用户名: 密码: 验证码:
三种沙生植物光合及叶绿素荧光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验使用LI-6400测量沙柳(Salix psammophila)、沙蒿(Arlemisia intramongolica)、花棒(Hedysarum scoparium)气体交换与叶绿素荧光参数,以了解其日、季节动态变化规律,探索影响其光合作用的主要环境因子,为提高植物光合生产力提供理论依据。主要研究结果如下:
     1.沙柳、花棒净光合(Pn)日变化为单峰型曲线,沙蒿Pn日变化曲线既有单峰型曲线又有双峰型曲线。适宜环境条件下,沙柳、沙蒿、花棒Pn峰值分别出现在10:30、11:30、11:30。但严酷的环境条件下,其峰值提前。
     2.沙柳、沙蒿、花棒Pn季节变化为双峰曲线,花棒次峰不明显。Pn日均最大值沙柳出现在9月上旬,为11.24μmol m-2s-1;沙蒿Pn出现在6月下旬,为14.77μmol m-2s-1;花棒Pn出现在7月上旬,为6.13μmol m-2s-1。
     3.沙柳蒸腾速率(E)日变化为单峰型曲线,在10:30-14:30之间出现峰值。沙蒿、花棒E日变化同时具有单峰型和双峰型,单峰型曲线峰值出现在11:30,双峰型曲线主峰值出现在9:30,次峰值出现时间不定。
     4.光响应曲线分析表明沙柳、沙蒿、花棒均具有较宽的光合生态幅和较强的强光适应性。沙柳光能利用效率、固碳能力与生物生产潜力最高,沙蒿次之,花棒最低。
     5.在试验测定的环境因子中影响沙柳Pn的主要环境因子是水分;影响沙蒿Pn的主要环境因子是温度和大气相对湿度;影响花棒Pn的主要环境因子是温度和光照强度。
     6.沙柳、沙蒿、花棒的光下最大光量子产量(Fv'/Fm').PS Ⅱ实际量子效率(ΦPSⅡ)、光化学淬灭(qp)的日变化曲线为“V”型,非光化学淬灭电子淬灭(NPQ)的日变化曲线为单峰型曲线。沙柳、沙蒿相对电子传递速率(ETR)的日变化曲线既有单峰曲线又有双峰曲线,双峰曲线出现在7月中旬、8月中旬。花棒ETR的日变化曲线为单峰曲线。
     7.沙蒿ΦPSⅡ、qp最大,其光能接受及转化效率最高,能最多的把吸收的光能用于光化学反应中,将更多份额的光能转化为化学能。沙柳次之,花棒最低。沙蒿ETR最大,光合能力最强,花棒次之,但花棒在生长末期光合能力低于沙柳。沙蒿Fv'/Fm'、NPQ均大于其它两种植物,说明沙蒿具有较强的激发能捕获效率,对光强的调节能力较强。沙柳PsII激发能捕获效率较低,但其热耗散能够力比花棒强。以上说明沙蒿对生长地的光环境适应能力最强。
Li-6400portable photosynthesis system was used to measure photosynthetic and chlorophyll fluorescence PARameters of Salix psammophila, Artemisia intramongolica, and Hedysarum scoparium. The objectives of this case are to understand their diurnal and seasonal dynamics, and to explore the main environmental factors that influence the PARameters of photosynthesis and chlorophyll fluorescence. The main results were:
     1. Diurnal changes of net photosynthetic rate (Pn) of Salix psammophila and Hedysarum scoparium showed one-peak curves.That of Artemisia intramongolicahad both one-peak curves and two-peak curves. Under favorable environmental conditions, the peak appeared at10:30,11:30, and11:30for three species (in an order that appeared above), respectively. Under harsh environmental conditions, the peak appeared earlier.
     2. Seasonal change of net photosynthesis rate of Salix psammophila, Artemisia intramongolica, Hedysarum scoparium showed two-peak curves, but the secondary peak of Hedysarum scoparium were not obvious. The maximum Pn of Salix psammophila was11.24μmol m-2s-1and appeared at mid-September. The maximum Pn of Artemisia intramongolicawas14.77μmol m-2s-1and appeared at late September. The maximum Pn of Hedysarum scoparium was6.13μmol m-2s-1and appeared at early July.
