用户名: 密码: 验证码:
慢病毒介导的mTOR靶向抑制对肺腺癌A549细胞生物学功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1目的
     肺癌是最常见的肺原发性恶性肿瘤,近年来肺癌的发病率和病死率均迅速上升,其中男性患者中肺癌的死亡率已居首位。其中非小细胞肺癌的发病率在所有肺癌中比例最高。肺癌的发生及发展与肿瘤相关基因的异常表达存在着密切的关系。哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)作为一种高度保守的蛋白激酶,可以通过整合生长因子和营养信号来调节肿瘤细胞生长,是肿瘤生物调节中的关键性基因。目前mTOR已成为肿瘤治疗的生物靶点。
     慢病毒介导的RNA干扰是目前公认的最有效的基因沉默手段之一。本文拟通过利用慢病毒介导的RNA干扰技术,以非小细胞肺癌细胞A549为研究对象,以mTOR为目的靶基因。利用MTT、流式细胞术、克隆形成、Transwell及裸鼠体内试验等技术,分别在体外及体内环境中探讨降低mTOR的表达对A549细胞生物学行为的影响。此外通过检测P70S6K, MT1-MMP, HIF-1a, VEGFA, cyclinD1等基因的表达变化,进一步分析mTOR调控肿瘤生物学功能的分子机制。本研究旨在通过以上实验探讨mTOR在肺癌细胞中的作用及其机理,同时为mTOR作为治疗性靶基因在临床方面的应用、为肺癌的基因治疗、基因药物的研制提供必要的实验依据。
     2方法
     2.1根据mTOR编码区基因序列,设计合成4条shRNA,并克隆到慢病毒表达载体。转染A549细胞后,应用RT-PCR及western blot检测其干扰效果,并确定干扰效率最好的一条shRNA。最后分别将其包装成带有GFP标签及Puro抗性基因的慢病毒颗粒。
     2.2体外实验中,将带有GFP绿色荧光标签的慢病毒感染A549细胞。应用MTT、细胞生长曲线、克隆形成、流式细胞术检测A549细胞的增殖和凋亡能力;应用transwell检测细胞侵袭能力;利用western blot检测mTOR的表达降低对P70S6K,MT1-MMP, HIF-1a, VEGFA, cyclinD1蛋白表达的影响。
     2.3体内实验中,利用带有Puro抗性基因的慢病毒感染A549细胞并获得持续表达mTOR shRNA及对照病毒的稳定细胞株。将获得的稳定细胞株扩增并以107/只的细胞浓度接种裸鼠。接种后对裸鼠的体重及肿瘤形成进行监测,分析mTOR的低表达对A549细胞成瘤性的影响。
     2.4统计学处理:应用SPSS16.0统计分析软件进行统计学处理,计量资料采用均数士标准差(X±s)表示,多样本均数比较采用方差分析,两两比较采用LSD比较,率的比较采用X2检验等进行统计学处理,显著性检验水准取a=0.05。
     3结果3.1成功将四条mTOR shRNA克隆至pSIHl-H1-copGFP慢病毒克隆载体,分别为Sh-mTOR-6506, Sh-mTOR-3266, Sh-mTOR-4995, Sh-mTOR-6216。分别转染A549细胞后,通过RT-PCR及western blot验证mTOR的表达水平后发现,Sh-mTOR-6216对A549细胞中mTOR的抑制率可达70%以上,干扰效率明显高于其他干扰组及对照载体组。然后成功包装含有该shRNA序列的带有GFP荧光标记的慢病毒lenti-GFP-mTOR及Puro抗性基因的慢病毒lenti-Puro-mTOR,分别用于以下的体外实验及体内试验。
     3.2体外实验中,利用lenti-GFP-mTOR慢病毒感染A549细胞。感染后48h,MTT检测结果显示:空细胞组,对照慢病毒组及lenti-GFP-mTOR组在570nm的吸光度值分别为:0.687±0.103,0.667±0.037,0.356±0.059。lenti-GFP-mTOR组的细胞活力较其它两组有明显下降,差异具有统计学意义(P<0.05);对照病毒组与空细胞组之间无明显差异,不具有统计学意义。
     3.3病毒感染后,A549细胞克隆形成结果显示:空细胞组克隆形成的数量为63±10.536,对照病毒组克隆形成的数量为59.333±9.713,lenti-GFP-mTOR组克隆形成的数量为16±4.583。以上数据说明mTOR的表达降低能够有效地抑制A549细胞克隆形成能力与其余两组相比明显变弱,形成的克隆数量明显变少,差异具有统计学意义(P<0.05)。对照病毒组与空细胞组之间虽略有差异,但不具有统计学意义。
     3.4Transwell实验显示,病毒感染后24h,空细胞组穿膜细胞数为124.333±6.110,对照病毒组穿膜细胞数为109.333±11.504,lenti-GFP-mTOR组穿膜细胞数为18±5.568。lenti-GFP-mTOR穿膜细胞数较空细胞组及对照病毒组相比明显减少,差异具有统计学意义(P<0.05)。对照病毒组穿膜细胞数较空细胞组有所下降,但不具有统计学意义。
     3.5流式细胞术检测细胞凋亡结果显示:空细胞组早期凋亡细胞占有比例为0.25%,对照病毒组早期凋亡细胞占有比例为3.2%,lenti-GFP-mTOR组早期凋亡细胞占有比例为62.3%。该实验数据提示,利用慢病毒降低A549细胞中mTOR的表达后,lenti-GFP-mTOR能够有效地促进细胞凋亡,细胞凋亡数量较空细胞组及对照病毒组相比明显上升,差异具有统计学意义(P<0.05)。流式细胞术检测细胞周期结果显示:感染lenti-GFP-mTOR后,相比较空细胞组及对照病毒组,细胞出现G1期阻滞。
     3.6病毒感染后48h,应用western blot检测A549细胞中mTOR, P70S6K, MT1-MMP, HIF-1a, VEGFA, cyclinD1蛋白的表达变化。结果显示:mTOR的表达降低能够抑制P70S6K, MT1-MMP, HIF-la, VEGFA and cyclinD1等基因的蛋白表达。
     3.7体内试验中,将lenti-Puro-mTOR组稳定细胞株、对照病毒组稳定细胞株及空细胞接种于裸鼠体内。裸鼠处死后观察肿瘤大小。结果显示:空细胞组肿瘤大小为72.767±14.677mm3,对照病毒组肿瘤大小为62.625±6.358mm3,lenti-Puro-mTOR组肿瘤大小为28.308±3.521mm3。lenti-Puro-mTOR组形成的肿瘤体积明显小于空细胞组及对照病毒组,差异具有统计学意义(P<0.05)。对照病毒组肿瘤体积小于空细胞组,但不具有统计学意义。
     4结论
     4.1成功构建分别带有绿色荧光标记及嘌呤霉素抗性的特异性靶向mTOR shRNA的慢病毒,将其感染A549细胞后,可有效降低mTOR的蛋白表达。
     4.2体外实验证实利用慢病毒靶向携带mTOR RNA干扰技术降低A549细胞中mTOR的表达,可以抑制细胞的增殖、转移,以及促进细胞的凋亡。通过western blot实验发现,mTOR的低表达导致其下游一些分子的表达降低,包括P70S6K、HIF-1、MT1-MNP、VEGFA、cyclinD1。
     4.3成功建立A549细胞裸鼠模型并应用于裸鼠体内实验。实验结果显示降低mTOR的表达可以抑制裸鼠体内肿瘤的生长。
Objective
     Lung cancer is an aggressive malignancy with the higher incidence in men than that in women. Laryngal squamous cell carcinoma(LSCC) is the main kind of lung cancer. Gene deregulation in patiens associates with lung caner risk. mTOR as one kind of protein kinase has been confirmed to control cancer progression by regulating cancer relative genes. Early studies also shown that mTOR is crucial to the development of cancer and also provides a new, potential therapeutic target for treating cancer.
     RNA interference(RNAi) is a popular technique that can down-regulate gene expression specifically. In this study, RNAi was performed to regulate mTOR expression in A549cells. After mTOR down-regulation, MTT assay, colony formation assay, Transwell and Murine xenograft model were performed to test the influence of mTOR on A549cell progression. In addition, to further understand the
     mechanism of mTOR in lung cancer regulation, the expression of P70S6K, MT1-MMP, HIF-1a, VEGFA and cyclinD1were analysised by western blot.
     Methods
     1According to coding region of mTOR, mTOR specific shRN A expression plasmids were constructed and transfected into A549cells, western blot was performed to detect the expression of mTOR. After the most efficiency shRNA selected, lentivirus with GFP (lenti-GFP-mTOR) or Puro (lenti-Puro-mTOR) resistance marker were packaged.
     2After treated with lenti-GFP-mTOR, MTT assay, colony formation assay, flow assay and Transwell were performed to analysis the proliferation and invasion ability of A549cells.
     3In vivo, stable cell lines were established by treated A549cells with lenti-Puro-mTOR and control lentivirus.1×107cells were injected into athymic nude mice. The mice were monitored and tumor size was measured, and tumor volumes were calculated as width (mm)×width (mm) X length (mm)×0.5.23days after injection, the mice were killed.
     4Statistical analysis:Data are expressed as means±SEM. Statistical analysis was performed using the SPSS software version16.0. All the data were analyzed by ANOVA. P<0.05was considered statistically significant.
     Results
     1Four mTOR specific shRNA lentivirus expression plasmids were constructed, Sh-mTOR-6506, Sh-mTOR-3266, Sh-mTOR-4995, Sh-mTOR-6216. After trasfection, Sh-mTOR-6216was selected to be the most inhibition rate of mTOR in A549cells by western blot. Then lentivirus with GFP (lenti-GFP-mTOR) or Puro (lenti-Puro-mTOR) resistance marker containing mTOR-6216shRNA were packaged.
     2In vitro, MTT assay was performed to detect A549cell vability after being treated with lenti-GFP-mTOR and control lentivirus. The absorbance at570nm was as followed, Mock,0.687+0.103, control group,0.667±0.037, lenti-GFP-mTOR,0.356±0.059. Compared with control, lenti-GFP-mTOR had significant inhibition on A549cell(P<0.05). There is no significant difference between mock group and control group.
     3Colony formation assay was performed to detect A549cell proliferation after treated with lenti-GFP-mTOR and control lentivirus. The clone number were culculated, Mock,63±10.536, control group,59.333±9.713, lenti-GFP-mTOR,16±4.583. lenti-GFP-mTOR had greater influence on A549cell colony formation ability compared with control group. Clone numbers between lenti-GFP-mTOR and control group had significant difference(.P<0.05).
     4Transwell was performed to detect A549cell invasion24h after being treated with lenti-GFP-mTOR and control lentivirus. The results were shown that after treated with lenti-GFP-mTOR, A549cell invasion ability was decreased compared with control goup, and there is significant difference (P<0.05), but no significant difference between Mock and control group. The passed cells were shown, Mock,124.333±6.110, control group,109.333±11.504, lenti-GFP-mTOR,18±5.568.
     5The results of flow cytometry analysis shown that down-regulation of mTOR expression by lenti-GFP-mTOR leaded to G1phase arrest and contributed to A549cell apoptosis compared with control group. The proportion of apoptosis cell was as followed, Mock,0.337±0.103, control group,2.473±0.634, lenti-GFP-mTOR,54.973±6.377. 6The expressions of P70S6K, MT1-MMP, HIF-la, VEGFA and cyclinDl were analyzed by western blot after mTOR down-regulated. Data shown that, mTOR is the positate regulator of these genes, down-regulation of mTOR decreased the expression of P70S6K, MT1-MMP, HIF-la, VEGFA and cyclinD1.7In vivo, tumor volume was recorded after mice were killed. Tumor volume in the group of lenti-Puro-mTOR was28.308+3.521mm3, which was significantly less than that in control group (P<0.05). Tumor volume of Mock group and control group were,72.767±14.677mm3and62.625±6.358mm3respectivly, and there is no significant difference between them.
     Conclusions
     1mTOR specific silencing lentivirus with GFP of Puro selecting marker was successfully packaged,
     2In vitro, down-regulation of mTOR expression by lenti-GFP-mTOR inhibited A549cell proliferation, invasion ability, and contributed to cell apoptosis. Western blot analysis shown that the expression of P70S6K, HIF-la, VEGFA and cyclinDl were decreased after mTOR silenced.
     3In vivo, compared with control group, down-regulation of mTOR in A549cells inhibited tumor genesis, the tumor volume in lenti-Puro-mTOR group was significantly less than that in control group.
引文
[1]Desideri D, Meli MA, Feduzi L, et al.210Po and 210Pb inhalation by cigarette smoking in Italy[J]. Health physics,2007,92:58-63.
    [2]Jackson JG, Pereira-Smith OM. Primary and compensatory roles for RB family members at cell cycle gene promoters that are deacetylated and downregulated in doxorubicin-induced senescence of breast cancer cells[J]. Mol Cell Biol,2006,26:2501-2510.
    [3]Backus HH, van Riel JM, van Groeningen CJ, et al. Rb, mcl-1 and p53 expression correlate with clinical outcome in patients with liver metastases from colorectal cancer[J]. Annals of oncology:official journal of the European Society for Medical Oncology/ESMO, 2001,12:779-785.
    [4]Bandi N, Zbinden S, Gugger M, et al. miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer[J]. Cancer research,2009,69:5553-5559.
    [5]Guntur VP, Waldrep JC, Guo JJ, et al. Increasing p53 protein sensitizes non-small cell lung cancer to paclitaxel and cisplatin in vitro[J]. Anticancer research,2010,30:3557-3564.
    [6]El-Ghannam DM, Arafa M, Badrawy T. Mutations of p53 gene in breast cancer in the Egyptian province of Dakahliya[J]. Journal of oncology pharmacy practice:official publication of the International Society of Oncology Pharmacy Practitioners, 2011,17:119-124.
    [7]Kim TH, Lee SY, Rho JH, Jeong NY, et al. Mutant p53 (G199V) gains antiapoptotic function through signal transducer and activator of transcription 3 in anaplastic thyroid cancer cells[J]. Molecular cancer research:MCR,2009,7:1645-1654.
    [8]Zaanan A, Cuilliere-Dartigues P, Guilloux A, et al. Impact of p53 expression and microsatellite instability on stage III colon cancer disease-free survival in patients treated by 5-fluorouracil and leucovorin with or without oxaliplatin[J]. Annals of oncology:official journal of the European Society for Medical Oncology/ESMO,2010,21:772-780.
    [9]Shai A, Pitot HC, Lambert PF.p53 Loss synergizes with estrogen and papillomaviral oncogenes to induce cervical and breast cancers[J]. Cancer research,2008,68:2622-2631.
    [10]Shirley SH, Rundhaug JE, Tian J, et al. Transcriptional regulation of estrogen receptor-alpha by p53 in human breast cancer cells[J]. Cancer research,2009,69:3405-3414.
    [11]Hu Y, McDermott MP, Ahrendt SA. The p53 codon 72 proline allele is associated with p53 gene mutations in non-small cell lung cancer[J]. Clinical cancer research:an official journal of the American Association for Cancer Research,2005,11:2502-2509.
    [12]Koivusalo R, Mialon A, Pitkanen H, et al. Activation of p53 in cervical cancer cells by human papillomavirus E6 RNA interference is transient, but can be sustained by inhibiting endogenous nuclear export-dependent p53 antagonists[J]. Cancer research, 2006,66:11817-11824.
    [13]Jiao J, Wang S, Qiao R, et al. Murine cell lines derived from Pten null prostate cancer show the critical role of PTEN in hormone refractory prostate cancer development[J]. Cancer research,2007,67:6083-6091.
    [14]Takei Y, Saga Y, Mizukami H, et al. Overexpression of PTEN in ovarian cancer cells suppresses i.p. dissemination and extends survival in mice[J]. Mol Cancer Ther, 2008,7:704-711.
    [15]Bedolla R, Prihoda TJ, Kreisberg JI, et al. Determining risk of biochemical recurrence in prostate cancer by immunohistochemical detection of PTEN expression and Akt activation[J]. Clinical cancer research:an official journal of the American Association for Cancer Research,2007,13:3860-3867.
    [16]Hlobilkova A, Knillova J, Svachova M, et al. Tumour suppressor PTEN regulates cell cycle and protein kinase B/Akt pathway in breast cancer cells[J]. Anticancer research, 2006,26:1015-1022.
    [17]Poole EM, Curtin K, Hsu L, et al. Genetic variability in EGFR, Src and HER2 and risk of colorectal adenoma and cancer[J]. International journal of molecular epidemiology and genetics,2011,2:300-315.
    [18]Zhang S, Yu D. Targeting Src family kinases in anti-cancer therapies:turning promise into triumph[J]. Trends in pharmacological sciences,2012,33:122-128.
    [19]Xu XM, Qian JC, Cai Z, et al. DNA alterations of microsatellite DNA, p53, APC and K-ras in Chinese colorectal cancer patients[J]. European journal of clinical investigation,2011.
    [20]de Mello RA, Marques DS, Medeiros R, et al. Epidermal growth factor receptor and K-Ras in non-small cell lung cancer-molecular pathways involved and targeted therapies[J]. World journal of clinical oncology,2011,2:367-376.
    [21]Grippo PJ, Sandgren EP. Acinar-to-ductal metaplasia accompanies c-myc-induced exocrine pancreatic cancer progression in transgenic rodents [J]. Int J Cancer,2011.
    [22]Todorovic-Rakovic N, Neskovic-Konstantinovic Z, Nikolic-Vukosavljevic D. C-myc as a predictive marker for chemotherapy in metastatic breast cancer[J]. Clinical and experimental medicine,2011.
    [23]Singhi AD, Cimino-Mathews A, Jenkins RB, et al. MYC gene amplification is often acquired in lethal distant breast cancer metastases of unamplified primary tumors[J]. Modern pathology:an official journal of the United States and Canadian Academy of Pathology, Inc, 2012,25:378-387.
    [24]Appenzeller-Herzog C, Hall MN. Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling[J]. Trends in cell biology,2012.
    [25]Ettl T, Schwarz-Furlan S, Haubner F, et al. The PI3K/AKT/mTOR signalling pathway is active in salivary gland cancer and implies different functions and prognoses depending on cell localisation[J]. Oral oncology,2012.
    [26]Din FV, Valanciute A, Houde V, et al. Aspirin Inhibits mTOR Signaling, Activates AMP-Activated Protein Kinase, and Induces Autophagy in Colorectal Cancer Cells[J]. Gastroenterology,2012.
    [27]Wang Y, Ding Q, Yen CJ, et al. The Crosstalk of mTOR/S6K1 and Hedgehog Pathways[J]. Cancer cell,2012,21:374-387.
    [28]Ladu S, Calvisi DF, Conner EA, et al. E2F1 inhibits c-Myc-driven apoptosis via PIK3CA/Akt/mTOR and COX-2 in a mouse model of human liver cancer[J]. Gastroenterology,2008,135:1322-1332.
    [29]Ho C, Wang C, Mattu S, et al. AKT (v-akt murine thymoma viral oncogene homolog 1) and N-Ras (neuroblastoma ras viral oncogene homolog) coactivation in the mouse liver promotes rapid carcinogenesis by way of mTOR (mammalian target of rapamycin complex 1), FOXM1 (forkhead box M1)/SKP2, and c-Myc pathways[J]. Hepatology,2012,55:833-845.
    [30]Robert F, Mills JR, Agenor A, et al. Targeting protein synthesis in a Myc/mTOR-driven model of anorexia-cachexia syndrome delays its onset and prolongs survival[J]. Cancer research,2012,72:7477-56.
    [31]Chanprasert S, Geddis AE, Barroga C, et al. Thrombopoietin (TPO) induces c-myc expression through a PI3K-and MAPK-dependent pathway that is not mediated by Akt, PKCzeta or mTOR in TPO-dependent cell lines and primary megakaryocytes[J]. Cell Signal, 2006,18:1212-1218.
    [32]Olejniczak M, Galka-Marciniak P, Polak K, et al. RNAimmuno:A database of the nonspecific immunological effects of RNA interference and microRNA reagents[J]. RNA, 2012.
    [33]Ullu E, Djikeng A, Shi H, et al. RNA interference:advances and questions[J]. Philosophical transactions of the Royal Society of London Series B, Biological sciences 2002,357:65-70.
    [34]Hannon GJ. RNA interference[J]. Nature,2002,418:244-251.
    [35]Paddison PJ, Hannon GJ. RNA interference:the new somatic cell genetics[J]? Cancer cell, 2002,2:17-23.
    [36]Klinghoffer RA, Magnus J, Schelter J, et al. Reduced seed region-based off-target activity with lentivirus-mediated RNAi[J]. RNA,2010,16:879-884.
    [37]Stewart SA, Dykxhoorn DM, Palliser D, et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells[J]. RNA,2003,9:493-501.
    [38]Ueda R. Rnai:a new technology in the post-genomic sequencing era[J]. Journal of neurogenetics,2001,15:193-204.
    [39]Worby CA, Simonson-Leff N, Dixon JE. RNA interference of gene expression (RNAi) in cultured Drosophila cells[J]. Science's STKE:signal transduction knowledge environment,2001,2001:p11.
    [40]Pichu S, Krishnamoorthy S, Zhang B, et al. Dicer-substrate siRNA inhibits tumor necrosis factor alpha secretion in Kupffer cells in vitro:in vivo targeting of Kupffer cells by siRNA-liposomes[J]. Pharmacological research:the official journal of the Italian Pharmacological Society,2012,65:48-55.
    [41]Katoh T, Susa M, Suzuki T, et al. Simple and rapid synthesis of siRNA derived from in vitro transcribed shRNA[J]. Nucleic Acids Res Suppl,2003:249-250.
    [42]Rakov Al. [Experience with surgical treatment of lung cancer] [J]. Voprosy onkologii, 2005,51:627-631.
    [43]Baltayiannis N, Bolanos N, Anagnostopoulos D, et al. Surgery in small cell lung cancer: when and why[J]. Journal of BUON:official journal of the Balkan Union of Oncology, 2005,10:459-472.
    [44]Fingar DC, Salama S, Tsou C, et al. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E[J]. Genes Dev,2002,16:1472-1487.
    [45]Darb-Esfahani S, Faggad A, Noske A, et al. Phospho-mTOR and phospho-4EBP1 in endometrial adenocarcinoma:association with stage and grade in vivo and link with response to rapamycin treatment in vitro[J]. J Cancer Res Clin Oncol,2009,135:933-941.
    [46]Langer CJ. Individualized therapy for patients with non-small cell lung cancer:Emerging trends and challenges[J]. Critical reviews in oncology/hematology,2012.
    [47]Thomas R, Wolf J. Personalized therapy of lung cancer[J]. Onkologie,2012,35 Suppl 1:14-19.
    [48]Zhang HQ, Li MH, Yu JM. [Stereotactic body radiation therapy for early non-small cell lung cancer] [J]. Zhonghua Zhong Liu Za Zhi,2011,33:561-563.
    [49]Roman-Perez E, Casbas-Hernandez P, Rein J, et al. Gene expression in extratumoral microenvironment predicts clinical outcome in breast cancer patients[J]. Breast Cancer Res, 2012,14:R51.
    [50]Kaneko S, Hirakawa A, Hamada C. Gene Selection using a High-Dimensional Regression Model with Microarrays in Cancer Prognostic Studies[J]. Cancer informatics,2012,11:29-39.
    [51]Vartanian R, Masri J, Martin J, et al. AP-1 regulates cyclin D1 and c-MYC transcription in an AKT-dependent manner in response to mTOR inhibition:role of AIP4/Itch-mediated JUNB degradation[J]. Molecular cancer research:MCR,2011,9:115-130.
    [52]Takuwa N, Fukui Y, Takuwa Y. Cyclin D1 expression mediated by phosphatidylinositol 3-kinase through mTOR-p70(S6K)-independent signaling in growth factor-stimulated NIH 3T3 fibroblasts[J]. Mol Cell Biol,1999,19:1346-1358.
    [53]Willems L, Tamburini J, Chapuis N, et al. PI3K and mTOR Signaling Pathways in Cancer: New Data on Targeted Therapies[J]. Current oncology reports,2012.
    [54]Zhang Y, Zheng XF. mTOR-independent 4E-BP1 phosphorylation is associated with cancer resistance to mTOR kinase inhibitors[J]. Cell Cycle,2012,11:594-603.
    [55]Riaz H, Riaz T, Hussain SA. mTOR inhibitors:A novel class of anti-cancer agents[J]. Infectious agents and cancer,2012,7:1.
    [56]Gayle SS, Arnold SL, O'Regan RM, et al. Pharmacologic Inhibition of mTOR Improves Lapatinib Sensitivity in HER2-Overexpressing Breast Cancer Cells with Primary Trastuzumab Resistance[J]. Anti-cancer agents in medicinal chemistry,2012,12:151-162.
    [57]Emerling BM, Akcakanat A. Targeting PI3K/mTOR signaling in cancer[J]. Cancer research, 2011,71:7351-7359.
    [58]Jin N, Jiang T, Rosen DM, et al. Synergistic action of a RAF inhibitor and a dual PI3K/mTOR inhibitor in thyroid cancer[J]. Clinical cancer research:an official journal of the American Association for Cancer Research,2011,17:6482-6489.
    [59]Lee KB, Byun HJ, Park SH, et al. CYR61 controls p53 and NF-kappaB expression through PI3K/Akt/mTOR pathways in carboplatin-induced ovarian cancer cells[J]. Cancer letters, 2012,315:86-95.
    [60]Trinh XB, Tjalma WA, Vermeulen PB, et al. The VEGF pathway and the AKT/mTOR/p70S6K1 signalling pathway in human epithelial ovarian cancer[J]. Br J Cancer, 2009,100:971-978.
    [61]Wang Z, Li Y, Banerjee S, et al. Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-kappaB signaling pathways[J]. J Cell Biochem,2010,109:726-736.
    [62]Zhang HY, Zhang PN, Sun H. Aberration of the PI3K/AKT/mTOR signaling in epithelial ovarian cancer and its implication in cisplatin-based chemotherapy [J]. European journal of obstetrics, gynecology, and reproductive biology,2009,146:81-86.
    [63]Wang X, Yue P, Kim YA, et al. Enhancing mammalian target of rapamycin (mTOR)-targeted cancer therapy by preventing mTOR/raptor inhibition-initiated, mTOR/rictor-independent Akt activation[J]. Cancer research,2008,68:7409-7418.
    [64]Butt AJ. Overcoming resistance:targeting the PI3K/mTOR pathway in endocrine refractory breast cancer[J]. Cancer Biol Ther,2011,11:947-949.
    [65]Zhou J, Wulfkuhle J, Zhang H, et al. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104:16158-16163.
    [66]Noh WC, Kim YH, Kim MS, et al. Activation of the mTOR signaling pathway in breast cancer and its correlation with the clinicopathologic variables[J]. Breast cancer research and treatment,2008,110:477-483.
    [67]Wu WK, Volta V, Cho CH, et al. Repression of protein translation and mTOR signaling by proteasome inhibitor in colon cancer cells[J]. Biochemical and biophysical research communications,2009,386:598-601.
    [68]Lee YK, Park SY, Kim YM, et al. Suppression of mTOR via Akt-dependent and -independent mechanisms in selenium-treated colon cancer cells:involvement of AMPKalpha1[J]. Carcinogenesis,2010,31:1092-1099.
    [69]Slattery ML, Herrick JS, Lundgreen A, et al.Genetic variation in a metabolic signaling pathway and colon and rectal cancer risk:mTOR, PTEN, STK11, RPKAA1, PRKAG2, TSC1, TSC2, PI3K and Akt1[J]. Carcinogenesis,2010,31:1604-11.
    [70]Gao N, Zhang Z, Jiang BH, et al. Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer[J]. Biochemical and biophysical research communications,2003,310:1124-32.
    [71]Kinkade CW, Castillo-Martin M, Puzio-Kuter A, et al. Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model[J]. J Clin Invest,2008,118:3051-64.
    [72]Kaarbo M, Mikkelsen OL, Malerod L, et al. PI3K-AKT-mTOR pathway is dominant over androgen receptor signaling in prostate cancer cells[J]. Cellular oncology:the official journal of the International Society for Cellular Oncology,2010,32:11-27.
    [73]Kim MK, Kim TJ, Sung CO, et al. High expression of mTOR is associated with radiation resistance in cervical cancer[J]. Journal of gynecologic oncology,2010,21:181-185.
    [74]Ji J, Zheng PS. Activation of mTOR signaling pathway contributes to survival of cervical cancer cells[J]. Gynecol Oncol,2010,117:103-108.
    [75]Garcia-Maceira P, Mateo J. Silibinin inhibits hypoxia-inducible factor-1 alpha and mTOR/p70S6K/4E-BP1 signalling pathway in human cervical and hepatoma cancer cells: implications for anticancer therapy[J]. Oncogene,2009,28:313-324.
    [76]Brunner T, McKenna G. Combining molecular targeted therapeutics (MTT) and radiotherapy: MTT and MTD[J]. Eur J Cancer,2011,47 Suppl 3:S373-374.
    [77]Roudier E, Mistafa O, Stenius U. Statins induce mammalian target of rapamycin (mTOR)-mediated inhibition of Akt signaling and sensitize p53-deficient cells to cytostatic drugs[J]. Mol Cancer Ther,2006,5:2706-2715.
    [78]Albert L, Karsy M, Murali R, et al. Inhibition of mTOR Activates the MAPK Pathway in Glioblastoma Multiforme[J]. Cancer Genomics Proteomics,2009,6:255-261.
    [79]Imamura T, Shimaoka S, Tashiro K, et al. Two cases of circumferential rectal invasion from prostatic cancer[J]. Nihon Shokakibyo Gakkai zasshi= The Japanese journal of gastro-enterology,2012,109:425-434.
    [80]Ozmen F, Ozmen MM, Kansu E. Impact of Lymphatic Vessel Invasion on Survival in Gastric Cancer[J]. Journal of gastrointestinal surgery:official journal of the Society for Surgery of the Alimentary Tract,2012.
    [81]Li B, Desai SA, MacCorkle-Chosnek RA, et al. A novel conditional Akt 'survival switch' reversibly protects cells from apoptosis[J]. Gene therapy,2002,9:233-244.
    [82]Bian CX, Shi Z, Meng Q, et al. P70S6K 1 regulation of angiogenesis through VEGF and HIF-1 alpha expression[J]. Biochemical and biophysical research communications, 2010,398:395-399.
    [83]Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases:role in arthritis[J]. Frontiers in bioscience:a journal and virtual library,2006,11:529-543.
    [84]Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression[J]. Nature reviews Cancer,2002,2:161-174.
    [85]Janssens S, Lijnen HR. What has been learned about the cardiovascular effects of matrix metalloproteinases from mouse models[J]? Cardiovasc Res,2006,69:585-594.
    [86]Overall CM, Kleifeld O. Tumour microenvironment-opinion:validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy[J]. Nature reviews Cancer,2006,6:227-239.
    [87]Nakamura H, Suenaga N, Taniwaki K, et al. Constitutive and induced CD44 shedding by ADAM-like proteases and membrane-type 1 matrix metalloproteinase[J]. Cancer research,2004,64:876-882.
    [88]Egawa N, Koshikawa N, Tomari T, et al.Membrane type 1 matrix metalloproteinase (MT1-MMP/MMP-14) cleaves and releases a 22-kDa extracellular matrix metalloproteinase inducer (EMMPRIN) fragment from tumor cells[J]. The Journal of biological chemistry, 2006,281:37576-37585.
    [89]Eisenach PA, Roghi C, Fogarasi M, et al. MT1-MMP regulates VEGF-A expression through a complex with VEGFR-2 and Src[J]. J Cell Sci,2010,123:4182-4193.
    [90]Basile JR, Holmbeck K, Bugge TH, et al.MTl-MMP controls tumor-induced angiogenesis through the release of semaphorin 4D[J]. The Journal of biological chemistry, 2007,282:6899-6905.
    [91]Weiss TW, Simak R, Kaun C, et al. Oncostatin M and IL-6 induce u-PA and VEGF in prostate cancer cells and correlate in vivo[J]. Anticancer research,2011,31:3273-3278.
    [92]Aesoy R, Sanchez BC, Norum JH, et al. An autocrine VEGF/VEGFR2 and p38 signaling loop confers resistance to 4-hydroxytamoxifen in MCF-7 breast cancer cells[J]. Molecular cancer research:MCR,2008,6:1630-1638.
    [93]Leveziel N, Soubrane G, Souied EH. [Monoclonal antibodies targeting VEGF in ophthalmology:the case of exudative age-related macular degeneration] [J]. Medecine sciences:M/S,2009,25:1105-1107.
    [94]Boddy JL, Fox SB, Han C, et al. The androgen receptor is significantly associated with vascular endothelial growth factor and hypoxia sensing via hypoxia-inducible factors HIF-1a, HIF-2a, and the prolyl hydroxylases in human prostate cancer[J]. Clinical cancer research: an official journal of the American Association for Cancer Research,2005,11:7658-7663.
    [95]Saed GM, Fletcher NM, Jiang ZL, et al. Dichloroacetate induces apoptosis of epithelial ovarian cancer cells through a mechanism involving modulation of oxidative stress[J]. Reprod Sci,2011,18:1253-1261.
    [96]Akakura N, Kobayashi M, Horiuchi I, et al. Constitutive expression of hypoxia-inducible factor-1 alpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation[J]. Cancer research,2001,61:6548-6554.
    [97]Zhang J, Lu A, Li L, et al. p16 Modulates VEGF expression via its interaction with HIF-lalpha in breast cancer cells. Cancer investigation,2010,28:588-597.
    [98]Follet J, Remy L, Hesry V, et al. Adaptation to statins restricts human tumour growth in Nude mice[J]. BMC Cancer,2011,11:491.
    [99]Wenying Z, Zhaoning J, Zhimin Y, et al.Survivin siRNA Inhibits Gastric Cancer in Nude Mice[J]. Cell biochemistry and biophysics,2012,62:337-341.
    [100]Tang T, Zhang L, Gao R, et al. Fluorescence imaging and targeted distribution of bacterial magnetic particles in nude mice[J]. Applied microbiology and biotechnology, 2012,94:495-503.
    [101]Kang NH, Yi BR, Lim SY, et al. Human amniotic membrane-derived epithelial stem cells display anticancer activity in BALB/c female nude mice bearing disseminated breast cancer xenografts[J]. Int J Oncol 2012.
    [102]Xu Y, Li X, Zhang S, et al. Targeting Stat3 suppresses growth of U251 cell-derived tumours in nude mice[J]. Journal of clinical neuroscience:official journal of the Neurosurgical Society of Australasia,2012,19:443-446.
    [103]Wang J, Ding W, Sun B, et al. Targeting of colorectal cancer growth, metastasis, and anti-apoptosis in BALB/c nude mice via APRIL siRNA[J]. Mol Cell Biochem, 2012,363:1-10.
    [104]Adams LS, Kanaya N, Phung S, Liu Z, Chen S. Whole blueberry powder modulates the growth and metastasis of MDA-MB-231 triple negative breast tumors in nude mice[J]. The Journal of nutrition,2011,141:1805-1812.
    [105]Liu MY, Hou GQ, Zhang Y, Bei WJ, Yan AH. [Effects of mTOR siRNA on mTOR/p70S6K signaling pathway in esophageal squamous cell carcinoma cells and the growth of transplanted tumor in nude mice] [J]. Zhonghua Zhong Liu Za Zhi,2011,33:334-339.
    [106]Jang SH, Ryu PD, Lee SY. Dendrotoxin-kappa suppresses tumor growth induced by human lung adenocarcinoma A549 cells in nude mice[J]. Journal of veterinary science, 2011,12:35-40.
    [107]Dong AQ, Kong MJ, Ma ZY, Qian JF, Xu XH. Down-regulation of IGF-IR using small, interfering, hairpin RNA (siRNA) inhibits growth of human lung cancer cell line A549 in vitro and in nude mice[J]. Cell biology international,2007,31:500-507.
    [108]Jiang FN, Richter AM, Jain AK, Levy JG, Smits C. Biodistribution of a benzoporphyrin derivative-monoclonal antibody conjugate in A549-tumor-bearing nude mice[J]. Biotechnology therapeutics,1993,4:43-61.
    [1]Tong BC, Harpole DH Jr. Molecular markers for incidence, prognosis, and response to therapy[J]. Surg Oncol Clin N Am,2012,21(1):161-175.
    [2]Qi J, Mu D. MicroRNAs and lung cancers:from pathogenesis to clinical implications[J]. Front Med,2012,6(2):134-155.
    [3]Riess JW, Wakelee HA. Metastatic non-small cell lung cancer management:novel targets and recent clinical advances[J]. Clin Adv Hematol Oncol,2012,10(4):226-234.
    [4]Yasumoto K, Hanagiri T, Takenoyama M. Lung cancer-associated tumor antigens and the present status of immunotherapy against non-small-cell lung cancer[J]. Gen Thorac Cardiovasc Surg,2009,57(9):449-457.
    [5]Jadus MR, Natividad J, Mai A, et al. Lung cancer:a classic example of tumor escape and progression while providing opportunities for immunological intervention[J]. Clin Dev Immunol,2012,2012:160724.
    [6]Kakimi K, Nakajima J, Wada H. Active specific immunotherapy and cell-transfer therapy for the treatment of non-small cell lung cancer[J]. Lung Cancer, 2009,65(1):1-8.
    [7]Swisher SG, Roth JA. Clinical update of Ad-p53 gene therapy for lung cancer[J]. Surg Oncol Clin N Am,2002,11(3):521-535.
    [8]车国卫,周清华.肺癌的筛查和早期诊断[J].中国肺癌杂志,2003,6(6):412-417.
    [9]Fujioka N, Bitterman PB. Molecular targeted therapy in lung cancer[J]. Minn Med, 2012,95(10):38-41.
    [10]Prados J, Alvarez PJ, Melguizo C, et al. How is gene transfection able to improve current chemotherapy? The role of combined therapy in cancer treatment[J]. Curr Med Chem,2012,19(12):1870-1888.
    II1] Vachani A, Moon E, Wakeam E, et al. Gene therapy for lung neoplasms[J]. Clin Chest Med,2011,32(4):865-885.
    [12]Srivastava MK, Andersson A, Zhu L, et al. Myeloid suppressor cells and immune modulation in lung cancer[J]. IMMUNOTHERAPY-UK,2012,4(3):291-304.
    [13]Perroud MW Jr, Honma HN, Barbeiro AS, et al. Mature autologous dendritic cell vaccines in advanced non-small cell lung cancer:a phase I pilot study[J]. J Exp Clin Cancer Res,2011,30:65.
    [14]Zhong R, Teng J, Han B, et al. Dendritic cells combining with cytokine-induced killer cells synergize chemotherapy in patients with late-stage non-small cell lung cancer[J]. Cancer Immunol Immunother,2011,60(10):1497-1502.
    [15]Wang J, Zou ZH, Xia HL, et al. Strengths and weaknesses of immunotherapy for advanced non-small-cell lung cancer:a meta-analysis of 12 randomized controlled trials[J]. PLOS ONE,2012,7(3):e32695.
    [16]张健,刘超英,李晓辕,等.腺病毒介导的IL-12基因对Lewis肺癌的抑制作用[J]. 中国老年学杂志,2009,29(23):3042-3044.
    [17]徐禹,周云峰,於海军,等.靶向HRP/IAA自杀基因系统联合IL-12基因治疗Lewis肺癌的研究[J].中华肿瘤防治杂志,2011,18(13):992-996.
    [18]Morioka J, Kajiwara K, Yoshikawa K, et al. Adenovirus-mediated gene transfer of B7.1 induces immunological anti-tumor effects in a murine brain tumor [J]. J Neurooncol, 2002,60(1):13-23.
    [19]Putzer BM, Rodicker F, Hitt MM, et al. Improved treatment of pancreatic cancer by IL-12 and B7.1 costimulation:antitumor efficacy and immunoregulation in a nonimmunogenic tumor model[J]. Mol Ther,2002,5(4):405-412.
    [20]Wang YP, Tang XJ, Zhou QH, et al. [An experimental study on targeting suicide gene therapy for lung cancer with HSV-TK driven by hTERT promoter][J]. Sichuan Da Xue Xue Bao Yi Xue Ban,2008,39(5):701-705.
    [21]Wang WD, Chen ZT, Li DZ, et al. [HSV-TK gene therapy of lung adenocarcinoma xenografts using a hypoxia/radiation dual-sensitive promoter][J]. Ai Zheng, 2004,23(7):788-793.
    [22]Wang C, Natsume A, Lee HJ, et al. Neural stem cell-based dual suicide gene delivery for metastatic brain tumors[J]. Cancer Gene Ther,2012,19(11):796-801.
    [23]Leinonen HM, Ruotsalainen AK, Maatta AM, et al. Oxidative stress-regulated lentiviral TK/GCV gene therapy for lung cancer treatment[J]. Cancer Res, 2012,72(23):6227-6235.
    [24]Zhao WZ, Wang JK, Li W, et al. [Clinical research on recombinant human Ad-p53 injection combined with cisplatin in treatment of malignant pleural effusion induced by lung cancer][J]. Ai Zheng,2009,28(12):1324-1327.
    [25]Osaki S, Nakanishi Y, Takayama K, et al. Alteration of drug chemosensitivity caused by the adenovirus-mediated transfer of the wild-type p53 gene in human lung cancer cells[J]. Cancer Gene Ther,2000,7(2):300-307.
    [26]Horio Y, Hasegawa Y, Sekido Y, et al. Synergistic effects of adenovirus expressing wild-type p53 on chemosensitivity of non-small cell lung cancer cells[J]. Cancer Gene Ther,2000,7(4):537-544.
    [27]Inoue A, Narumi K, Matsubara N, et al. Administration of wild-type p53 adenoviral vector synergistically enhances the cytotoxicity of anti-cancer drugs in human lung cancer cells irrespective of the status of p53 gene[J]. Cancer Lett, 2000,157(1):105-112.
    [28]陈洁,金震东,李兆申,等.内镜超声引导下瘤内注射重组人p53腺病毒治疗胰腺癌的短期临床观察[J].胰腺病学,2007,7(2):75-77.
    [29]翁准,覃天力,谭淑瑜,等.瘤内注射重组人p53腺病毒治疗晚期肺癌临床试验观察[J].深圳中西医结合杂志,2004,14(4):206-210.
    [30]Keedy V, Wang W, Schiller J, et al. Phase I study of adenovirus p53 administered by bronchoalveolar lavage in patients with bronchioloalveolar cell lung carcinoma:ECOG 6597[J]. J Clin Oncol,2008,26(25):4166-4171.
    [31]Ma PC. