2005.
    [3]陈静,秦景,贺康宁,等.水分胁迫对银水牛果生长及光合气体交换参数的影响[J].西北植物学报,2009,29(8):1649-1655.
    [4]单立山,张希明,王有科,等.水分条件对塔里木沙漠公路防护林植物幼苗生长及生物量分配的影响[J].科学通报,2008,53(增刊Ⅱ):82-88.
    [5]党宏忠,张劲松,赵雨森.应用热扩散技术对柠条锦鸡儿主根液流速率的研究[J].林业科学,2010,46(3):29-36.
    [6]邓东周,范志平,王红,等.林木蒸腾作用测定和估算方法[J].生态学杂志,2008,27(6):1051-1058.
    [7]段玉玺,秦景,贺康宁,等.白榆、新疆杨液流动态比较研究[J].中国沙漠,2008,28(6):1136-1144.
    [8]付爱红,陈亚宁,李卫红.新疆塔里木河下游柽柳茎水势变化与影响因子研究[J].干旱区地理,2007,30(1):108-114.
    [9]巩玉霞,贺康宁,朱艳艳,等.黄土半干旱区元宝枫叶片气体交换参数对土壤水分的响应[J].水土保持研究,2007,14(1):242-245.
    [10]郭连生.八种针阔叶幼树清晨叶水势与土壤含水量的关系及其抗旱性研究[J].生态学杂志,1992,11(2):4-7.
    [11]郭孟霞,毕华兴,刘鑫,等.树木蒸腾耗水研究进展[J].中国水土保持科学,2006,4(4):114-120.
    [12]郭忠升,邵明安.半干旱区人工林草地土壤旱化与土壤水分植被承载力[J].生态学报,2003,23(8):1640-1647.
    [13]韩磊,贺康宁,芦新建,等.青海高寒半干旱区蒙古莸叶水势变化及其与环境因素的关系[J].水土保持通报,2008,28(6):1-5.
    [14]韩亚琦,唐宇丹,张少英,等.盐胁迫抑制槲栎2变种光合作用的机理研究[J].西北植物学报,2007,27(3):583-587.
    [15]何海燕,许国辉,马国强,等.青海东部主要造林树种的水分生理研究[J].西北林学院学报,2003,18(2):9-12.
    [16]何明珠,王辉,陈智平.荒漠植物持水力研究[J].中国沙漠,2006,26(3):403-408.
    [17]何维明.水分囚素对沙地柏实生苗水分和生长特征的影响[J].植物生态学报,2001,25(1):11-16.
    [18]贺康宁.黄土半干旱区集水造林的水分生产潜力研究[D].北京林业大学,2000.
    [19]贺康宁,田阳,张光灿.刺槐日蒸腾过程的Penman-Monteith方程模拟[J].生态学报,2003a,23(2):251-258.
    [20]贺康宁,张光灿,田阳,等.黄土半干旱区集水造林条件下林木生长适宜的土壤水分环境[J].林业科学,2003b,39(1):10-16.
    [21]贺永元.青海东部地区主要树种选择及造林技术[J].青海农林科技,2005,1):26-28.
    [22]胡建忠,周心澄,李文忠,等.退耕地青海云杉人工林土壤抗冲性试验研究[J].水土保持学报,2004,18(6):6-10.
    [23]胡月楠.黄土高寒区几种灌木树种基于SPAC系统的耐旱耐盐性研究[D].北京林业大学,2008b.
    [24]胡月楠,贺康宁,巩玉霞,等.库布齐沙地杨柴叶水势的研究[J].西部林业科学,2008a,37(3):66-71.
    [25]姜小丽,秦毓茜.植物的盐害及提高植物耐盐性的途径[J].安徽农业科学,2007,35(19):5697-5698.
    [26]景茂,曹福亮,汪贵斌,等.土壤水分含量对银杏生长及生物量分配的影响[J].南京林业大学学报:自然科学版,2005,29(3):5-8.
    [27]康绍忠,刘晓明,熊运章.土壤-植物-大气连续体水分传输理论及其应用[M].水利电力出版社,1994.
    [28]孔丽娟.一种优良的固沙植物——沙木蓼[J].林业科技通讯,2001,10:39.
    [29]李海涛,陈灵芝.用于测定树干木质部蒸腾液流的热脉冲技术研究概况[J].植物学通报,1997,14(4):24-29.
    [30]李合生.现代植物生理学[M].北京:高等教育出版社,2002.
    [31]李吉跃.植物耐旱性及其机理[J].北京林业大学学报,1991,13(3):92-100.
    [32]李吉跃,张建国.北方主要造林树种耐旱机理及其分类模型的研究(Ⅰ):苗木叶水势与土壤含水量的关系及分类[J].北京林业大学学报,1993,15(3):1-11.
    [33]李景生,黄韵珠.浅述植物的耐盐生理[J].植物学通报,1995,12(3):15-19.
    [34]李怒云,龙怀玉.植树造林与21世纪我国盐渍土开发利用的关系[J].北京林业大学学报,2000,22(3):1-5.
    [35]李倩中,苏家乐,陈尚平,等.三种槭树科植物光合特性口变化研究[J].安徽农学通报,2007,13(6):20-21.
    [36]李世荣,周心澄,李福源,等.青海云杉和华北落叶松混交林林地蒸散和水量平衡研究[J].水土保持学报,2006,20(2):118-121.
    [37]李守国,郑怀舟,陈金梅,等.环境因子对树干液流的影响[J].安徽农业科学,2008,36(25):10758-10759.
    [38]李伟,曹坤芳.干旱胁迫对不同光环境下的三叶漆幼苗光合特性和叶绿素荧光参数的影响[J]. 西北植物学报,2006,26(2):266-275.
    [39]李伟强,刘小京,赵可夫,等.NaCl胁迫下3种盐生植物生长发育及离子在不同器官分布特性研究[J].中国生态农业学报,2006,14(2):49-52.
    [40]李卫国,杨吉华,冀宪领,等.不同桑树品种水分生理特性的研究[J].蚕业科学,2003,29(1):24-27.
    [41]李文华,刘广权,马松涛,等.干旱胁迫对苗木蒸腾耗水和生长的影响[J].西北农林科技大学学报:自然科学版,2004,32(1):61-65.
    [42]李小刚.含盐量对土壤的水汽吸附及土壤水能量状态的影响[J].土壤通报,2001,32(6):245-249.
    [43]李雪华,蒋德明,刘志民.山杏幼苗水分生理生态特性及凋萎湿度的研究[J].干旱区资源与环境,2004,18(5):168-171.
    [44]廖岩,陈桂珠.三种红树植物对盐胁迫的生理适应[J].生态学报,2007,27(6):2208-2214.
    [45]廖岩,彭友贵,陈桂珠.植物耐盐性机理研究进展[J].生态学报,2007,27(5):2077-2089.
    [46]刘奉觉,郑世锴,巨关升,等.树木蒸腾耗水测算技术的比较研究[J].林业科学,1997,33(2):117-126.