     3. Diurnal changes of transpiration rate (E) of Salix psammophila were one-peak curves. The peak was detected between10:30-14:30. That of Artemisia intramongolica and Hedysarum scoparium had both one-peak curves and two-peak curves.The peak of one-peak curves appeared at11:30and the main peak of two-peak curves appeared at9:30.
     4.The light response curves indicated that all the three species had wide photosynthetic ecological amplitude and strong adaptability to high Light intensity. Salix psammophila had the highest light use efficiency, carbon sequestration capacity and biological production potential, followed by Artemisia inframongolicaand Hedysarum scoparium.
     5.The major environmental factor influencing net photosynthetic rate of Salix psammophila was moisture content. The main environmental factors that affected Artemisia intramongolicawere temperature and relative humidity. The major environmental factor influencing net photosynthetic rate of Hedysarum scoparium was temperature and light intensity.
     6.Diurnal changes of PS Ⅱ maximum efficiency (Fv'/Fm')、the efficiency of photosystemⅡ photochemistry (OPSⅡ),photochemical quenching (qp) of Salix psammophila, Artemisia intramongolica, Hedysarum scoparium were all "V" type curves. Diurnal changes of Nonphotochemical quenching (NPQ) of three species were one-peak curves. Diurnal changes of electron transport rate through PSⅡ (ETR) of Salix psammophila and Artemisia inframongolicahad both one-peak and two-peak curves. Two-peak curves were detected at mid-July and mid-August. Diurnal changes of ETR of Hedysarum scoparium were one-peak curves.
     7. Artemisia intramongolicahad the maximum ΦPSⅡ and qp, which indicated the highest efficiency of achieving and altering light energy. That means Artemisia intramongolicacan allocate more light energy for photochemical and can alter more light energy into chemical energy. Salix psammophila followed Artemisia intramongolicaand was higher than Hedysarum scopariumwere. Artemisia intramongolicahad the highest photosynthetic capacity with the largest ETR. The photosynthetic capacity of Hedysarum scopariumwere was lower than Artemisia intramongolicabut was higer than Salix psammophila. At later growth stage, photosynthetic capacity of Hedysarum scopariumwere was lower than Salix psammophila. Highest Fv'/Fm' and NPQ indicated Artemisia intramongolicahad the highest efficiency of capturing excitation energy and had the highest ability to regulate light energy. Salix psammophila had a lower efficiency of capturing excitation energy than Hedysarum scopariumwere, but had a higher ability to regulate light energy. It was concluded that Artemisia intramongolicaadapted to the dry environment best.
引文
[1]柏新富,朱建军,赵爱芬等.几种沙生植物对干旱过程的生理适应性比较[J].应用与环境生物学报,2008,14(6):763-768.
    [2]曹慧,许雪峰等.水分肋、迫下抗旱性不同的两种苹果属植物光合特性的变化[J].园艺学报,2004,31(3):285-290.
    [3]曹生奎,冯起等.胡杨光合蒸腾与影响因子间关系的研究[J].干旱区资源与环境,2012,26(4):155-159.
    [4]曹昀,王国祥等.干旱对芦苇幼苗生长和叶绿素荧光的影响[J].2008,6:862-868.
    [5]柴仲平,王雪梅,孙霞红等.枣光合特性与水分利用效率日变化研究[J].西南农业报,2010,23(1):168-172.
    [6]常金宝.沙柳幼苗光合、蒸腾强度日动态变化及影响因素[J].内蒙古师范大学学报,2003,32(54):17-20.
    [7]陈根云,陈娟等.关于净光合速率和胞间C02浓度关系的思考[J].植物生理学通讯,2010,46(1):64-66.
    [8]陈友根,李昆,孙永玉.麻疯树光合生理及其与环境因子的关联性[J].东北林业大学报,2010,38(7):39-41.
    [9]崔晓勇,杜占池,王艳芬.内蒙古半干旱草原区沙地植物群落光合特征的动态研究[J].植物生态学报,2000,24(5):541-546.
    [10]董学军,杨宝珍,郭柯等.几种沙生植物的水分生理生态特征研究[J].植物生态学报,1994,18(1):86-94.
