用户名: 密码: 验证码:
气体辅助注射成型充模机理数值模拟与成型工艺稳健优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气体辅助注射成型(简称气辅成型)是一种新型的聚合物成型工艺。该工艺先将聚合物熔体部分或全部注入模腔,紧接着把压缩空气注入到聚合物熔体内部来推动塑料熔体充满整个模腔,形成中空气道。与传统注塑成型工艺相比,气辅成型可以提高产品表面质量、减少翘曲变形、降低锁模力、减轻制品重量、节省费用。但另一方面,气辅成型工艺参数的增多导致其工艺更加难于控制,实际生产中工艺参数的波动、噪声因素的存在也会导致气辅成型废品率的上升。
     随着计算机技术与有限元理论快速发展,气辅成型数值模拟也得到了快速发展。基于数值模拟的气辅成型优化可以减少繁琐的试模与人工修改,帮助设计人员快速、有效地寻找到最优参数组合。但气辅成型CAE和工艺优化研究还存在以下一些问题:
     首先,基于Hele-Shaw假设的数值模拟方法将作用于熔体的气体简化为压力边界条件,不能精确描述气体、熔体两相的相互作用机理。其次,气辅成型工艺参数与设计响应之间具有非线性隐式关系,传统基于梯度的优化算法面对这样问题显得无能为力。传统的优化算法还要同时面对复杂零件CAE分析的计算成本问题。最后,气辅成型产品的质量指标评判存在多种准则,不同质量指标之间通常相互冲突,难于通过加权方式调和,因此有必要协调多目标之间的关系并降低优化目标受设计波动的影响程度。
     针对气辅成型工艺在实际应用中迫切需要解决的问题,本文着重从以下几个方面对其进行研究:
     首先提出将模腔内的气体、熔体用统一的N-S方程描述,将作用于熔体上的气体也当作流体来处理,赋予其运动控制方程、恒定的粘度和密度,采用VOF方法跟踪气熔两相边界。将气辅成型气体穿透模拟简化为两相流体瞬态流动速度场、压力场求解的流体动力学问题。
     基于本文提出的气辅穿透机理计算模型,针对常见气辅成型零件特征,提出几种典型形状气道几何模型,并对其穿透进行数值模拟。相对于基于Hele-Shaw假设的模拟,该模型可以准确、有效地模拟穿透过程中气∕熔两相边界,并获取气∕熔两相边界的变化规律,同时还捕捉到了气∕熔两相边界在通过气道拐角时候的运动规律。通过数值模拟结果解释了气道设计中的边角效应(Edge Shape)和拐角处圆角效应,并给出了合理设计气道参数的建议。
     其次,本文提出了基于CAE模拟、代理模型和智能进化算法的集成优化策略,对粒子群智能进化算法(PSO)进行了合理改进,开发了基于Matlab平台的自适应PSO算法。该算法以CAE分析为实验手段,采用拉丁超立方取样方法,使样本点均匀分布于解空间,采用合适的多项式和高斯函数作为相关函数,建立起映射工艺参数与优化目标之间非线性关系的Kriging近似模型,并由自适应PSO算法在解空间搜寻最优解。自适应PSO算法可以加快优化算法的收敛速度,以较小的计算成本获取最佳参数组合。
     本文还重点讨论了多目标问题处理方法,提出了基于CAE和代理模型的多目标优化策略。将基于拥挤距离的机制和变异算子引入PSO算法,基于Matlab平台实现Multi-Objective Particle Swarm Optimization Based On Crowding Distance (MOPSOCD)算法。拥挤距离机制和变异算子可以保持计算所得非支配解具有较好的空间分布特性,保持粒子群种群的多样性。在多目标粒子群算法中引入外部种群,用以保存进化过程中不断产生的非支配解,可以最大限度的发掘可行解空间中存在的非支配解,保证了进化算法的全局搜索能力。将其与基于CAE和代理模型的优化设计程序集成,显著提高了优化效率,改善了Pareto解分布。
     针对实际工程优化中忽略不确定因素的影响,时常导致设计失效的问题,本文将稳健设计方法应用到气体辅助注射成型优化。通过引入可靠性设计和6-sigma质量管理思想,将设计质量提高到6-sigma水平。对稳健优化准则进行了详细分析,提出了稳健优化的多目标处理原则,将稳健优化当做多目标问题进行求解。针对CAE模拟的计算量问题,将代理模型技术与蒙特卡洛方法结合,构造出基于代理模型和蒙特卡洛模拟的稳健优化策略。
     最后,将6-sigma稳健优化设计方法应用到复杂且产品厚度分布不均匀的汽车后视镜气辅成型优化设计,获得了一系列Pareto稳健设计解。该方法相对于确定性优化设计,其可靠性和稳健性有了显著提高。相对于加权方法处理稳健问题,本方法得到的一系列稳健设计解可以为气辅成型工艺设计提供更多的可选方案。
Gas Assisted Injection Molding (GAIM) is one of the most important and innovative molding process. In GAIM, the polymer melt is firstly filled or partially filled into mold cavity, and then the compressed gas is injected into the mold to drive the molten polymer further into the mold, leaving a hollow gas channel in the part. The GAIM can not only reduce warpage, clamping force and product weight, but also improve surface quality and save costs compared with the traditional injection molding. On the other hand, there are many unstable factors which can effects product quality of GAIM in actual production, it will result in the control of GAIM become harder compared with injection molding, because new parameters are introduced to GAIM. Fluctuation of design and parameters and the noise factor will lead to the increase of waste product rate too.
     With the development of computer technology and Finite Element Method (FEM) theory, rapid progress has been made in the numerical simulation of GAIM. The processing optimization of GAIM based on numerical simulation can reduce the numbers of“trial and error”, and help designers obtain best process parameters quickly and effectively. There are several issues in numerical simulation and processing optimization of GAIM:
     Firstly, the simulation based on Hele-Shaw hypothesis treats the gas imposed on polymer melt as the boundary conditions simply. It can’t describe the flow mechanism of gas and melt. Secondly, the relationship between process parameters and design response is recessive and nonlinear, traditional optimization algorithm based on gradient is not suitable for this kind of problem, and traditional optimization algorithm is time consuming and costly especially for the complex parts. Last, there are several kinds of criteria for the quality of GAIM parts,different kinds of criteria is conflict usually, it can’t be solved by weighted methods simply. Therefore, it is necessary to coordinate the relationship between different goals and reduce the sensitivity of processing fluctuations.
     These are some key technical problems which should be solved in GAIM now. The main topics of the thesis are as follows:
     Firstly, the melt and gas in mold should be described by unified N-S equations, the gas which is act on polymer melt is treated as fluid too, therefore the gas should be endow with governing equations, constant density and viscosity. The VOF method is obtained to trace the free-interface of gas and polymer melt. Finally, the gas penetration of GAIM is simplified to the computation of velocity and pressure fields of two phase flow.
     Based on the governing equations and common shape of GAIM parts, different typical gas channel were modeled and simulated. Compared with the Hele-Shaw hypothesis, the free-interface of gas and polymer melt can be simulated exactly, the variation of free-interface can be obtained, and the motion pattern of free-interface can also be captured when the gas pass through the corner of gas channel. The edge shape of gas channel and the fillet effect are interpreted by simulation, and the recommended values of gas channel are proposed too.
     Secondly, a hybrid optimization approach, which is integrates CAE, surrogate model and intelligent evolution algorithm, is proposed. The Adaptive particle swarm optimization (APSO) algorithm is developed by Matlab. In this approach, the CAE is adopted as experimental means, the Latin Hypercube Sampling method (LHS), which can fill the whole design space, is used to sampling in feasible design space, the Kriging surrogate model is adopted to approximate the nonlinear relationship between processing parameters and optimization objective, APSO algorithm is adopted to search optimal solutions. APSO can accelerate the convergence rate of optimization approach, and obtain optimal processing parameters using the least computational costs.
     The Multi-Objective optimization method is discussed. The Multi-Objective optimization approach which is based on surrogate model, CAE is proposed. The Multi-Objective PSO Based on Crowding Distance (MOPSOCD) is developed based on Matlab platform by introducing Crowding distance mechanism and mutation operator. The crowing distance mechanism and mutation operator can maintain the diversity of population.