    [47]刘广全,赵士洞,王浩,等.锐齿栎林个体光合器官生长与营养季节动态[J].生态学报,2001,21(6):883-889.
    [48]刘会超,孙振元,彭镇华NaCl胁迫对五叶地锦生长及某些生理特性的影响[J].林业科学,2004,40(6):63-67.
    [49]刘静.黄土高寒区三种灌木树种基于SPAC系统的耐旱性研究[D].北京林业大学,2010.
    [50]刘敏.青海黄土高寒区主要生态树种耗水特性研究[D].北京林业大学,2009.
    [51]刘胜,贺康宁.基于Penman-Monteith模型的林木日蒸腾模拟[J].西北林学院学报,2006,21(3):15-20.
    [52]卢桂宾,赵雨明.晋西北旱坡地枣树蒸腾作用与萎蔫现象研究[J].山西林业科技,2002,(3):1-6.
    [53]陆光明,孟平,马秀玲,等.林—果—农复合系统中植物蒸腾及系统蒸散的研究[J].中国农业大学学报,1996,1(5):103-109.
    [54]陆开形.盐胁迫对大豆光合作用和抗氧化系统的影响及其调控机制[D].浙江大学生命科学学院,2008.
    [55]陆平,Urbab Laurent,赵平.应用Granier热消散探针(TDP)法测定树木的木质部液流:理论与实践(英文)[J].植物学报,2004,46(6):631-646.
    [56]骆建霞,史燕山,吕松,等.3种木本地被植物耐盐性的研究[J].西北农林科技大学学报:自然科学版,2005,33(12):121-124.
    [57]马传明,靳孟贵.西北地区盐渍化土地开发中存在问题及防治对策[J].水文,2007,27(1):78-81.
    [58]马玲,赵平,饶兴权,等.乔木蒸腾作用的主要测定方法[J].生态学杂志,2005a,24(1):88-96.
    [59]马玲,赵平,饶兴权,等.马占相思树干液流特征及其与环境因子的关系[J].生态学报,2005b,25(9):2145-2151.
    [60]马履一,王华田,林平.北京地区几个造林树种耗水性比较研究[J].北京林业大学学报,2003,25(2):1-7.
    [61]毛桂莲,许兴,杨涓.NaCl和Na2CO3对枸杞的胁迫效应[J].干旱地区农业研究,2004,22(2):100-104.
    [62]孟康敏.绒毛白蜡等树种耐盐力研究[J].辽宁林业科技,1999,(3):42-44.
    [63]潘瑞炽,董愚得.植物生理学[M].北京:高等教育出版社,1995.
    [64]蔡伟,谭浩,翟衡.干旱胁迫对不同葡萄砧木光合特性和荧光参数的影响[J].应用生态学报,2006,17(5):835-838.
    [65]秦景,董雯怡,贺康宁,等.盐胁迫对沙棘幼苗生长与光合生理特征的影响[J].生态环境学报,2009b,18(3):1031-1036.
    [66]秦景,贺康宁,刘硕,等.青海省大通县退耕还林区主要植物群落物种组成与多样性[J].浙江林学院学报,2010,27(3):410-416.
    [67]秦景,贺康宁,谭国栋,等.NaCl胁迫对沙棘和银水牛果幼苗生长及光合特性的影响[J].应用生态学报,2009c,20(4):791-797.
    [68]秦景,贺康宁,朱艳艳.库布齐沙漠几种常见灌木光合生理特征与土壤含水量的关系[J].北京林业大学学报,2009a,31(1):37-43.
    [69]上官周平,邵明安.改善旱区作物水分利用的生理调控机制[J].水利学报,1999,10:33-37.
    [70]沈国舫.生态环境建设与水资源的保护和利用[J].中国水土保持,2001,1(1):4-8.
    [71]史长莹.流域水资源可持续利用评价方法及其应用研究[D].西安理工大学,2009.
    [72]史晓霞,李京,陈云浩,等.基于CA模型的土壤盐渍化时空演变模拟与预测[J].农业工程学报,2007,23(1):6-12.
    [73]孙景宽,张文辉,刘新成.干旱胁迫对沙枣和孩儿拳头的生理特性的影响[J].西北植物学报,2008,28(9):1868-1874.
    [74]孙鹏森,马履一.油松树干液流的时空变异性研究[J].北京林业大学学报,2000,22(5):1-6.
    [75]孙书存,陈灵芝.辽东栎幼苗对干旱和去叶的生态反应的初步研究[J].生态学报,2000,20(5):893-897.
    [76]唐道锋,贺康宁,朱艳艳,等.沙棘苗木蒸腾特性与影响因子研究[J].水土保持应用技术,2006,(6):14-16.
    [77]田大伦,罗勇,项文化,等.樟树幼树光合特性及其对CO2浓度和温度升高的响应[J].林业科学,2004,40(5):88-92.
    [78]田晶会,贺康宁,王百田,等.黄土半干旱区侧柏气体交换和水分利用效率日变化研究[J].北京林业大学学报,2005a,27(1):42-46.
    [79]田晶会,贺康宁,王百田,等.黄土半干旱区侧柏蒸腾作用及其与环境因子的关系[J].北京林业大学学报,2005b,27(3):53-56.
    [80]汪贵斌,曹福亮.土壤盐分及水分含量对落羽杉光合特性的影响[J].南京林业大学学报(自然科学版),2004,28(3):14-18.
    [81]王安志,裴铁璠.森林蒸散测算方法研究进展与展望[J].应用生态学报,2001,12(6):933-937.
    [82]王鹤松,张劲松,孟平,等.华北石质山区杜仲人工林蒸腾特征及水分供求关系[J].林业科学研究,2008,21(4):475-480.
    [83]王华田,马履一,孙鹏森.油松、侧柏深秋边材木质部液流变化规律的研究[J].林业科学,2002,38(5):31-37.
    [84]王华田,马履一,徐军亮.油松人工林SPAC水势梯度时空变化规律及其对边材液流传输的影响[J].植物生态学报,2004,28(5):637-643.
    [85]王孟本,李洪建.黄土高原人工林水分生态研究[M].北京:中国林业出版社,2001.
    [86]王淼,李秋荣,郝占庆,等.土壤水分变化对长白山主要树种蒙古栎幼树生长的影响[J].应用生态学报,2004,15(10):1765-1770.
    [87]王韶唐.植物抗旱的生理机理[M].植物生理生化进展,北京:科学出版社,1983:2,120-133.
    [88]王树凤,陈益泰,孙海菁,等.盐胁迫下弗吉尼亚栎生长和生理生化变化[J].生态环境,2008,17(2):747-750.
    [89]王艳,荣一,赵利清,等.温带半干旱地区草坪草与主要杂草抗旱性的比较研究[J].生态学杂志,2005,(1):1-5.
    [90]韦莉莉,张小全,侯振宏,等.杉木苗木光合作用及其产物分配对水分胁迫的响应[J].植物生态学报,2005,29(3):394-402.
    [91]韦小丽,徐锡增,朱守谦.水分胁迫下榆科3种幼苗生理生化指标的变化[J].南京林业大学学报:自然科学版,2005,29(2):47-50.
    [92]魏天兴,朱金兆.晋西南黄土区刺槐油松林地耗水规律的研究[J].北京林业大学学报,1998,20(4):36-40.
    [93]魏天兴,朱金兆.林分蒸散耗水量测定方法述评[J].北京林业大学学报,1999,21(3):85-91.
    [94]魏霞,李守中,郑怀舟,等.叶片气体交换和叶绿素荧光在植物逆境生理研究中的应用[J].福建师范大学学报(自然科学版),2007,4(4):124-128.
    [95]吴林,李亚东.水分逆境对沙棘生长和叶片光合作用的影响[J].吉林农业大学学报,1996,18(4):45-49.
    [96]吴永波,薛建辉.盐胁迫对3种白蜡树幼苗生长与光合作用的影响[J].南京林业大学学报(自然科学版),2002,26(3):19-22.
    [97]武德,曹帮华,刘欣玲,等.盐碱胁迫对刺槐和绒毛白蜡叶片叶绿素含量的影响[J].西北林学院学报,2007,22(3):51-54,70.
    [98]武思宏,毕华兴,朱清科,等.晋西黄土区主要造林树种耗水量测算与分析[J].干早区研究, 2006,23(4):550-557.
    [99]夏仁学.测定作物叶面积的方法[J].植物生理学通讯,1987,5:58-60.
    [100]夏阳,林杉,张福锁,等.叶片淋洗对盐胁迫下玉米生长和矿质营养的影响研究[J].生态学报,2001,21(4):155-159.
    [101]肖春旺,周广胜,赵景柱.不同水分条件对毛乌素沙地油蒿幼苗生长和形态的影响[J].生态学报,2001,21(12):2136-2140.
    [102]肖冬梅,王淼,姬兰柱.水分胁迫对长白山阔红松林主要树种生长及生物量分配的影响[J].生态学杂志,2004,23(5):93-97.
    [103]谢会成,朱西存.水分胁迫对栓皮栎幼苗生理特性及生长的影响[J].山东林业科技,2004,(2):6-7.
    [104]谢寅峰,沈惠娟,罗爱珍,等.南方7个造林树种幼苗抗旱生理指标的比较[J].南京林业大学学报(自然科学版),1999,23(4):13-16.
    [105]熊伟,王彦辉.宁南山区华北落叶松人工林蒸腾耗水规律及其对环境因子的响应[J].林业科学,2003,39(2):1-7.
    [106]徐炳成,山仑,李凤民.半干旱黄土丘陵区五种植物的生理生态特征比较[J].应用生态学报,2007,18(5):990-996.
    [107]徐军亮,马履一,王华田.油松人工林SPAC水势梯度的时空变异[J].北京林业大学学报,2003,25(5):1-5.
    [108]徐军亮,马履一,阎海平.油松树干液流进程与太阳辐射的关系[J].中国水土保持科学,2006,4(2):103-107.
    [109]徐俊增,彭世彰,魏征,等.节水灌溉水稻叶片胞间CO2浓度及气孔与非气孔限制[J].农业工程学报,2010,26(7):76-80.
    [110]许大全.气孔不均匀关闭与光合作用的非气孔限制[J].植物生理学通讯,1995,31(4):246-252.
    [111]许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244.
    [112]许祥明,叶和春,李国凤.植物抗盐机理的研究进展[J].应用与环境生物学报,2000,6(4):379-387.
    [113]颜景红,高扬.提高辽西半干旱地区造林成活率的主要措施[J].吉林林业科技,2003,32(2):51-52.
    [114]杨建伟,梁宗锁,韩蕊莲,等.土壤干旱对油松生长及水分利用的影响[J].西北农林科技大学学报:自然科学版,2004,32(4):88-92.
    [115]杨敏生,梁海永,王进茂,等.水分胁迫下白杨双交杂种无性系苗木生长研究[J].河北农业大学学报,2002,25(4):1-6.
    [116]杨维西.试论我国北方地区人工植被的土壤干化问题[J].林业科学,1996,32(1):78-85.
    [117]杨燕,刘庆,林波,等.不同施水量对云杉幼苗生长和生理生态特征的影响[J].生态学报, 2005,(9):2152-2158.
    [118]于洋,文仕知,秦景,等.青海云杉、华北落叶松边材液流变化规律及其与气象因子的关系[J].中南林业科技大学学报:自然科学版,2009,29(6):18-23.
    [119]于占辉,陈云明,杜盛.乔木蒸腾耗水量研究方法述评与展望[J].水土保持研究,2009,16(3):281-285.
    [120]喻方圆,徐锡增.植物逆境生理研究进展[J].世界林业研究,2003,16(5):6-11.
    [121]云建英,杨甲定,赵哈林.干旱和高温对植物光合作用的影响机制研究进展[J].西北植物学报,2006,26(3):641-648.
    [122]翟洪波,李吉跃,赵义亭,等.SPAC中油松栓皮栎混交林水分特征与气体交换[J].北京林业大学学报,2004,26(1):30-34.
    [123]张川红,沈应柏,尹伟伦,等.盐胁迫对几种苗木生长及光合作用的影响[J].林业科学,2002a,38(2):27-31.
    [124]张川红,沈应柏,尹伟伦.盐胁迫对国槐和核桃幼苗光合作用的影响[J].林业科学研究,2002b,15(1):41-46.
    [125]张光灿,刘霞,贺康宁,等.金矮生苹果叶片气体交换参数对土壤水分的响应[J].植物生态学报,2004,28(1):66-72.
    [126]张劲松,孟平,尹昌君.杜仲蒸腾强度和气孔行为的初步研究[J].林业科学,2002,38(2):34-37.
    [127]张立杰,蒋志荣.青海云杉种群分布格局沿海拔梯度分形特征的变化[J].西北林学院学报,2006,21(2):64-66.
    [128]张淑红,张恩平,庞金安,等.NaCl胁迫对黄瓜幼苗光合特性及水分利用率的影响[J].中国蔬菜,2005,(1):11-13.
    [129]张卫强.黄土半干旱区主要树种光合生理与耗水特性研究[D].北京林业大学,2006.
    [130]张小全,徐德应.杉木中龄林不同部位和叶龄针叶光合特性的日变化和季节变化[J].林业科学,2000,36(3):19-26.
    [131]张小由,龚家栋,周茂先,等.应用热脉冲技术对胡杨和柽柳树干液流的研究[J].冰川冻土,2003,25(5):585-590.
    [132]张亚杰,冯玉龙.不同光强下生长的两种榕树叶片光合能力与比叶重、氮含量及分配的关系[J].植物生理与分子生物学学报,2004,30(3):269-276.
    [133]赵平,饶兴权,马玲,等.基于树干液流测定值进行尺度扩展的马占相思林段蒸腾和冠层气孔导度[J].植物生态学报,2006,30(4):655-665.