    [11]额尔敦,蒋士梅.梭梭、花棒、沙拐枣的蒸腾特点及其在造林中的意义[J].内蒙古大学学报,1989,20(4):528-535.
    [12]樊恒文,贾晓红,张景光等.干旱区土地退化与荒漠化对土壤碳循环的影[J].中国沙漠,2002,22(6):525-533.
    [13]高超,闫文德,田大伦,郑威.杜仲光合速率日变化及其与环境因子的关系[J].中南林业科技大学学报,2011,31(5):100-104.
    [14]高海波,沈应柏.用叶绿素荧光研究植物伤害信息的系统性传递[J].湖北农业科学,2007,46(5),771-773.
    [15]高海波.合作杨与一品红伤害信息传递的研究[D].2006:25-26.
    [16]高辉远,邹琦,程炳嵩.大豆光合日变化的不同类型及其影响因素[J].大豆科学,1992,11(3):219-225.
    [17]郭二果,马颖聪,常金宝.伊金霍洛旗沙柳幼苗光合蒸腾强度日动态变化[J].内蒙古科技与经济,2005,103-105.
    [18]郭二辉,胡聃,田朝阳.外来种火炬树光合作用日变化与环境因子的关系[J].河南农业科学,2010,6:109-114.
    [19]郭学民.猕猴桃果实叶绿体生理学与细胞生物学特征的研究[D].2006:29.
    [20]郭延平,沈允钢等.低温胁迫对温州蜜相‘光合作用的影响[J].园艺学报,1998,25,(2):111-116.
    [21]郭延平,周慧芬,曾光辉等.高温胁迫对柑橘光合速率和光系统Ⅱ活性的影响[J].应用生态学报,2003,4(6):867-870.
    [22]韩张雄,李利,徐新等.梭梭幼苗干物质积累和叶绿素荧光对NaCl胁迫的响应[J].中国沙漠,2011,31(1):90-95.
    [23]黄振英,董学军.沙柳光合作用和蒸腾作用日动态变化的初步研究[J].西北植物学报,2002,22(4):817-823.
    [24]蒋高明,朱桂杰.高温强光环境条件下3种沙地灌木的光合生理特点系[J].植物生态学报,2001,25(5):525-531.
    [25]蒋高明.植物生理生态学[M].北京:高等教育出版社.2004:65-66.
    [26]靳甜甜,傅伯杰,刘国华,等.不同坡位沙棘光合日变化及其主要环境因子[J].生态学报,2011,31(7):1783-1793.
    [27]孔蓓蓓,刘超,尹伟伦等.沙柳,黄柳和杞柳光合作用的日变化[J].河南科技大学学报,2009,30(3):79-83.
    [28]李平,李晓萍,陈贻竹等.低温光抑制胁迫对不同抗冷性的籼稻抽穗期剑叶叶绿素荧光的影响[J].中国水稻科学,2000,14(2):88-92.
    [29]李强,王国祥.冬季降温对菹草叶片光合荧光特性的影响[J].生态环境,2008,17(5):1754-1758.
    [30]李伟,曹坤芳.干旱胁迫对不同光环境下的三叶漆幼苗光合特性和叶绿素荧光参数的影响[J].西北植物学报,2006.26:266-275.
    [31]李彦慧,孟庆瑞等.紫叶李叶片色素含量及叶绿素荧光动力学参数对SO2胁迫的响应[J].环境科学学报,2008,28:2236-2242.
    [32]李长缨,朱其杰.光强对黄瓜光合特性及亚适温下生长的影响[J].园艺学报.1997,24(1):9799.
    [33]牟云官,李宪利.几种落叶果树光合特性的探索[J].园艺学报,1986,13(3):157-162.
    [34]钱正安,宋敏红,李万源等.全球中蒙干旱区及其部分地区降水分布细节[J].高原产气象,2011,30(1):1-12.
    [35]孙景宽,张文辉,陆兆华等.干早胁迫下沙枣和孩儿拳头叶绿素荧光特性研究[J].植物研究,2009,29(2):216-223.
    [36]陶俊,陈鹏,佘旭东.银杏光合特性的研究园艺学报[J].1999,26(3):157-160.
    [37]王文杰,李文馨等.紫茎泽兰茎和叶片色素及叶绿素荧光相关参数对不同温度处理的响应差异[J].生态学报,2009.29:5424-5433.