     The external archive can constantly save the non-dominate solutions generated by algorithm, it can search the non-dominate solutions as many as possible and guarantee the global optimization. Integrating it with the optimization approach based on CAE and surrogate model, both the efficiency of approach and distribution of Pareto solutions are improved.
     According to the design failure caused by uncertain factors in real GAIM processing, the robust design is introduced to the optimization of GAIM. By introducing reliability design and 6-sigma quality theory, the design quality can be improved to 6-sigma level. The robust design criterion is analyzed. Robust design is generally focused on reducing response variation, balancing“mean on target”and“minimize variation”performance objectives. So, the 6-sigma robust design is treated as multi-objective problem in this thesis. The computation costs caused by CAE are solved by integrating Monte Carlo Simulation with surrogate model.
     Finally, by applying 6-sigma robust design to a car back mirror which is molding by GAIM, a series of Pareto robust solutions are obtained. Compared with the deterministic optimization, the reliability and robustness are improved significantly. The robust solutions obtained by this approach can provide more optional scheme for the processing design of GAIM.
引文
[1]. Avery J. Gas-Assist Injection Molding: Principles and Applications[M]. Munich: Hanser, 2000.
    [2]. Vlachopoulos J, Strutt D, Polydynamics I. Overview Polymer processing[J]. materials science and technology, 2003, 19(9): 1161-1169.
    [3].詹姆士F史刘.聚合物成型加工新技术[M].化学工业出版社, 2004.
    [4].李德群,周华民.塑料注射成形过程仿真软件的开发和应用[J].中国机械工程, 2002, 13(022): 1894-1896.
    [5].李德群,肖祥芷.模具CAD/CAE/CAM的发展概况及趋势[J].模具工业, 2005, 79-12.
    [6].申长雨,陈静波.塑料模CAE技术发展概况[J].模具工业, 2001, (001): 51-56.
    [7]. Pandelidis I, Zou Q. Optimization of injection molding design. Part I: Gate location optimization[J]. Polymer Engineering and Science, 2004, 30(15): 873-882.
    [8].李德群.现代塑料注射成型的原理,方法与应用[M].上海交通大学出版社, 2005.
    [9]. Wang G G, Shan S. Review of metamodeling techniques in support of engineering design optimization[J]. Journal of Mechanical Design, 2007, 129(4): 370-381.
    [10]. Simpson T W, Poplinski J D, Koch P N, et al. Metamodels for computer-based engineering design: survey and recommendations[J]. Engineering with Computers, 2001, 17(2): 129-150.
    [11]. Jin R, Chen W, Simpson T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization, 2001, 23(1): 1-13.
    [12]. Jin R, Du X, Chen W. The use of metamodeling techniques for optimization under uncertainty[J]. Structural and Multidisciplinary Optimization, 2003, 25(2): 99-116.
    [13].穆雪峰.多学科设计优化代理模型技术的研究和应用[D].南京航空航天大学硕士学位论文, 2004.
    [14].穆雪峰,姚卫星,余雄庆, et al.多学科设计优化中常用代理模型的研究[J].计算力学学报, 2005, 22(5): 608-612.
    [15]. Michaeli W, Haberstroh E. Innovation through new processes[J]. Kunststoffe Plast Europe, 2000, 90(1): 21-23.
    [16].李义.汽车复杂注塑件气辅注塑成型装备关键技术的研究[D].长春:吉林大学, 2006.
    [17]. Fairbrother F, Stubbs A E. Studies in Electro-Endosmosis VI. The‘Bubble Tube’Method of Measurement[J]. Journal of the Chemical Society, Chemical Communications, 1935, 1527-529.
    [18]. Marchessault R N, Mason S G. Flow of entrapped bubbles through a capillary[J]. Industrial & Engineering Chemistry, 1960, 52(1): 79-84.
    [19]. Taylor G I. Deposition of a viscous fluid on the wall of a tube[J]. Journal of Fluid Mechanics, 1961, 10(2): 161-165.
    [20]. Cox B G. On driving a viscous fluid out of a tube[J]. Journal of fluid mechanics, 1962, 14(1): 81-96.
    [21]. Westborg H, Hassager O. Creeping motion of long bubbles and drops in capillary tubes[J]. Journal of Colloid and Interface Science, 1989, 133(1): 135-147.
