用户名: 密码: 验证码:
琼州海峡超大多主跨公铁两用悬索桥方案设计和抗震研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以琼州海峡超大多主跨公铁两用悬索桥静力特性和地震安全性研究为目的,采用改进虚拟梁法进行静力特性研究并提出静力可行的结构方案,利用自编程序进行结构方案的一致和非一致地震作用时程分析。针对规范要求编写基于虚拟激励法的功率谱法求解程序,并应用在结构方案的地面均匀运动和考虑行波效应的功率谱法分析中;基于首超破坏原理对结构和构件的地震安全性进行初步评估,最终得到结构方案在地震作用下的安全性和动力可靠度初步评价。本文主要有以下工作:
     1通过多次方案分析和对比,根据琼州海峡气象、水文、地质条件,提出了4x3000m超大连跨多主跨公铁两用悬索桥的一个结构方案。初步确定了满足铁路悬索桥要求竖向活载挠度小于l/600的主缆面积和主要构件的尺寸以及结构布置形式。验算了方案在恒载、车辆荷载和横向极限风荷载作用下的强度和刚度,并对行车安全性和舒适性进行了评定。
     2根据主缆特性和大跨悬索桥主缆计算的基本原理对虚拟梁法进行改进,推导了与虚拟梁法相配合的相容方程。通过引入桥塔纵向刚度的概念,把改进的虚拟梁法应用于连跨多主跨悬索桥的求解中。并以此为基础,探讨了塔顶纵向刚度、中央扣、主缆面积、主缆容重和碳纤维主缆等对多主跨悬索桥竖向刚度的影响。针对公铁两用悬索桥行车安全性和舒适性对竖向刚度要求严格的特点,提出利用图选法确定公铁两用悬索桥合理跨径布置和主缆面积。
     3通过利用信号学原理对地震动的传播规律进行模拟,对经典的HOP方法进行了改进。改进后的HOP方法生成地震动时程不但具备局部场地收敛性且与给定的功率谱拟合更好,可以用在频谱密集型结构的抗震分析中。自编程序实现了改进的HOP方法,并合成了琼州海峡多主跨公铁两用悬索桥抗震分析适用的多点地面加速度人工时程。利用简化的位移终值归零法对人工时程进行了校正,校正后的人工时程变化小,可以直接由于考虑静力位移的多点激励拟计算中。
     4引述了多点激励的动力平衡方程,以分析拟静力位移和动力位移的由来。根据多点激励逐步积分法的基本步骤,采用完全面向对象的思想,独立编写相应的有限元程序,并通过理论分析和商业有限元软件的计算结果验证了自编程序的准确性。编程中采用了多线程的运算技术并生成了相应的动态链接库;程序中的有限元环境和动力计算类,可以作为功率谱法编程的基础和基类。
     5根据基于虚拟激励法的功率谱法的原理,编程实现了一致和非一致地震激励下结构响应功率谱的计算、基于首超破坏原理编程实现对结构动力可靠度评价。针对长周期复杂桥梁非平稳时变功率谱计算效率低的现状,推导单自由度系统在突加虚拟简谐激励作用下响应的全解,并用分段解析法验证,以此提出了琼州海峡超大多主跨公铁两用悬索桥时变功率谱估计的简化计算方法。
     6分别计算结构方案在纵向和横向一致和非一致激励下的时程响应,可以认为研究方案在E2地震作用下满足设防目标的要求。根据规范的要求,分别计算研究方案在横向和纵向一致激励下的功率谱和纵向考虑行波效应的结构响应功率谱,根据功率谱的计算结果,基于首超破坏原理,对结构的动力安全性进行评价。不考虑结构的非平稳响应时,研究方案由于主缆设计比较保守,动力可靠度较高;桥塔采用混凝土材料本身的质量较大且抗压强度低,在纵向一致激励时可靠度较低,纵向非一致激励时动力可靠度满足要求。
The static and seismic safety of Qiongzhou Strait ultra-long multi-span suspension bridge was analyzed. The fictitious beam method was improved. By applying the improved fictitious beam method a-feasibility research scheme of Qiongzhou Strait suspension bridge was proposed. The response of the scheme subjected to consistent and multi-support earthquake excitations was analyzed using self-programmed software. The power spectrum method solver in the self-programmed software was programmed according to the specifications based on the pseudo-excitation method. The self-programmed software was also applied to the analysis of the power spectrum of the scheme subject to consistent earthquake and considering the traveling wave. The main research work covers the following aspects:
     (1) A4x3000m multi-span highway-railway suspension bridge was proposed according to Qiongzhou Strait meteorological, hydrological, geological conditions. In order to meet the demands of railway suspension bridge, the vertical load deflection 1/600 requirements, the area of the main cable and the main components of the size and layout of the form was initially fixed. The strength and stiffness of the scheme under the dead loads, vehicle loads and lateral ultimate wind loads was calculated using self-programmed software.