    [38]王小伟,金则新,柯世省等.乌药光合特性日进程与其环境因子的相关分析[J].西北林学院学报,2010,25(2):5-10.
    [39]王兴龙,金则新,李建辉等.榈木光合作用日进程及其与环境因子的相关性[J].江苏林业科学,2012,40(3):143-147.
    [40]王云霓,熊伟,王彦辉,等.干旱半干旱地区主要树种叶片水分利用效率研究综述[J].世界林业研究,2012,25(2):17-23.
    [41]吴甘霖,段仁燕,王志高等.干旱和复水对草莓叶片叶绿素荧光特性的影响[J].生态学报,2010,30(14):3941-3946.
    [42]武维华.植物生理学[M].北京:科学出版社.2003.169-171.
    [43]夏江宝,张光灿,许景伟等.干旱胁迫下常春藤净光合速率日变化及其影响因子分析[J]水土保持通报,2010,30(3):78-82.
    [44]夏磊,赵志新,汤玲等.重庆地区加拿利海枣夏季光合日变化与主要环境因子的关系[J].北京林业大学学报,2011,33(4):75-80.
    [45]夏尚光,张金池,梁淑英.南方岩榆光合作用日变化及其影响因子研究[J].亚热带植物科学,2007,36(3):8-11.
    [46]徐飞,郭卫华,徐伟红等.短期干旱和复水对麻栎幼苗光合及叶绿素荧光的影响[J].山东林业科技,2008,4:1-4.
    [47]许大全.光合作用效率[M].上海:上海科学技术出版社.2002:65-66.
    [48]于贵瑞,王秋凤等.植物光合、蒸腾与水分利用的生理生态学[M].北京:科学出版社.2010.190-192.
    [49]余叔文,汤章城.植物生理与分子生物学[M].(第2版).北京:科学出版社.1998:567-569.
    [50]袁德辉,金志凤,景元书等.梅光合速率日变化及其与气候生态因子的关系[J].科技通报,2010,26(4):560-562.
    [51]张吨明,唐进年,徐先英,金红喜等.两种蒿属植物的光合特性研究[J].西北农业学报,2009,18(2):163-168.
    [52]张其德,温晓刚等.盐胁迫下CO2加倍对春小麦一些光合功能的影响[J].植物生态学报,2000,24(3):308-311.
    [53]张燕林,张玉兰,戴小笠等.宁夏红枣叶片光合参数日变化及其与环境因子的关系[J].资源与环境科学,2012,4:278-282.
    [54]张玉洁.香椿幼树光合作用及其影响因子研究[J].林业科学研究,2002,15(4):432-436.
    [55]张治安,杨福,陈展宇等.菰叶片净光合速率日变化及其与环境因子的相互关系[J].中国农业科学,2006,39(3):502-509.
    [56]郑蓉,黄耀华等.一枝黄花生长和叶绿素荧光的影响[J].西北植物学报,2008,28(4):752-758.
    [57]周生荟,刘玉冰等.沙生植物红砂在持续干旱胁迫下的光保护机制研究[J].中国沙漠,2010,30(1):69-73.
    [58]Aranda I, Gil L, PARdos J. Effects of thinning in a Pinus sylvestris L. stand on foliar water relations of Fagus sylvatica L. seedlings planted within the pinewood[J]. Trees - Structure and Function, 2001,15(6):358-364.
    [59]Atsushi Ishida, Takeshi Toma, Marjenah. A comPARison of in situ leaf photosynthesis and chlorophyll flourscence at top canopies in rainforest mature tree [J]. Japan Agricultural Research Quarterly, 2005, 39(1): 57-67.
    [60]Bilger W, Rjorkman O. Role of the xanthophyll cycle in photoproteclion elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canaricnsis[J]. Photosynthesis Research,1990,25(3):173-185.
    [61]Bilger W, Schreiber U et.al.. Determination of the quantum efficiency of photosystcm Ⅱ and of non-photochemical quenching of chlorophyll fluorescence in the field[J].Oecologia, 1995,102(4): 425-432.
    [62]Bjorkman O,Demmig B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins[J]. Planta,1987, 170(4): 489-504.
    [63]Farquar G.D, Sharkey T.D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982,33:317-345.
    [64]Fryer MJ, Andrews JR et.al.. Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the Held during periods of low temperature [J].1998,116(2): 571-580.
    [65]Govindjce. Sixty-three years since Kautsky: chlorophyll a fluoresccncc[J].Australian Journal of Plant Physiology,1995,22(2):131-60.
    [66]Guo W. Li B, Huang Y, et al. Effects of different water stresses on ecophysiological characteristics of Hippophaerhamnoides seedlings[J]. Acta Botanica Sinica, 2003, 45(10):1238-1244.
    [67]Guttermen Y. Plants in the deserts of the Middle East. Batanouny KM.2001[J|. Ann Bot Lond, 2002,89(4): 501.
    [68]Ile J, Chee CW et.al.. Photoinhibition'of Heliconia under natural tropical conditions: the importance of leal' orientation for light interception and leaf tcmperature[J]. Plant, Cell & Environment, 1996, 19(11): 1238-1248.
    [69]Hymus G.J, Ellsworth D S et.al.. Does Free-Air Carbon Dioxide Enrichment Affect Photochemical Energy Use by Evergreen Trees in Different Seasons? A Chlorophyll Fluorescence Study of Mature Loblolly Pinel[J]. Plant Physiology August, 1999,120(4): 1183-1192.
    [70]Hymus GJ, Baker NR et.al.. Growth in Elevated CO2 Can Both Increase and Decrease Photochemistry and Photoinhibition of Photosynthesis in a Predictable Manner. Daetylis glomerata Grown in Two Levels of Nitrogen Nulrition[J]. Plant Physiology ,2001,127(3): 1204-1211.
    [71]Jiang GM, Zhu GJ. Different Patterns of Gas Exchange and Photochemical Efficiency in Three Desert Shrub Species Under Two Natural Temperatures and Irradianccs in Mu Us Sandy Area of China[J]. Photosynthetica, 2001,39(2): 257-262.
    [72]Johnson GN, Young AJ et.al. The dissipation of excess excitation energy in British plant species[J]. Plant, Cell & Environment, 1993, 16(6): 673-679.
    [73]Kruskopf M, Flynn K J. Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Physiologist,2006,169(3):525-536.
    [74]Lichtenthaler.H.K. The Kautsky effect:60 years of chlorophyll flourscence induction kinetics[J]. Photosynthetica,1992,27:45-55.
    [75]Meyer S, Genty B. Heterogeneous inhibition of photosynthesis over the leaf surface of Rosa rubiginosa L. during water stress and abscisic acid treatment:induction of a metabolic component by limitation of CO2 diffusion[J]. Planta,1999,210(1):126-131.
    [76]Mittler R, Merquiol E, Hallak H err E, et al. Living under a 'dormant' canopy:a molecular acclimation mechanism of the desert plant Retama raetam[J].The Plant Journal.2001,25 (4):407-415.
    [77]Mittler R, Merquiol E, HallakHerr E, et al.. Living under a dormant canopy:a molecular acclimation mechanism of the desert plant Retama raetam[J]. The Plant Journal,2001,25(4):407-415.
    [78]Murchie EH, Chen Yet al.. Interactions between Senescence and Leaf Orientation Determine in Situ Patterns of Photosynthesis and Photoinhibition in Field-Grown Rice[J]. Plant Physiology,1999,119(2):553-564.
    [79]Oliveira G, Penuelas J.Allocation of absorbed light energy into photochemistry and dissipation in a semi-deciduous and an evergreen mediterranean woody species during winter[J]. Australian Journal of Plant Physiology,2001,28(6):471-480.
    [80]Schreiber U. Pulse-Amplitude (PAM) fluorometry and saturation Pulse method. In:Papageorgiou G and Govindjee (eds) ChloroPhyll fluorescence:A signature of Photosynthesis, Kluwer Academic Publishers, Dordrecht, The Netherlands.2004:279-319.
    [81]Valladares F, Pearcy RW. Interactions between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia[J]. Plant, Cell & Environment,1997,20(1):25-36.
    [82]Wunsche J.N, Green S et.al. Modeling Light Interception and Transpiration of Apple Tree Canopies[J]. Agronomy Journal,95(6):1380-1387.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700