    [22]. Poslinski A J, Oehler P R, Stokes V K. Isothermal gas-assisted displacement of viscoplastic liquids in tubes[J]. Polymer Engineering and Science, 2004, 35(11): 877-892.
    [23]. Poslinski A J, Coyle D J. Steady gas penetration through non-Newtonian liquids in tube and slit geometries: isothermal shear thinning effects[A]. In Proceeding of the Polymer Processing Society, Tenth Annual Meeting[C], 1994: 219-220.
    [24]. Wang Y. The Effect Of Non-Newtonian Rheology On Gas-Assisted Injection Molding Process[D]. The Ohio State University, 2003.
    [25]. Hsu C H, Chen P C, Kung K Y, et al. Flow patterns in gas-assisted injection molding process in a channel[J]. The International Journal of Advanced Manufacturing Technology, 2007, 31(7): 673-681.
    [26]. Lee B H, Kim B H. Optimization of part wall thicknesses to reduce warpage of injection-molded parts based on the modified complex method[J]. Polymer-plastics technology and engineering, 1995, 34(5): 793-811.
    [27]. Seow L W, Lam Y C. Optimizing flow in plastic injection molding[J]. Journal of Materials Processing Technology, 1997, 72(3): 333-341.
    [28]. Lam Y C, Seow L W. Cavity balance for plastic injection molding[J]. Polymer Engineering and Science, 2004, 40(6): 1273-1280.
    [29]. Subramanian N R. Optimizing warpage analysis for an optical housing[J]. Mechatronics, 2005, 15(1): 111-127.
    [30]. Der Chien R, Chen S C, Lin M C, et al. Effect of gas channel design on the molding window of gas-assisted-injection-molded polystyrene parts[J]. Journal of Applied Polymer Science, 2003, 90(11): 2979-2986.
    [31].梁继才,李义,苏梅, et al.气辅成型中气道形状和尺寸对气指缺陷的影响[J].吉林大学学报:工学版, 2007, 37(4): 809-813.
    [32]. Li C S, Shen Y K. Optimum design of runner system balancing in injection molding[J]. International Communications in Heat and Mass Transfer, 1995, 22(2): 179-188.
    [33]. Lee B H, Kim B H. Automated design for the runner system of injection molds based on packing simulation[J]. Polymer-Plastics Technology and Engineering, 1996, 35(1): 147-168.
    [34]. Lee B H, Kim B H. Automated selection of gate location based on desired quality of injection-molded part[J]. Polymer-Plastics Technology and Engineering, 1996, 35(2): 253-269.
    [35].翟明,顾元宪,申长雨.注射模浇口数目和位置的优化设计[J].化工学报, 2003, 54(8): 1141-1145.
    [36].翟明,顾元宪,申长雨.注射模浇口位置优化的设计空间确定方法[J].计算力学学报, 2003, 20(4): 483-486.
    [37]. Gao D M, Nguyen K T, Garcia-Rejon A, et al. Optimization of the gas-assisted injection moulding process using multiple gas-injection systems[J]. Journal of Materials Processing Technology, 1997, 69(1): 282-288.
    [38]. Han S Y, Kwag J K, Kim C J, et al. A new process of gas-assisted injection molding for faster cooling[J]. Journal of Materials Processing Technology, 2004, 155-156(11): 1201-1206.
    [39]. Chen S C, Hu S Y, Huang J S, et al. Investigation of gas-assisted injection molding. Part III: Effect of gas channel design on part bending strength[J]. Polymer Engineering and Science, 2004, 38(7): 1085-1098.
    [40]. Pandelidis I, Zou Q. Optimization of injection molding design. Part II: Molding conditions optimization[J]. Polymer engineering and science, 2004, 30(15): 883-892.
    [41]. Chang S H, Hwang J R, Doong J L. Manufacturing process optimization of short glass fiber reinforced polycarbonate composites in injection molding[J]. Journal of Reinforced Plastics and Composites, 2000, 19(4): 301-321.
    [42]. Bikas A, Pantelelis N, Kanarachos A. Computational tools for the optimal design of the injection moulding process[J]. Journal of Materials Processing Technology, 2002, 122(1): 112-126.