    [134]郑佳丽,高国雄,王荣秀,等.北川河流域退耕还林还草地主要植物群落物种多样性研究[J].水土保持研究,2006,13(4):101-103.
    [135]郑淑霞,上官周平.黄土高原油松和刺槐叶片光合生理适应性比较[J].应用生态学报,2007,18(1):16-22.
    [136]朱俊凤.西部大开发生态环境建设之鉴[M].北京:中国林业出版社,2000.
    [137]朱维琴,吴良欢,陶勤南.作物根系对干旱胁迫逆境的适应性研究进展[J].土壤与环境,2002,11(4):430-433.
    [138]朱艳艳,贺康宁,唐道锋,等.青海大通几种主要灌木适宜土壤水分条件研究[J].干旱地区农业研究,2007,25(4):119-122.
    [139]Adams P, Thomas J C, Vernon D M, et al. Distinct cellular and organismic responses to salt stress[J]. Plant and Cell Physiology,1992,33(8):1215-1223.
    [140]Alarcon J J, Domingo R, Green S R, et al. Sap flow as an indicator of transpiration and the water status of young apricot trees[J]. Plant and Soil,2000,227(1):77-85.
    [141]Ali B, Hayat S, Fariduddin Q, et al.24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea[J]. Chemosphere,2008,72(9):1387-1392.
    [142]Allen R G, Pruitt W O, Wright J L, et al. A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method[J]. Agricultural Water Management,2006,81(1-2):1-22.
    [143]Allen S J. Measurement and estimation of evaporation from soil under sparse barley crops in northern Syria[J], Agricultural and Forest Meteorology,1990,49(4):291-309.
    [144]Arnon D I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris[J]. Plant Physiology,1949,24(1):1-15.
    [145]Ashraf M, Mukhtar N, Rehman S, et al. Salt-induced changes in photosynthetic activity and growth in a potential medicinal plant Bishop's weed (Ammi majus L.)[J]. Photosynthetica,2004, 42(4):543-550.
    [146]Ashraf M, Shahbaz M. Assessment of genotypic variation in salt tolerance of early CIMMYT hexaploid wheat germplasm using photosynthetic capacity and water relations as selection criteria[J]. Photosynthetica,2003,41(2):273-280.
    [147]Bacelar E A, Moutinho-Pereira J M, Gon Alves B C, et al. Changes in growth, gas exchange, xylem hydraulic properties and water use efficiency of three olive cultivars under contrasting water availability regimes[J]. Environmental and Experimental Botany,2007,60(2):183-192.
    [148]Badr M A, Hussein S D A. Yield and fruit quality of drip-irrigated cantaloupe under salt stress conditions in an arid environment[J]. Australian Journal of Basic and Applied Sciences,2008, 2(1):141-148.
    [149]Bastias E I, Gonzalez-Moro M B, Gonzalez-Murua C. Zea mays L. amylacea from the Lluta Valley (Arica-Chile) tolerates salinity stress when high levels of boron are available[J]. Plant and Soil,2004,267(1-2):73-84.
    [150]Bethke P C, Drew M C. Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity[J]. Plant Physiology, 1992,99(1):219-226.
    [151]Blanco F F, Folegatti M V. Estimation of leaf area for greenhouse cucumber by linear measurements under salinity and grafting[J]. Scientia Agricola,2005,62(4):305-309.
    [152]Blanke M M, Cooke D T. Effects of flooding and drought on stomatal activity, transpiration, photosynthesis, water potential and water channel activity in strawberry stolons and leaves[J]. Plant Growth Regulation,2004,42(2):153-160.
    [153]Blumwald E, Aharon G S, Apse M P. Sodium transport in plant cells[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2000,1465(1-2):140-151.
    [154]Boast C W. A "micro-lysimeter" method for determining evaporation from bare soil:description and laboratory evaluation[J]. Soil Science Society of America Journal,1982,46(4):689-696.
    [155]Boesten J, Stroosnijder L. Simple model for daily evaporation from fallow tilled soil under spring conditions in a temperate climate[J]. Netherlands Journal of Agricultural Science,1986,34(75-90.
    [156]Bormann H, Diekkruger B, Richter O. Effects of data availability on estimation of evapotranspiration[J]. Physics and Chemistry Of The Earth,1996,21(3):171-175.
    [157]Borsani O, Cuartero J, Fernandez J A, et al. Identification of two loci in tomato reveals distinct mechanisms for salt tolerance[J]. Plant Cell,2001,13(4):873-887.
    [158]Brown S L, Schroeder P, Kern J S. Spatial distribution of biomass in forests of the eastern USA[J]. Forest Ecology and Management,1999,123(1):81-90.
    [159]Caird M A, Richards J H, Donovan L A. Nighttime stomatal conductance and transpiration in C3 and C4 plants[J]. Plant Physiology,2007,143(1):4-10.
    [160]Camillo P J, Gurney R J, Schmugge T J. A soil and atmospheric boundary layer model for evapotranspiration and soil moisture studies[J]. Water Resources Research,1983,19(2):371-380.
    [161]Castillo J M, Rubio-Casal A E, Redondo S, et al. Short-term responses to salinity of an invasive cordgrass[J]. Biological Invasions,2005,7(1):29-35.
    [162]Cavusoglu K, Kilic S, Kabar K. Effects of some plant growth regulators on stem anatomy of radish seedlings grown under saline (NaCl) conditions[J]. Plant, Soil and Envrionment,2008, 54(10):428-433.
    [163]Chartzoulakis K, Patakas A, Kofidis G, et al. Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars[J]. Scientia Horticulturae,2002,95(1-2): 39-50.
    [164]Cheeseman J M. Mechanisms of salinity tolerance in plants[J]. Plant Physiology,1988,87(3): 547-550.
    [165]Chen W, Zou D, Guo W, et al. Effects of salt stress on growth, photosynthesis and solute accumulation in three poplar cultivars[J]. Photosynthetica,2009,47(3):415-421.
    [166]Cienciala E, Kucera J, Malmer A. Tree sap flow and stand transpiration of two Acacia mangium plantations in Sabah, Bornco[J]. Journal of Hydrology,2000,236(1-2):109-120.
    [167]Clements F E, Martin E V. Effect of soil temperature on transpiration in Helianthus annuus[J]. Plant Physiology,1934,9(3):619-630.
    [168]Daamen C C, Simmonds L P, Wallace J S, et al. Use of microlysimeters to measure evaporation from sandy soils[J]. Agricultural and Forest Meteorology,1993,65(3-4):159-173.
    [169]Debez A, Hamed K B, Grignon C, et al. Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima[J]. Plant and Soil,2004,262(1-2):179-189.
    [170]Decker J P, Wien J D. Transpirational surges in Tamarix and Eucalyptus as measured with an infrared gas analyzer[J]. Plant Physiology,1960,35(3):340-343.
    [171]Dickmann D I, Liu Z, Nguyen P V, et al. Photosynthesis, water relations, and growth of two hybrid Populus genotypes during a severe drought[J]. Canadian Journal of Forest Research,1992, 22(8):1094-1106.
    [172]Donovan L A, Grise D J, West J B, et al. Predawn disequilibrium between plant and soil water potentials in two cold-desert shrubs[J]. Oecologia,1999,120(2):209-217.
    [173]Donovan L A, Linton M, Richards J. Predawn plant water potential does not necessarily equilibrate with soil water potential under well-watered conditions[J]. Oecologia,2001,129(3): 328-335.
    [174]Donovan L A, Richards J H, Linton M J. Magnitude and mechanisms of disequilibrium between predawn plant and soil water potentials[J]. Ecology,2003,84(2):463-470.
    [175]Downton W J S, Grant W J R, Robinson S P. Photosynthetic and stomatal responses of spinach leaves to salt stress[J]. Plant Physiology,1985,78(1):85-88.
    [176]Downton W, Loveys B R, Grant W. Non-uniform stomatal closure induced by water stress causes putative non-stomatal inhibition of photosynthesis[J]. New Phytologist,1988,110(4):503-509.
    [177]Duan D Y, Li W Q, Liu X J, et al. Seed germination and seedling growth of Suaeda salsa under salt stress[J]. Annales Botanici Fennici,2007,44:161-169.
    [178]Edwards W R N, Booker R E. Radial variation in the axial conductivity of Populus and its significance in heat pulse velocity measurement[J]. Journal of Experimental Botany,1984,35(4): 551-561.
    [179]Ercisli S, Orhan E, Yildirim N, et al. Comparison of sea buckthorn genotypes (Hippophae rhamnoides L.) based on RAPD and FAME data[J]. Turkish Journal of Agriculture and Forestry, 2008,32:363-368.
    [180]Escalona J M, Flexas J, Medrano H. Stomatal and non-stomatal limitations of photosynthesis under water stress in field-grown grapevines[J]. Australian Journal of Plant Physiology,1999, 26(5):421-434.
    [181]Everard J D, Gucci R, Kann S C, et al. Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity[J]. Plant Physiology,1994, 106(1):281-292.
    [182]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology,1982,33(1):317-345.
    [183]Flanagan L B, Jefferies R L. Photosynthetic and stomatal responses of the halophyte, Plantago maritima L. to fluctuations in salinity[J]. Plant, Cell and Environment,1989,12(5):559-568.
    [184]Flexas J, Baron M, Bota J, et al. Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri x V. rupestris)[J]. Journal of Experimental Botany,2009,60(8):2361-2377.
    [185]Flexas J, Bota J, Cifre J, et al. Understanding down-regulation of photosynthesis under water stress:future prospects and searching for physiological tools for irrigation management[J]. Annals of Applied Biology,2004,144(3):273-283.
    [186]Gad N. Interactive effect of salinity and cobalt on tomato plants Ⅱ-some physiological parameters as affected by cobalt and salinity [J]. Research Journal of Agriculture and Biological Sciences, 2005,1(3):270-276.
    [187]Gadallah M A A. Effects of proline and glycinebetaine on Vicia faba responses'to salt stress[J]. Biologia Plantarum,1999,42(2):249-257.
    [188]Galle A, Haldimann P, Feller U. Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery[J]. New Phytologist, 2007,174(4):799-810.
    [189]Galmes J, Medrano H, Flexas J. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms[J]. New Phytologist,2007,175(1): 81-93.
    [190]Gama P B S, Inanaga S, Tanaka K, et al. Physiological response of common bean (Phaseolus vulgaris L.) seedlings to salinity stress[J]. African Journal of Biotechnology,2007,6(2):79-88.
    [191]Gaspar T, Franck T, Bisbis B, et al. Concepts in plant stress physiology. Application to plant tissue cultures[J]. Plant Growth Regulation,2002,37(3):263-285.
    [192]Ge Y, Chang J, Li W C, et al. Effect of soil moisture on the gas exchange of Changium smymioides and Anthriscus sylvestris[J]. Biologia Plantarum,2003,47(4):605-608.
    [193]Ghorbanli M, Ebrahimzadeh H, Sharifi M. Effects of NaCl and mycorrhizal fungi on antioxidative enzymes in soybean[J]. Biologia Plantarum,2004,48(4):575-581.
    [194]Glenn E P, Brown J J, Blumwald E. Salt tolerance and crop potential of halophytes[J]. Critical Reviews in Plant Sciences,1999,18(2):227-255.
    [195]Granier A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements[J]. Tree Physiology,1987,3(4):309-320.
    [196]Granier A, Biron P, Breda N, et al. Transpiration of trees and forest stands:short and long-term monitoring using sapflow methods[J]. Global Change Biology,1996a,2(3):265-274.
    [197]Granier A, Biron P, K Stner B, et al. Comparisons of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance for Scots pine[J]. Theoretical and Applied Climatology,1996b,53(1):115-122.
    [198]Granier A, Hue R, Barigah S T. Transpiration of natural rain forest and its dependence on climatic factors[J]. Agricultural and Forest Meteorology,1996c,78(1-2):19-29.
    [199]Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes[J]. Annual Review of Plant Physiology,1980,31(1):149-190.
    [200]Greenwood E A N, Beresford J D. Evaporation from vegetation in landscapes developing secondary salinity using the ventilated-chamber technique:I. Comparative transpiration from juvenile Eucalyptus above saline groundwater seeps[J]. Journal of Hydrology,1979,42(3-4): 369-382.
    [201]Grier C G, Running S W. Leaf area of mature northwestern coniferous forests:relation to site water balance[J]. Ecology,1977,58(4):893-899.
    [202]Hatton T J, Moore S J, Reece P H. Estimating stand transpiration in a Eucalyptus populnea woodland with the heat pulse method:measurement errors and sampling strategies[J]. Tree Physiology,1995,15(4):219-227.
    [203]Hatton T J, Wu H I. Scaling theory to extrapolate individual tree water use to stand water use[J]. Hydrological Processes,1995,9(5-6):527-540.
    [204]Heitholt J J. Water use efficiency and dry matter distribution in nitrogen-and water-stressed winter wheat[J]. Agronomy Journal,1989,81(3):464-469.
    [205]Hessini K, Ghandour M, Albouchi A, et al. Biomass production, photosynthesis, and leaf water relations of Spartina alterniflora under moderate water stress[J]. Journal of Plant Research,2008, 121(3):311-318.
    [206]Hinckley T M, Brooks J R, Ermak J, et al. Water flux in a hybrid poplar stand[J]. Tree Physiology, 1994,14(7-9):1005-1018.
    [207]Hoai N T T, Shim I S, Kobayashi K, et al. Accumulation of some nitrogen compounds in response to salt stress and their relationships with salt tolerance in rice (Oryza saliva L.) seedlings[J]. Plant Growth Regulation,2003,41(2):159-164.
    [208]Hsiao T C. Plant responses to water stress[J]. Annual Review of Plant Physiology,1973,24(1): 519-570.
    [209]Hsiao T C. Growth and productivity of crops in relation to water status[J]. Acta Horticulturae, 1993,335:137-148.
    [210]Huber B. Observation and measurements of sap flow in plant[J]. Berichte der Deutscher Gesellschaft,1932,50:89-109.
    [211]Huber B, Schmidt E. A compensation method for thermoelectric measurement of slow sap flow[J]. Berichte der Deutschen Gesellschaft,1937,55:514-529.
    [212]Iqbal M, Ashraf M. Changes in growth, photosynthetic capacity and ionic relations in spring wheat (Triticum aestivum L.) due to pre-sowing seed treatment with polyamines[J]. Plant Growth Regulation,2005,46(1):19-30.
    [213]Iqbal R M. Effect of different salinity levels on partitioning of leaf area and dry matter in wheat[J]. Asian Journal of Plant Sciences,2005,4(3):244-248.
    [214]Jaleel C A, Sankar B, Sridharan R, et al. Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in Catharanthus roseus[J]. Turkish Journal of Biology,2008, 32:79-83.
    [215]Javed F. In Vitro salt tolerance in wheat. Ⅲ. water relations in callus[J]. International Journal of Agriculture and Biology,2002,4(4):465-467.
    [216]Johnson Z, Barber R T. The low-light reduction in the quantum yield of photosynthesis:potential errors and biases when calculating the maximum quantum yield[J]. Photosynthesis Research, 2003,75(1):85-95.
    [217]Kang S, Liang Z, Hu W, et al. Water use efficiency of controlled alternate irrigation on root-divided maize plants[J]. Agricultural Water Management,1998,38(1):69-76.
    [218]Khan M A, Ungar I A, Showalter A M. Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haloxylon recurvum[J]. Communications in Soil Science and Plant Analysis,2000,31(17):2763-2774.
    [219]Kline J R, Reed K L, Waring R H, et al. Field measurement of transpiration in Douglas-fir[J]. Journal of Applied Ecology,1976,13(1):273-283.
    [220]Knight D H, Fahey T J, Running S W, et al. Transpiration from 100-yr-old lodgepole pine forests estimated with whole-tree potometers[J]. Ecology,1981,62(3):717-726.
    [221]Knight H, Knight M R. Abiotic stress signalling pathways:specificity and cross-talk[J]. Trends in Plant Science,2001,6(6):262-267.
    [222]Koca H, Ozdemir F, Turkan I. Effect of salt stress on lipid peroxidation and superoxide dismutase and peroxidase activities of Lycopersicon esculentum and L. pennellii[J]. Biologia Plantarum, 2006,50(4):745-748.
    [223]Korzukhin M D, Vygodskaya N N, Milyukova I M, et al. Application of a coupled photosynthesis-stomatal conductance model to analysis of carbon assimilation by spruce and larch trees in the forests of Russia[J]. Russian Journal Of Plant Physiology,2004,51(3):302-315.
    [224]Kramer P J. Changing concepts regarding plant water relations[J]. Plant, Cell and Environment, 1988,11(7):565-568.
    [225]Krauss K W, Allen J A. Influences of salinity and shade on seedling photosynthesis and growth of two mangrove species, Rhizophora mangle and Bruguiera sexangula, introduced to Hawaii[J]. Aquatic Botany,2003,77(4):311-324.
    [226]Kuhlmann A U, Bursy J, Gimpel S, et al. Synthesis of the compatible solute ectoine in Virgibacillus pantothenticus is triggered by high salinity and low growth temperature[J]. Applied Environmental Microbiology,2008,74(14):4560-4563.
    [227]Kumagai T, Nagasawa H, Mabuchi T, et al. Sources of error in estimating stand transpiration using allometric relationships between stem diameter and sapwood area for Cryptomeria japonica and Chamaecyparis obtusa[J]. Forest Ecology and Management,2005,206(1-3):191-195.
    [228]Kumar A, Singh D P, Singh P. Influence of water stress on photosynthesis, transpiration, water-use efficiency and yield of Brassica juncea L.[J]. Field Crops Research,1994,37(2): 95-101.
    [229]Kumar S, Sagar A. Microbial associates of Hippophae rhamnoides (Seabuckthorn)[J]. Plant Pathology Journal,2007,6(4):299-305.
    [230]Kurban H, Saneoka H, Nehira K, et al. Effect of salinity on growth, photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi (Bieb.)[J]. Soil Science and Plant Nutrition, 1999,45(4):851-862.
    [231]Ladefoged K. A method for measuring the water consumption of larger intact trees[J]. Physiologia Plantarum,1960,13(4):648-658.
    [232]Lakshmi A, Ramanjulu S, Veeranjaneyulu K, et al. Effect of NaCl on photosynthesis parameters in two cultivars of mulberry [J]. Photosynthetica,1996,32(2):285-289.
    [233]Lecina S, Martinez-Cob A, Perez P J, et al. Fixed versus variable bulk canopy resistance for reference evapotranspiration estimation using the Penman-Monteith equation under semiarid conditions[J]. Agricultural Water Management,2003,60(3):181-198.
    [234]Liu J, Zhu J K. An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance[J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94(26):14960-14964.
    [235]Lobato A, Goncalves-Vidigal M C, Vidigal P S, et al. Changes in photosynthetic pigment and carbohydrate content in common bean cultivars infected by Colletotrichum lindemuthianum[J]. Plant, Soil and Envrionment,2009,55(2):58-61.
    [236]Long S P, Humphries S, Falkowski P G. Photoinhibition of photosynthesis in nature[J]. Annual Review of Plant Biology,1994,45(1):633-662.
    [237]Lu K X, Cao B H, Feng X P, et al. Photosynthetic response of salt-tolerant and sensitive soybean varieties[J]. Photosynthetica,2009,47(3):381-387.
    [238]Lu K X, Yang Y, He Y, et al. Induction of cyclic electron flow around photosystem 1 and state transition are correlated with salt tolerance in soybean[J]. Photosynthetica,2008,46(1):10-16.
    [239]Lundblad M, Lagergren F, Lindroth A. Evaluation of heat balance and heat dissipation methods for sapflow measurements in pine and spruce[J]. Annals of Forest Science,2001,58(6):625-638.
    [240]Mahajan S, Tuteja N. Cold, salinity and drought stresses:an overview[J]. Archives of Biochemistry and Biophysics,2005,444(2):139-158.
    [241]Marshall D C. Measurement of sap flow in conifers by heat transport.[J]. Plant Physiology,1958, 33(6):385-396.
    [242]Martin T A. Winter season tree sap flow and stand transpiration in an intensively-managed loblolly and slash pine plantation[J]. Journal of Sustainable Forestry,2000,10(1-2):155-164.
    [243]Maser P, Eckelman B, Vaidyanathan R, et al. Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1[J]. Febs Letters,2002,531(2):157-161.
    [244]Meloni D A, Gulotta M R, Martinez C A. Salinity tolerance in Schinopsis quebracho colorado: Seed germination, growth, ion relations and metabolic responses[J]. Journal of Arid Environments, 2008,72(10):1785-1792.
    [245]Meloni D A, Oliva M A, Martinez C A, et al. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress[J]. Environmental and Experimental Botany,2003,49(1):69-76.
    [246]Mile O, Meszaros I, Veres S Z, et al. Ecophysiological study on the salt tolerance of a pannonian endemism (Lepidium crassifolium (W. et K.)) in inland saline area[J]. Acta Biologica Szegediensis,2002,46(3-4):249-250.
    [247]Monteiro J A F, Prado C H B A. Apparent carboxylation efficiency and relative stomatal and mesophyll limitations of photosynthesis in an evergreen cerrado species during water stress[J]. Photosynthetica,2006,44(1):39-45.
    [248]Monteith J L. Evaporation and environment[J]. Symposia of the Society for Experimental Biology, 1965,19:205-234.
    [249]Moutinho-Pereira J M, Correia C M, Goncalves B M, et al. Leaf gas exchange and water relations of grapevines grown in three different conditions[J]. Photosynthetica,2004,42(1):81-86.
    [250]Muhlinga K H, Lauchli A. Effect of salt stress on growth and cation compartmentation in leaves of two plant species differing in salt tolerance[J]. Journal of Plant Physiology,2002,159(2): 137-146.
    [251]Munns R. Physiological processes limiting plant growth in saline soils:some dogmas and hypotheses[J]. Plant, Cell and Environment,1993,16(1):15-24.
    [252]Munns R. Comparative physiology of salt and water stress[J]. Plant, Cell and Environment,2002, 25(2):239-250.
    [253]Munns R, Rawson H M. Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley[J]. Functional Plant Biology,1999,26(5):459-464.
    [254]Munns R, Sharp R E. Involvement of abscisic acid in controlling plant growth in soil of low water potential[J]. Functional Plant Biology,1993,20(5):425-437.
    [255]Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology,2008, 59(1):651-681.
    [256]Nakamura I, Murayama S, Tobita S, et al. Effect of NaCl on the photosynthesis, water relations and free proline accumulation in the wild Oryza species[J]. Plant Production Science,2002,5(4): 305-310.
    [257]Navarro J M, Garrido C, Marti Nez V, et al. Water relations and xylem transport of nutrients in pepper plants grown under two different salts stress regimes[J]. Plant Growth Regulation,2003, 41(3):237-245.
    [258]Nawaz K, Ashraf M. Improvement in salt tolerance of maize by exogenous application of glycinebetaine:growth and water relations[J]. Pakistan Journal of Botony,2007,39(5): 1647-1653.
    [259]Neto A D D A, Prisco J T, Filho J E, et al. Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes[J]. Brazilian Journal of Plant Physiology,2004,16(1):31-38.
    [260]Neumann P. Salinity resistance and plant growth revisited[J]. Plant, Cell and Environment,1997, 20:1193-1198.
    [261]Nijs I, Ferris R, Blum H, et al. Stomatal regulation in a changing climate:a field study using Free Air Temperature Increase (FATI) and Free Air CO2 Enrichment (FACE)[J]. Plant, Cell and Environment,1997,20(8):1041-1050.
    [262]Niu X, Bressan R A, Hasegawa P M, et al. Ion homeostasis in NaCl stress environments[J]. Plant Physiology,1995,109(3):735-742.
    [263]Olioso A, Chauki H, Courault D, et al. Estimation of evapotranspiration and photosynthesis by assimilation of remote sensing data into SVAT models[J]. Remote Sensing of Environment,1999, 68(3):341-356.
    [264]Ortega-Farias S, Olioso A, Antonioletti R, et al. Evaluation of the Penman-Monteith model for estimating soybean evapotranspiration[J]. Irrigation Science,2004,23(1):1-9.
    [265]Parida A K, Das A B. Salt tolerance and salinity effects on plants:a review[J]. Ecotoxicology and Environmental Safety,2005,60(3):324-349.
    [266]Parker J. The cut-leaf method and estimations of diurnal trends in transpiration from different heights and sides of an oak and a pine[J]. Botanical Gazette,1957,119(2):93-101.
    [267]Passos V M, Santana N O, Gama F C, et al. Growth and ion uptake in Annona muricata and A. squamosa subjected to salt stress[J]. Biologia Plantarum,2005,49(2):285-288.
    [268]Qin J, Dong W Y, He K N, et al. Short-term responses to salinity of seabuckthorn(Hippophae rhamnoides L.) seedlings in the extremely cold and saline Qinghai region of China[J]. Forestry Studies in China,2009,11(4):231-237.
    [269]Qin J, Dong W Y, He K N, et al. Physiological responses to salinity in Silver buffaloberry (Shepherdia argentea) introduced to Qinghai high-cold and saline area, China[J]. Photosynthetica, 2010a,48(1):51-58.
    [270]Qin J, Dong W Y, He K N, et al. NaCl salinity-induced changes in water status, ion contents and photosynthetic properties of Shepherdia argentea (Pursh) Nutt. seedlings[J]. Plant, Soil and Environment,2010b,56(7):325-332.
    [271]Radyukina N L, Kartashov A V, Ivanov Y V, et al. Functioning of defense systems in halophytes and glycophytes under progressing salinity[J]. Russian Journal of Plant Physiology,2007,54(6): 806-815.
    [272]Ranjbarfordoei A, Samson R, Van Damme P. Chlorophyll fluorescence performance of sweet almond [Prunus dulcis (Miller) D. Webb] in response to salinity stress induced by NaCl[J]. Photosynthetica,2006,44(4):513-522.
    [273]Richardson S G, Mccree K J. Carbon balance and water relations of Sorghum exposed to salt and water stress[J]. Plant Physiology,1985,79(1015-1020.
    [274]Roberts J. The use of tree-cutting techniques in the study of the water relations of mature Pinus sylvestris L.[J]. Journal of Experimental Botany,1977,28(3):751-767.
    [275]Rodiyati A, Arisoesilaningsih E, Isagi Y, et al. Responses of Cyperus brevifolius (Rottb.) Hassk. and Cyperus kyllingia Endl. to varying soil water availability[J]. Environmental and Experimental Botany,2005,53(3):259-269.
    [276]Rodriguez H G, Roberts J K M, Jordan W R, et al. Growth, water relations, and accumulation of organic and inorganic solutes in roots of maize seedlings during salt stress[J]. Plant Physiology, 1997,113(3):881-893.
    [277]Rubio F C, Camacho F G, Sevilla J M, et al. A mechanistic model of photosynthesis in microalgae[J]. Biotechnology and Bioengineering,2003,81(4):459-473.
    [278]Sakuratani T, Aoe T, Higuchi H. Reverse flow in roots of Sesbania rostrata measured using the constant power heat balance method[J]. Plant, Cell and Environment,1999,22(9):1153-1160.
    [279]Sameoto J A, Metaxas A. Can salinity-induced mortality explain larval vertical distribution with respect to a halocline?[J]. Biological Bulletin,2008,214(3):329-338.
    [280]Santa-Cruz A, Martinez-Rodriguez M M, Perez-Alfocea F, et al. The rootstock effect on the tomato salinity response depends on the shoot genotype[J]. Plant Science,2002,162(5):825-831.
    [281]Sausen T L, Rosa L. Growth and carbon assimilation limitations in Ricinus communis (Euphorbiaceae) under soil water stress conditions[J]. Acta Botanica Brasilica,2010,24(3): 648-654.
    [282]Scott P R, Sudmeyer R A. Evapotranspiration from agricultural plant communities in the high rainfall zone of the southwest of Western Australia[J]. Journal of Hydrology,1993,146(301-319.
    [283]Seiler J R, Cazell B H. Influence of water stress on the physiology and growth of red spruce seedlings[J]. Tree Physiology,1990,6(1):69-77.
    [284]Sellami M H, Sifaoui M S. Estimating transpiration in an intercropping system:measuring sap flow inside the oasis[J]. Agricultural Water Management,2003,59(3):191-204.
    [285]Sentelhas P C, Gillespie T J, Gleason M L, et al. Evaluation of a Penman-Monteith approach to provide[J]. Agricultural and Forest Meteorology,2006,141(2-4):105-117.
    [286]Serrano R, Mulet J, Rios G, et al. A glimpse of the mechanisms of ion homeostasis during salt stress[J]. Journal of Experimental Botany,1999,50(Special Issue):1023-1036.
    [287]Shah A H, Ahmed D, Sabir M, et al. Biochemical and nutritional evaluations of sea buckthorn (Hyppophae rhamnoides L. spp. Turkestanica) from different locations of Pakistan[J]. Pakistan Journal of Botony,2007,39(6):2059-2065.
    [288]Sharma N, Gupta N K, Gupta S, et al. Effect of NaCl salinity on photosynthetic rate, transpiration rate, and oxidative stress tolerance in contrasting wheat genotypes[J]. Photosynthetica,2005, 43(4):609-613.
    [289]Sheng M, Tang M, Chen H, et al. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress[J]. Mycorrhiza,2008,18(6-7):287-296.
    [290]Shereen A, Ansari R. Salt tolerance in soybean (Glycine max L.):effect on growth and water relations[J]. Pakistan Journal of Biological Sciences,2001,4(10):1212-1214.
    [291]Siddiqi E H, Ashraf M. Can leaf water relation parameters be used as selection criteria for salt tolerance in safflower (Carthamus tinctorius L.)[J]. Pakistan Journal of Botony,2008,40(1): 221-228.
    [292]Sobrado M A. Leaf characteristics and gas exchange of the mangrove Laguncularia racemosa as affected by salinity[J]. Photosynthetica,2005,43(2):217-221.
    [293]Steduto P, Albrizio R, Giorio P, et al. Gas-exchange response and stomatal and non-stomatal limitations to carbon assimilation of sunflower under salinity[J]. Environmental and Experimental Botany,2000,44(3):243-255.
    [294]Stepieri P, Klobus G. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress[J]. Biologia Plantarum,2006,50(4):610-616.
    [295]Suarez N, Medina E. Salinity effects on leaf ion composition and salt secretion rate in Avicennia germinans (L.) L.[J]. Brazilian Journal of Plant Physiology,2008,20(2):131-140.
    [296]Sudheer K P, Gosain A K, Ramasastri K S. Estimating actual evapotranspiration from limited climatic data using neural computing technique[J]. Journal of Irrigation and Drainage Engineering, 2003,129(3):214-218.
    [297]Sudhir P, Murthy S D S. Effects of salt stress on basic processes of photosynthesis[J]. Photosynthetica,2004,42(4):481-486.
    [298]Suggett D J, Macintyre H L, Kana T M, et al. Comparing electron transport with gas exchange: parameterising exchange rates between alternative photosynthetic currencies for eukaryotic phytoplankton[J]. Aquatic Microbial Ecology,2009,56(2-3):147-162.
    [299]Swati Z A, Imtiaz M, Ali S, et al. Effect of moisture stress on leaf water potential and relative leaf water content in wheat(Triticum aestivum L.)[J]. Pakistan Journal of Biological Sciences,2000, 3(1):87-90.
    [300]Swinbank W C. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere[J]. Journal of Atmospheric Sciences,1951,8(3):135-145.
    [301]Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants[J]. Annals of Botany, 2003,91(5):503-527.
    [302]Vera-Estrella R, Barkla B J, Garci A-Rami Rez L, et al. Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance[J]. Plant Physiology,2005, 139(3):1507-1517.
    [303]Vertessy R A, Hatton T J, Reece P, et al. Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique[J]. Tree Physiology,1997,17(12): 747-756.
    [304]Walker R R, Blackmore D H, Sun Q. Carbon dioxide assimilation and foliar ion concentrations in leaves of lemon (Citrus limon L.) trees irrigated with NaCl or Na2SO4[J]. Australian Journal of Plant Physiology,1993,20(2):173-185.
    [305]Wang R L, Hua C, Zhou F, et al. Effects of NaCl stress on photochemical activity and thylakoid membrane polypeptide composition of a salt-tolerant and a salt-sensitive rice cultivar[J]. Photosynthetica,2009,47(1):125-127.
    [306]Watson F, Vertessy R A, Grayson R B. Large-scale modelling of forest hydrological processes and their long-term effect on water yield[J]. Hydrological Processes,1999,13(5):689-700.
    [307]Woodward A J, Bennett I J. The effect of salt stress and abscisic acid on proline production, chlorophyll content and growth of in vitro propagated shoots of Eucalyptus camaldulensis[J]. Plant Cell, Tissue and Organ Culture,2005,82(2):189-200.
    [308]Wullschleger S D, Meinzer F C, Vertessy R A. A review of whole-plant water use studies in tree[J]. Tree Physiology,1998,18(8-9):499-512.
    [309]Yamaguchi K, Mori H, Nishimura M. A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin[J]. Plant and Cell Physiology,1995, 36(6):1157-1162.
    [310]Yildirim E, Karlidag H, Turan M. Mitigation of salt stress in strawberry by foliar K, Ca and Mg nutrient supply[J]. Plant, Soil and Environment,2009,55(5):213-221.
    [311]Zhang Z J, Shi L, Zhang J Z, et al. Photosynthesis and growth responses of Parthenocissus quinquefolia (L.) planch to soil water availability[J]. Photosynthetica,2004,42(1):87-92.
    [312]Zheng Y H, Xu X B, Wang M Y, et al. Responses of salt-tolerant and intolerant wheat genotypes to sodium chloride:Photosynthesis, antioxidants activities, and yield[J]. Photosynthetica,2009, 47(1):87-94.
    [313]Zhou Y, Lam H M, Zhang J. Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice[J]. Journal of Experimental Botany,2007,58(1):1207-1217.
    [314]Zhu J K. Regulation of ion homeostasis under salt stress[J]. Current Opinion in Plant Biology, 2003,6(5):441-445.
    [315]Zonneveld C. Photoinhibition as affected by photoacclimation in phytoplankton:a model approach[J]. Journal of Theoretical Biology,1998,193(1):115-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700