     (2) The fictitious beam theory has been improved, is derived for the compatibility equation of the virtual beam method. By introducing the concept of longitudinal stiffness of the bridge tower make the improved virtual beam method used in the analysis of multi-span suspension bridge. On this basis, to explore the vertical stiffness of the tower, the central button, main cable section size, materials density, carbon fiber main cables and so on influence on the main cable vertical stiffness of multi-span suspension bridge. The vertical stiffness of the research Suspension bridge scheme for the highway-railway demanding characteristics is proposed to use map-selection method to determine a reasonable span suspension bridge main cables layout and section size.
     (3) An improvement was made for the current HOP method. The improved HOP method generate the artificial ground motion time history fitting better with the given power spectrum. The artificial earthquake can be used in seismic analysis of intensive spectrum structure. By the improved HOP method synthesized the Qiongzhou Strait multi-point ground acceleration history. The calibration method of ETZ (End Time Zero Technique) was simplified and was used in the artificial ground acceleration history. After calibration, only cause a small amount of change, guarantee the end ground acceleration and displacement equal to zero, can be directly used in the quasi-static displacement calculation.
     (4) In order to analyze the origin of quasi-static displacement and dynamic displacement, multi-point excitation dynamic equilibrium equation is derived. According to the multi-point excitation dynamic equilibrium equation independently programmed a finite element program, and through theoretical analysis and commercial software corresponding calculation results verified the correctness of self-programmed programs. The finite element program environment and dynamic calculation class can be used as the base class of power spectrum analysis class. All the procedures used to study the multi-point earthquake excitation of the suspension bridge scheme.
     (5) Based on the theory of the power spectrum and pseudo-excitation method, programmed to achieve the analysis of structural power spectrum response under a consistent and multi-point excitation. Derivation of the whole solution of single degree of freedom system response in the virtual harmonic excitation, and calibrate use sub-analytical method. Finally, the author programmed to achieve the evaluation of the power spectrum of structural dynamic response.
     (6) The time history response of the scheme under excitation of consistent and multi-point respectively was caculated. Through superimposed the stress results of time history analysis and the stress result of dead load and compared with the material strength, the strength of the research scheme under the action of E2 seismic can be considered meet the requirements. According to the specifications, calculated separately in the horizontal and lateral the power spectrum response of the scheme under seismic excitation, the dynamic safety of the Qiongzhou Strait Suspension Bridge was evaluated. Without considering the structure response of non-stationary, the research program was designed to more conservative due to the main cable stress is low and there is surplus. Bridge tower using concrete materials, the quality of their own larger and compressive strength is low, uniform excitation in the vertical when the reliability is low, longitudinally non-uniform excitation power reliability meets the requirements.
引文
[1]唐寰澄.世界著名海峡交通工程[M].北京:中国铁道出版社,2004.
    [2]张新军,赵孝平.多塔悬索桥的研究进展[J].公路.2008.(10):1-7
    [3]杨进.多塔多跨悬索桥应用于海峡长桥建设的技术可行性与技术优势[A].台北:2008海峡两岸通道(桥隧)工程学术研讨会论文集.2008.12:66-70
    [4]林元培,窦文俊.台湾海峡桥梁方案[A].台北:2008海峡两岸通道(桥隧)工程学术研讨会论文集.2008.12:61-65
    [5]Christian Menn, David P Billington. Breaking barriers of scale:a concept for extremely long span bridges [J]. Structural Engineering International.1995(1):48-50
    [6]夏禾.车辆与结构动力相互作用[M].北京:科学出版社.2002
    [7]崔圣爱.基于多体系统动力学和有限元法的车桥耦合振动精细化仿真研究[D].成都.西南交通大学博士学位论文.2009
    [8]邓育林,彭天波,李建中,等.大跨度三塔悬索桥动力特性及抗震性能研究[J].振动与冲击.2008.27(9):105-112
    [9]丰硕,项贻强,谢旭.超大跨度悬索桥的动力特性及地震反应分析[J].公路交通科技.2005.22(8):31-36
    [10]谢礼立,周雍年,胡成祥,于海英.地震动反应谱的长周期特性[J].地震工程与工程振动.1990.10(1):1-20
    [11]王君杰,范立础.规范反应谱长周期部分修正方法的探讨[J].土木工程学报.1998.31(6):49-56
    [12]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社.2001.
    [13]陈仁福.大跨悬索桥理论[M].成都:西南交通大学出版社.1994
    [14]Konishi I, Yamada Y. Earthquake resistant design of long span suspension bridge towers[J]. JSCE,1964, 104:55-77
    [15]J. L. Bogdanoff, J. E. Goldberg, A. J. Schiff. The effect of ground transmission time on the response of long structures [J]. Bulletin of the seismological society of America.1965,55(3):627-640
    [16]Baron, Hamati. Effects of non-uniform seismic excitation on the Dumbarton Bridge Replacement structure[R]. EERC Report.1979:76-19.
    [17]Baron, Arikan, Hamati. The effects of seismic disturbances on the Golden Gate Bridge[R]. EERC Report,1976,76-31
    [18]Baron. Design considerations for dynamic loads on suspension bridges [C], Proc. ASCE National convention. Boston,1979.
    [19]Abdel Ghaffar, L.1. Rubin. Suspension bridge response to multi-support excitations [J]. Journal of the engineering mechanics division.1982,108:419-435
    [20]Abdel Ghaffar, L. I. Rubin. Vertical seismic behaviour of suspension bridges [J]. Earthquake engineering and structural dynamics.1983,11:1~19
    [21]Abdel Ghaffar, L. I. Rubin. Torsional earthquake response of suspension bridges [J]. Journal of engineering mechanics.1983.110:1467-1485
    [22]Abdel Ghaffar. Simplified earthquake analysis of suspension bridge towers [J]. Journal of engineering mechanics.1982.108:291~308
    [23]Dumanoglu, Severn R. T. Seismic response of modern suspension bridges to asynchronous longitudinal and lateral ground motion [J]. ICE, Part2,1989,87
    [24]Dumanoglu, Severn R. T. Seismic response of modern suspension bridges to asynchronous vertical ground motion [J]. ICE, Part2,1987,83
    [25]R. S. Harichandran. Stochastic analysis of rigid foundation filtering [J]. Earthquake engineering and structural dynamics.1987,15:889~899
    [26]Federico Perotti. Structural response to non stationary multiple support random excitation [J]. Earthquake engineering and structural dynamics.1990,19:513~527
    [27]L. Esteva. Structural response to multicomponent earthquake. Seminat advance on vibration. Imperial College, London Sept,1978
    [28]M. B. Priestley. Evolutionary spectra and non-stationary process [J]. Journal of the Royal Statistical Society. Series B (Methodological),1965,27(2):204-237
    [29]M. B. Priestley. Power spectral analysis of non-stationary random processes [J]. Journal of sound vibration.1967,6:86~97
    [30]Lin Su, Goodarz Ahmadi. Earthquake response of linear continuous structure by the method of evolutionary spectra [J]. Engineering structures.1988,10(1):2-72
    [31]Kiureghian, Neuenhofer A. Response spectrum method for multi-support seismic excitations. Earthquake engineering and structural dynamics.1992,21:713~740
    [32]Zavoni, Vanmarcke E. H. Seismic random-vibration analysis of multisupport-structural systems[J]. Journal engineering mechanics, ASCE,1994,120(5):1107~1128
    [33]林家浩.随机地震响应功率谱快速算法[J].地震工程与工程振动.1990,10(4):38-47
    [34]林家浩,张亚辉,赵岩.虚拟激励法的进展与前瞻[A].上海:随机振动理论与应用2009年度暑期研讨班.2009.
    [35]李永华,李思明.绝对位移直接求解的虚拟激励法[J].振动与冲击.2009.28(10):185-190
    [36]王萍,陈达章,等.琼州海峡跨海工程新VII线B桥梁基准方案设计[A].中国海口:中国公路学会桥梁和结构工程学会2002年全国桥梁学术会议论文集.2002:32-42
    [37]郑凯锋,胥润东.琼州海峡4×3000m跨度公铁两用悬索桥方案结构可行性研究报告[R].中铁第二勘察设计院委托研究项目.2008.
    [38]Buonopane, Billington. Theory and History of Suspension Bridge Design from 1823 to 1940 [J].J Struct Engrg,1993,119(3):954~977
    [39]钱冬生,陈仁福.大跨悬索桥的设计与施工[M].成都:西南交通大学出版社.1992.
    [40]沈锐利,王志诚.自锚式悬索桥力学特性挠度理论研究[J].公路交通科技.2008.25(4):94-101.
    [41]檀永刚,张哲,黄才良.一种自锚式悬索桥主缆线形的解析解法[J].公路交通科技.2007.24(1):88-92.
    [42]沈世钊,徐崇宝,赵臣,等.悬索结构设计[M].北京:中国建筑工业出版社.2006.
    [43]李国豪.桥梁结果稳定与振动[M].北京:中国铁道出版社.2002.
    [44]Takeo Fukuda. Analysis of multi-span suspension bridges [J]. ASCE Journal of the structural division, 1967,93:63-86.
    [45]Wollmann. Preliminary analysis of suspension bridges [J]. ASCE Journal of bridge engineering,2001, 6(4):227-233.
    [46]罗喜恒,韩大章,万田保.多塔悬索桥挠度理论及其程序实现[J].桥梁建设.2008,2:41-45.
    [47]肖汝诚,贾丽君,王小同.确定大跨径悬索桥主缆成桥线形的虚拟梁法[J].计算力学学报.1999.16(1):108-114.
    [48]肖汝诚,项海帆.大跨径悬索桥结构分析理论及其专用程序系统的研究[J].中国公路学报.1998,11(4):42-50.
    [49]张志国,邹振祝,赵玉成,陈伟.悬索桥主缆线形解析方程解及应用[J].工程力学.2005,22(3):172-177.
    [50]唐茂林,强士中,沈锐利.悬索桥成桥主缆线形计算的分段悬链线法[J].铁道学报.2003,25(1):87-92.
    [51]陈常松,陈政清,颜东煌.悬索桥主缆初始位形的悬链线方程精细迭代分析法[J].工程力学.2006,23(8):62-67.
    [52]Osamu Yoshida, Motoi Okuda. Structural characteristics and applicability of four-span suspension bridge [J]. Journal of bridge engineering.2004,9(5):453-465.
    [53]夏艳霞,王建国,逢焕平.悬索桥主缆找形计算方法[J].工程设计.2007.21(5):712-716
    [54]阎春平,李志军,刘飞ANSYS的索膜结构找形系统研究[J].重庆建筑大学学报.2008,30(6):86-90
    [55]王浩,李爱群.中央扣对大跨悬索桥动力特性的影响[J].中国公路学报.2006,19(6):49-55
    [56]孙胜江,刘书伟.特大跨悬索桥动力特性及参数分析[J].公路.2007,11:41-47
    [57]Ostenfeld. From little Belt to Great Belt. Proceedings of the International Conference A.I.P.C.-F.I.P. on Cable-Stayed and Suspension Bridges, Deauville,1994,67~98.
    [58]Cobodel Arco, Aparicio. Preliminary static analysis of suspension bridges [J]. Engineering structures, 2001,23:1096~1103.
    [59]周丽君,朱纪念CFRP材料在我国桥梁加固中的应用[J].广东建材.2005,10:15-18
    [60]张锡祥,顾安邦.复合材料用于大跨斜拉桥发展展望[J].重庆交通学院学报.1995,1:18-22
    [61]Paolo Clemente, Giulio Nicolosi, Aldo Raithel. Preliminary design of very long-span suspension bridges [J]. Engineering structures.2000,22:1699~1706
    [62]项海帆,葛耀君.悬索桥跨径的空气动力极限[J].土木工程学报.2005,38(1):60-71
    [63]栗怀广.钝体空气动力学的格子玻尔兹曼方法[D].西南交通大学博士学位论文.2010
    [64]曹晖,赖明,白绍良.地震地面运动的局部谱密度描述及其估计方法[J].世界地震工程.2004.20(2):43-50
    [65]苗家武,胡世德,范立础.大型桥梁多点激励效应的研究现状与发展[A].第十三届全国桥梁学术会议论文集.1998.
    [66]刘晶波,杜修力.结构动力学[M].北京:机械工业出版社.2005.
    [67]李英民.工程地震动的模型化研究[D].重庆:重庆建筑大学.2000
    [68]Clough, Penzien. Dynamics of structures [M]. New York:McGraw-Hill Book Co.,1975
    [69]赖明,叶天义,李英民.地震动的双重过滤白噪声模型[J].土木工程学报.1995,28(6):60-66
    [70]李英民,刘立平,赖明.工程地震动随机功率谱模型的分析与改进[J].工程力学.2008.25(3):43-48
    [71]江近仁,洪峰.功率谱与反应谱的转换和人造地震波[J].地震工程与工程振动.1984.4(3):1-10
    [72]Maharaj Kaul. Stochastic characterization of earthquakes through their response spectrum [J]. earthquake engineering and structural dynamics.1978,6:497-509
    [73]赵凤新,刘爱文.地震动功率谱与反应谱的转换关系[J].地震工程与工程振动.2001.21(2):30-36
    [74]汪梦甫,尹华伟,周锡元.从反应谱求功率谱的精确方法及其应用[J].地震工程与工程振动.2004.24(4):50-59
    [75]张亚辉,陈艳,李丽媛,等.桥梁抗震随机响应分析及输入功率谱研究[J].大连理工大学学报.2007.47(6):786-791
    [76]中华人民共和国交通运输部发布.公路桥梁抗震设计细则[S]JTG/T B02-01-2008北京:人民交通出版社.2008
    [77]孙景江,江近仁.与规范反应谱对应的金井清谱的谱参数[J].世界地震工程.1990,8(1):42-48
    [78]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社.2004
    [79]胡聿贤.地震工程学[M].北京:地震出版社.2006
    [80]张敏政.近场地震动工程参数的估计[D].国家地震局工程力学研究所工学博士论文.1986
    [81]Howard Hwang, Shahram Pezeshk, Yang-Wei Lin. Generation of synthetic ground motion [R]. Mid-America Earthquake Center.2001.
    [82]Kiureghian, Neuenhofer. Response spectrum method for multi-support seismic excitations. Earthquake eengineering and structural dynamics.1992,21:713-740
    [83]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社.2004
    [84]张景绘,王超.工程随机振动理论[M].西安:西安交通大学出版社.1989.
    [85]何庆祥,沈祖炎.结构地震行波效应分析综述[J].地震工程与工程振动.2009.29(1):50-57
    [86]王君杰,王前信,江近仁.大跨度拱桥在空间变化地震动下的响应[J].振动工程学报.1995.8(2):119-127
    [87]刘文华.大跨复杂结构在多点地震动激励作用下的非线性反应分析[D].北京:北京交通大学博士学位论文.2007
    [88]Vanmarcke, Fenton. Conditioned simulation of local fields of earthquake ground motion [J]. Structural safety,1991,10:247-156
    [89]Oliveria, Hao Hong, Pengzien. Ground motion modeling for multiple-input structural analysis [J]. Structural safety,1991,10:79-93.
    [90]屈铁军,王君杰,王前信.空间变化的地震动功率谱实用模型[J].地震学报.1996.18(1):55-62
    [91]Williams. Random vibration analysis of long-span structures subjected to spatially varying ground motions [J]. Solid dynamics and earthquake engineering.2009,29:620-629
    [92]Ayman Shama. Simplified procedure for simulating spatially correlated earthquake ground motions [J]. Engineering structures.2007,29:248-258
    [93]Nicholas Burdette, Amr Elnashai, Alessio Luppoi, Anastasios Sextos. Effect of asynchronous earthquake motion on complex bridge methodology and input motion [J] Journal of bridge engineering. 2008,13(2):10-27
    [94]李杰.自锚式悬索桥地震非线性时程响应分析和简化方法研究[D].成都:西南交通大学博士论文.2007.
    [95]夏友柏,王年桥,鄢常舒.多点地震动时程人工合成[J].解放军理工大学学报.2002.3(3):50-53
    [96]Dimitris Pachakis, Lambros Katafygiotis, Aspasia Zerva. Amplitude variability in simulated incoherent seismic ground motions [J]. Journal of engineering mechanics.2007,133(7):844-848
    [97]Shinozuka. Digital simulation of random processes and its applications [J]. Journal of sound and vibration.1972,25(1):111-128
    [98]Hong Hao,Carlos Oliverira, penzien. Multiples-station ground motion processing and simulation base on SMART-1 arry data [J]. Nuclear engineering and design.1989,111:293-310
    [99]Carlos Oliverira, Hong Hao, J penzien. Ground motion modeling for multiple-input structural analysis [J]. Structural Safety.1991,10:79-93.
    [100]屈铁军,王前信.空间相关多点地震动合成(Ⅰ)基本公式[J].地震工程与工程振动.1998,18(1):8-15
    [101]屈铁军,王前信.空间相关多点地震动合成(Ⅱ)合成实例[J].地震工程与工程振动.1998.18(2):25-32
    [102]赵岩.桥梁抗震的线性非线性分析方法研究[D].大连理工大学博士论文.2003
    [103]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社.2004
    [104]刘先明,叶继红,李爱群.空间相关多点地震动合成的简化方法[J].工程抗震.2003,3:30-36
    [105]董汝博,周晶,冯新.一种考虑局部场地收敛性的多点地震动合成方法[J].震动与冲击.2007.26(4):5-9
    [106]董汝博,周晶,冯新.非平稳空间相关多点地震动合成方法研究[J].地震工程与工程振动.2007.27(3):10-16
    [107]Dodds, Robson. Partial coherence in multivariate random process [J]. Journal of sound and vibration. 1975,42(2):243-249
    [108]全伟.大跨桥梁多维多点地震反应分析研究[D].大连理工大学博士论文.2008
    [109]杜修力,陈厚群.地震动随机模拟及其参数确定方法[J].地震工程与工程振动.1994.14(4):1-5
    [110]欧进萍,牛荻涛,杜修力.设计用随机地震动的模型及其参数确定[J].地震工程与工程振动.1991.11(3):45-55
    [111]贝达特,皮尔索.凌福根,译.相关分析和谱分析的工程应用[M].北京:国防工业出版社.1983
    [112]Welch. The use of fast Fourier transform for the estimation of power spectra:A method based on time averaging over short, modified periodograms [J].Audio and electroacoustics.1967.15(2):70-73
    [113]曹晖,赖明,白绍良.地震地面运动的局部谱密度描述及其估计方法[J].世界地震工程.2004.20(2):43-50
    [114]Housner. Characteristics of strong motion earthquake [J]. BSSA,1947,37(1):19-31.
    [115]Bycroft. White noise representation of earthquakes [J]. J. EM, ASCE,1960,86(1):1-16.
    [116]Kanai K. An empirical formula for the spectrum of strong earthquake motion [J].BSSA,1961,51(1): 85~95.
    [117]欧进萍,等.设计用随机地震动的模型及其参数确定[J].地震工程与工程振动,1991,11(3):45-53.
    [118]赖明,叶天义,李英民.地震动的双重过滤白噪声模型[J].土木工程学报,1995,,28(6):60-66.
    [119]常宗仁.两自由度地震动模型在结构抗震设计中的应用[D].重庆:重庆建筑大学,1995.
    [120]Shinozuka, Sato. Simulation of nonstationary random process [J]. ASCE, EMI.1967,93
    [121]陈仁福.大跨悬索桥理论[M].成都:西南交通大学出版社.1994
    [122]Iyengar. A nonstationary random process model for earthquake accelerograms [J]. Bulletin of the seismological society of America. June 1969.59(3):1163-1188
    [123]霍俊荣,胡聿贤,冯启民.地面运动时程强度包络函数的研究[J].地震工程与工程振动.1991.11(1):1-12
    [124]Amin. Nonstationary stochastic model of earthquake motions [J]. ASCE, EM2.1968,559~584.
    [125]屈铁军,王君杰,王前信.局部场地上地震动的强度包络函数的特性研究[J].地震工程与工程振动.1994.14(3):68-80
    [126]江近仁,洪峰.功率谱与反应谱的转换和人造地震波[J].地震工程与工程振动.1984.4(3):1-10
    [127]杜修力,陈厚群.地震动随机模拟及其参数确定方法[J].地震工程与工程振动.1994.14(4):1-5
    [128]屈铁军,王前信.空间相关多点地震动合成(Ⅱ)合成实例[J].地震工程与工程振动.1998.18(2):25-32
    [129]张翠然,陈厚群.工程地震动模拟研究综述[J].世界地震工程.2008.24(2):150-157
    [130]Page. Instantaneous power spectra [J]. Journal of applied physics,1952,23(1):103-106
    [131]Priestley. Evolutionary spectra and nonstationary processes [J]. Journal of the Royal Statistical Society, 1965,27(2):204-237
    [132]Priestley. Power spectral analysis of nonstationary random processes [J]. Journal of sound and vibration,1967,6(1):86-97
    [133]Mark. Spectral analysis of the convolution and filtering of nonstationary stochastic processes [J]. Journal of sound and vibration,1970,11(1):19-63
    [134]金先龙.非平稳随机振动信号的瞬时功率谱分析[J].振动工程学报.1990.3(2):25-32
    [135]梁建文.非平稳地震动过程模拟方法(Ⅱ)[J]地震学报.2005.27(3):346-351
    [136]Saragoni. Hart. Simulation of artifical earthquake [J]. Earthquake engineering and structural dynamics. 1974,2(3):249-267
    [137]梁建文.非平稳地震动过程模拟方法(Ⅰ)[J].地震学报.2005.27(2):213-225
    [138]Ohsaki. On the significance of phase content in earthquake ground motions [J]. Earthquake engineering and structural dynamics.1979,76(5):427~439
    [139]胡聿贤,何训.考虑相位谱的人造地震动反应谱拟合[J].地震工程与工程振动.1986.6(2):37-51
    [140]张文元.ABAQUS动力学有限元分析指南[M].香港:中图图书出版社.2005.
    [141]刘晶波,杜修力.结构动力学[M].北京:机械工业出版社.2005
    [142]Clough, Penzien. Dynamics of structures [M]. New York:McGraw-Hill Book Co.,1975
    [143]江洋,石永久,王元清.大跨结构地震多点输入响应研究进展[A].第17届全国结构工程学术会议.2008.
    [144]E. L. Wilson结构静力与动力分析[M].北京:中国建筑工业出版社.2005
    [145]Leger, Ide, Paultre. Multiple-support seismic analysis of large structures [J]. Computers and structures. 1990,36(3):1153-1158
    [146]林家浩.随机地震响应的确定性算法[J].地震工程与工程振动.1985.5(1):89-93
    [147]Nobumichi Yamamura, Hiroshi Tanaka. Response analysis of flexible MDF systems for multiple support seismic excitations [J]. Earthquake engineering and structural dynamics.1990,19:345-357
    [148]Berrah, Eduardo Kausel. A modal combination rule for spatially varying seismic motions [J]. Earthquake engineering and structure dynamics,1993,22:791-800
    [149]Yutaka Nakamura, Kiureghian, David Liu. Multiple-support response spectrum, analysis of the golden gate bridge. Berkeley:University of California at Berkeley,1993
    [150]Zavoni, Vanmarcke. Seismic random-vibration analysis of multisupport-structural systems [J]. Journal engineering mechanics, ASCE,1994,120(5):1107~1128
    [151]王淑波.大型桥梁抗震反应谱分析理论与应用研究[D].上海:同济大学桥梁工程系,1997
    [152]侯新录.结构分析中的有限元法与程序设计.北京:建筑工业出版社,2004
    [153]丁浩江,何福保,谢贻权.弹性和塑性力学中的有限单元法[M].北京.机械工业出版社.1989
    [154]叶至军C++STL开发技术导引[M].北京:人民邮电出版社.2007.
    [155]Kuo Mo Hsiao, Fang Yu Hou. Nonlinear finite element analysis of elastic frames [J]. Computers & structures.1987,26(4):693-701.
    [156]丁泉顺,陈艾荣,项海帆.空间杆系结构实用几何非线性分析[J].力学季刊.2001,22(3):299-306
    [157]周凌远,李乔.基于UL法的CR列式三维梁单元计算方法[J].西南交通大学学报.2006,41(6):690-696
    [158]陆新征,叶列平,江见鲸,等.考虑地震行波效应大型高桥桥梁破坏模拟.工程抗震与加固改造.2007.29(3):1-5
    [159]中华人民共和国交通运输部发布.公路桥梁抗震设计细则[S].JTG/T B02-01-2008北京:人民交通出版社.2008
    [160]李建俊,家浩,张文首.大跨度结构受多点随机地震激励的响应[J].计算结构力学及其应用.1995,12(4):445-452
    [161]林家浩.随机地震响应功率谱快速算法[J].地震工程与工程振动.1990.10(4):38-47
    [162]祁皑,范宏伟,陈永祥.简谐荷载作用下伴生自由振动的研究[J].地震工程与工程振动.2002.22(6):156-161
    [163]祁皑,范宏伟,陈永祥.简谐地面运动作用下系统瞬态振动的研究[J].振动、测试与诊断.2003.23(3):199-203
    [164]徐龙军,谢礼立,郝敏.简谐波地震动反应谱研究[J].工程力学.2005.22(5):7-13
    [165]吴琛,周瑞忠.地震瞬态反应计算与结构位移反应谱研究[J].水力发电学报.2007.26(5):53-58
    [166]周瑞忠,吴琛,江连丁.有限持时地震动对长周期结构动力反应的影响[J].地震工程与工程振动.2008.28(1):146-151
    [167]陈仁福.大跨悬索桥理论[M].成都:西南交通大学出版社.1994
    [168]丰硕,项贻强,谢旭.超大跨度悬索桥的动力特性及地震反应分析[J].公路交通科技.2005.22 (8):31-36
    [169]刘晶波,杜修力.结构动力学[M].北京:机械工业出版社,2005.1
    [170]林家浩.非平稳随机地震响应的精确高效算法[J].地震工程与工程振动.1993.13(1):24-29
    [171]林家浩.随机地震响应功率谱快速算法[J].地震工程与工程振动.1990.10(4):38-47
    [172]欧进萍,王光远.结构随机振动[M].北京:高等教育出版社.1998
    [173]Davenport. Note on the distribution of the largest value of a random function with application to gust loading [J]. Proceedings of the Institution of Civil Engineers London.1964,28,:187-96
    [174]赵岩.桥梁抗震的线性非线性分析方法研究[D].大连理工大学博士论文.2003
    [175]刘怀林,赵岩.多点地震激励下大跨度桥梁动力可靠度研究[J].华中科技大学学报.2008.25(3):113-117
    [176]刘高,林家浩,王秀伟.基于首超破坏机制的大跨斜拉桥抖振动力可靠性分析[A].大连:全国固体力学学术会议论文集.2002
    [177]上官萍,林国仁,方德铭,等.桥梁船撞风险评估研究现状与思考[A].台北:2008海峡两岸通道(桥隧)工程学术研讨会论文集.2008.12:88-95
    [178]中国地震局地壳应力研究所.琼州海峡跨海工程(固定式)场地地震安全性评价报告[R].1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700