    [43]. Liu S J, Chang J H. Application of the Taguchi method to optimize the surface quality of gas assist injection molded composites[J]. Journal of Reinforced Plastics and Composites, 2000, 19(17): 1352-1362.
    [44]. Liu S J, Chang C Y. The influence of processing parameters on thin-wall gas assisted injection molding of thermoplastic materials[J]. Journal of Reinforced Plastics and Composites, 2003, 22(8): 711-731.
    [45]. Changjin O, Lanruo M. A Investigation of Fuzzy Control for Gas-injection Pressure in Gas-Assisted Injection Molding[A]. In Industrial Electronics and Applications, 2007. ICIEA 2007. 2nd IEEE Conference on[C], 2007: 153-158.
    [46]. Chen M, Yao D, Kim B. Optimization of process conditions in gas-assisted injection molding[J]. Polymer-Plastics Technology and Engineering, 2001, 40(4): 479-489.
    [47]. Lee K S. The selection of the optimal design parameters applied to the gas-assisted injection mould of an L-shape plates design[J]. The International Journal of Advanced Manufacturing Technology, 2006, 30(7): 677-686.
    [48]. Parvez M A, Ong N S, Lam Y C, et al. Gas-assisted injection molding: the effects of process variables and gas channel geometry[J]. Journal of Materials Processing Tech., 2002, 121(1): 27-35.
    [49].梁继才,何忠宝,苏梅, et al.气辅成型工艺参数交互作用对气指缺陷的影响[J].高分子材料科学与工程, 2007, 23(3): 178-181.
    [50].梁继才,苏梅,李义, et al.汽车把手件气辅成型气指缺陷影响因素分析[J].机械工程学报, 2008, 44(12): 303-307.
    [51].李光明,殷国富,余玲, et al.基于模糊规划的气辅产品品质优选决策模型及应用[J].吉林大学学报:工学版, 2008, 38(3): 539-543.
    [52].李倩,王小峰,申长雨, et al.气辅成型过程气体穿透长度与残余壁厚的试验研究[J].化工学报, 2006, 57(10): 2469-2474.
    [53].左敏,刘浩.气体控制参数对气体辅助成型产品翘曲的影响[J].中国塑料, 2002, 16(2): 56-59.
    [54].张响,童水光,李倩, et al.应用软计算优化气辅注射成型工艺[J].化工学报, 2008, 59(2): 508-513.
    [55]. Cardozo D. A brief history of the filling simulation of injection moulding[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2009, 223(3): 711-721.
    [1]. Park C W, Homsy G M. Two-phase displacement in Hele Shaw cells: theory[J]. Journal of fluid mechanics, 2006, 139291-308.
    [2]. Shen Y K. The study on polymer melt front, gas front and solid layer in filling stage of gas-assisted injection molding[J]. International Communications in Heat and Mass Transfer, 2001, 28(1): 139-148.
    [3].李倩.气体辅助注射成型充填/后充填过程流动数值模拟[D].郑州大学, 2002.
    [4]. Kamal M R, Kenig S. The Injection Molding of Thermoplastics. Part I and Part II[J]. Polymer Engineering and Science, 1972, 12(4): 295-308.
    [5]. Wang K K, Shen S F, Cohen C, et al. Computer-aided injection molding system[J]. Cornell Univ. Final Report, 1982.
    [6]. Turng L S. Computer-Aided-Engineering for the Gas-Assisted Injection Molding Process[A]. In ANTEC 92--Shaping the Future.[C], may 3-7, 1992: 452-456.
    [7]. Turng L S, Wang V W. Simulation of co-injection and gas-assisted injection molding[A]. In Search of Excellence, ANTEC 91[C], 1991: 297-231.
    [8]. Turng L S. Computer-aided engineering for gas-assisted injection molding[J]. Plastics Engineering(USA), 1993, 49(9): 27-30.
    [9].周华民,张宜生,李德群.气体辅助注射成型充填仿真[J].应用科学学报, 2002, (3): 321-325.
    [10].柳和生,孙燕萍,揭小平.气辅注射成型注气充填数学建模和数值模拟的若干关键技术[J].塑性工程学报, 2003, (2): 71-74.
    [11]. Shen Y K. Study on the gas-liquid interface and polymer melt front in gas-assisted injection molding[J]. International Communications in Heat and Mass Transfer, 1997, 24(2): 295-302.
    [12].申长雨,陈静波,刘春太, et al.气体辅助注射成型流动过程的CAE技术[J].模具工业, 2001, (6): 51-53.
    [13].申长雨.注塑成型模拟及模具优化设计理论与方法[M].北京:科学出版社, 2009.
    [14]. Fairbrother F, Stubbs A E. Studies in Electro-Endosmosis VI. The‘Bubble Tube’Method of Measurement[J]. Journal of the Chemical Society, Chemical Communications, 1935, 1527-529.
    [15]. Marchessault R N, Mason S G. Flow of entrapped bubbles through a capillary[J]. Industrial & Engineering Chemistry, 1960, 52(1): 79-84.
    [16]. Taylor G I. Deposition of a viscous fluid on the wall of a tube[J]. Journal of Fluid Mechanics, 1961, 10(2): 161-165.
    [17]. Cox B G. On driving a viscous fluid out of a tube[J]. Journal of fluid mechanics, 1962, 14(1): 81-96.
    [18]. Westborg H, Hassager O. Creeping motion of long bubbles and drops in capillary tubes[J]. Journal of Colloid and Interface Science, 1989, 133(1): 135-147.
    [19]. Poslinski A J, Oehler P R, Stokes V K. Isothermal gas-assisted displacement of viscoplastic liquids in tubes[J]. Polymer Engineering and Science, 2004, 35(11): 877-892.
    [20]. Poslinski A J, Coyle D J. Steady gas penetration through non-Newtonian liquids in tube and slit geometries: isothermal shear thinning effects[A]. In Proceeding of the Polymer Processing Society, Tenth Annual Meeting[C], 1994: 219-220.
    [21]. Hsu C H, Chen P C, Kung K Y, et al. Flow patterns in gas-assisted injection molding process in a channel[J]. The International Journal of Advanced Manufacturing Technology, 2007, 31(7): 673-681.
    [22]. Wang Y. The Effect Of Non-Newtonian Rheology On Gas-Assisted Injection Molding Process[D]. The Ohio State University, 2003.
    [23]. Engelman M. FIDAP Users Manual[J]. Fluid Dynamics International, Evanston, IL, 1997.
    [24]. Tadmor Z, Gogos C G著,任冬云译.聚合物加工原理(第二版)[M].北京:化学工业出版社, 2008.
    [25]. Koszkul J, Nabialek J. Viscosity models in simulation of the filling stage of the injection molding process[J]. Journal of Materials Processing Technology, 2004, 157-158(12): 183-187.
    [26].颜家华,彭玉成.聚合物熔体本构关系的研究进展[J].力学进展, 1998, 28(2): 218-226.
    [27]. Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of computational physics, 1981, 39(1): 201-225.
    [28].张健,方杰,范波芹. VOF方法理论与应用综述[J].水利水电科技进展, 2005, 25(2): 67-70.
    [29].王勖成,邵敏.有限单元法基本原理和数值方法[M].清华大学出版社, 1997.
    [30].陆金甫,关治.偏微分方程数值解法[M].清华大学出版社, 2004.
    [1]. Seow L W, Lam Y C. Optimizing flow in plastic injection molding[J]. Journal of Materials Processing Technology, 1997, 72(3): 333-341.
    [2].翟明,申长雨.注射模浇注系统位置优化设计[J].机械工程学报, 2002, 38(2): 40-43.
    [3]. Chang S H, Hwang J R, Doong J L. Manufacturing process optimization of short glass fiber reinforced polycarbonate composites in injection molding[J]. Journal of Reinforced Plastics and Composites, 2000, 19(4): 301.
    [4].申长雨,刘春太.注塑充模流动过程灵敏度数值分析[J].化工学报, 2005, 56(2): 346-351.
    [5].周凤佳.基于移动最小二乘响应曲面的注塑件工艺优化[D].上海交通大学, 2008.
    [6].穆雪峰,姚卫星,余雄庆, et al.多学科设计优化中常用代理模型的研究[J].计算力学学报, 2005, 22(5): 608-612.
    [7].穆雪峰.多学科设计优化代理模型技术的研究和应用[D].南京航空航天大学硕士学位论文, 2004.
    [8]. Simpson T W, Poplinski J D, Koch P N, et al. Metamodels for computer-based engineering design: survey and recommendations[J]. Engineering with Computers, 2001, 17(2): 129-150.
    [9]. Jin R, Du X, Chen W. The use of metamodeling techniques for optimization under uncertainty[J]. Structural and Multidisciplinary Optimization, 2003, 25(2): 99-116.
    [10].赵选民.试验设计方法[M].北京:科学出版社, 2006.
    [11].张铁茂,丁建国.试验设计与数据处理[M].北京:兵器工业出版社, 1990.
    [12]. Helton J, Davis F. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems[J]. Reliability Engineering & System Safety, 2003, 81(1): 23-69.
    [13]. Loh W. On Latin hypercube sampling[J]. The Annals of Statistics, 1996, 24(5): 2058-2080.
    [14]. Allen T T, Bernshteyn M A, Kabiri-Bamoradian K. Constructing meta-models for computer experiments[J]. Journal of Quality Technology, 2003, 35(3): 264-274.
    [15]. Wang G G. Adaptive Response surface method using inherited Latin Hypercube Design points[J]. Journal of mechanical design, 2003, 125(2): 210-220.
    [16]. Hill W J, Hunter W G. A review of response surface methodology: a literature survey[J]. Technometrics, 1966, 8(4): 571-590.
    [17]. Steinberg D M, Hunter W G. Experimental design: review and comment[J]. Technometrics, 1984, 26(2): 71-97.
    [18]. Fang K, Wang Y. Number-theoretic methods in statistics[M]. New York: Chapman & Hall/CRC, 1994.
    [19].朱伟勇,段晓东,唐明.最优设计在工业中的应用[M].沈阳::辽宁科学技术出版杜, 1994.
    [20]. Hagan M T, Menhaj M B. Training feedforward networks with the Marquardt algorithm[J]. IEEEtransactions on Neural Networks, 1994, 5(6): 989-993.
    [21]. Sadeghi B H M. A BP-neural network predictor model for plastic injection molding process[J]. Journal of materials processing technology, 2000, 103(3): 411-416.
    [22]. Cortes C, Vapnik V. Support-vector networks[J]. Machine learning, 1995, 20(3): 273-297.
    [23].张学工.关于统计学习理论与支持向量机[J].自动化学报, 2000, 26(1): 32-42.
    [24]. Giunta A A, Dudley J M, Narducci R, et al. Noisy aerodynamic response and smooth approximations in HSCT design[R]. Virginia Polytechnic Institute and State University, 1994.
    [25]. Wang G G, Shan S. Review of metamodeling techniques in support of engineering design optimization[J]. Journal of Mechanical Design, 2007, 129(4): 370-381.
    [26]. Lophaven S N, Nielsen H B, S ndergaard J. DACE: a MatLab kriging toolbox[J]. 2002.
    [27]. Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global optimization, 1998, 13(4): 455-492.
    [28].谢延敏.基于Kriging模型和灰色关联分析的板料成形工艺稳健优化设计研究[D].上海交通大学, 2007.
    [29]. James K, Eberhart R C, Yuhui S. Swarm intelligence[M]. Morgan Kaufmann Publishers, 2001.
    [30].王凌,刘波.微粒群优化与调度算法[M].北京:清华大学出版社, 2008.
    [31].高月华,王希诚.注塑制品的翘曲优化设计进展[J].中国塑料, 2006, 20(11): 8-13.
    [32]. Lophaven S, Nielsen H, S ndergaard J. DACE: a MatLab kriging toolbox[M]. Citeseer, 2002.
    [1]. Deb K. Optimization for engineering design: Algorithms and examples[M]. PHI Learning Pvt. Ltd., 2004.
    [2].崔逊学.多目标进化算法及其应用[M].北京:国防工业出版社, 2006.
    [3].公茂果,焦李成,杨咚咚, et al.进化多目标优化算法研究[J]. Journal of Software, 2009, 20(2): 271-289.
    [4]. Li X. A non-dominated sorting particle swarm optimizer for multiobjective optimization[M]. Springer Berlin / Heidelberg, 2003: 198-198.
    [5]. Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Trans. Evolutionary Computation, 2004, 8(3): 256-279.
    [6]. Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjective problems[A]. In Proceedings of the 2002 ACM symposium on Applied computing[C], 2002: 603-607.
    [7].汪定伟,王俊伟,王洪峰, et al.智能优化方法[M].北京:高等教育出版社, 2007.
    [8].玄光男,程润伟,于歆杰.遗传算法与工程优化[M].清华大学出版社, 2004.
    [9]. Goldberg D E. Genetic Algorithms in Search and Optimization[M]. Addison-wesley, 1989.
    [10]. Fonseca C M, Fleming P J. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization[A]. In Proceedings of the 5th International Conference on Genetic Algorithms[C], 1993: 416–423.
    [11]. Srinivas N, Deb K. Muiltiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary computation, 1994, 2(3): 221-248.
    [12]. Horn J, Nafpliotis N, Goldberg D E. A niched Pareto genetic algorithm for multiobjective optimization[A]. In Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the First IEEE Conference on[C], 1994: 82-87 vol.1.
    [13]. Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case studyand the strength Pareto approach[J]. IEEE transactions on Evolutionary Computation, 1999, 3(4): 257-271.
    [14]. Knowles J D, Corne D W. Approximating the nondominated front using the pareto archived evolutionstrategy[J]. Evolutionary computation, 2000, 8(2): 149-172.
    [15]. Corne D, Knowles J, Oates M. The pareto envelope-based selection algorithm for multiobjective optimization[M]. Springer Berlin / Heidelberg, 2000: 839-848.
    [16]. Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.112.5073
    [17]. Deb K, Agrawal S, Pratap A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II[M]. Springer Berlin / Heidelberg, 2000: 849-858.
    [18]. Erickson M, Mayer A, Horn J. The Niched Pareto Genetic Algorithm 2 Applied to the Design of Groundwater Remediation Systems[M]. Springer Berlin / Heidelberg, 2001: 681-695.
    [19]. Jiao L C, Du H F, Liu F, et al. Immunological Computation for Optimization, Learning and Recognition[M]. Beijing: Science Press, 2006.
    [20]. Coello C A C, Cortés N C. Solving multiobjective optimization problems using an artificial immune system[J]. Genetic Programming and Evolvable Machines, 2005, 6(2): 163-190.
    [21]. Cutello V, Narzisi G, Nicosia G. A Class of Pareto Archived Evolution Strategy Algorithms Using Immune Inspired Operators for Ab-Initio Protein Structure Prediction[M]. Springer Berlin / Heidelberg, 2005: 54-63.
    [22]. Khan N, Goldberg D E, Pelikan M. Multiple-objective Bayesian Optimization Algorithm[A]. In Proceedings of the Genetic and Evolutionary Computation Conference[C], 2002: 684.
    [23]. Laumanns M, Ocenasek J. Bayesian Optimization Algorithms for Multi-objective Optimization[A]. In Proceedings of the 7th International Conference on Parallel Problem Solving from Nature[C], 2002: 298-307.
    [24].王凌,刘波.微粒群优化与调度算法[M].北京:清华大学出版社, 2008.
    [25]. Raquel C R, Prospero C. Naval J. An effective use of crowding distance in multiobjective particle swarm optimization[A]. In Proceedings of the 2005 conference on Genetic and evolutionary computation[C], 2005: 257-264.
    [1].孙永光,李光耀,陈涛, et al.基于6σ的稳健优化设计在薄板冲压成形中的应用[J].机械工程学报, 2008, 44(11): 248-254.
    [2]. Koch P N. Probabilistic design: Optimizing for six sigma quality[A]. In 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference[C], 2002: 1-11.
    [3]. Koch P N, Yang R J, Gu L. Design for six sigma through robust optimization[J]. Structural and Multidisciplinary optimization, 2004, 26(3): 235-248.
    [4]. Hammersley J M, Handscomb D C. Monte carlo methods[M]. Taylor & Francis, 1964.
    [5]. Saliby E. Descriptive sampling: a better approach to Monte Carlo simulation[J]. Journal of the Operational Research Society, 1990, 41(12): 1133-1142.
    [6]. Ziha K. Descriptive sampling in structural safety[J]. Structural Safety, 1995, 17(1): 33-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700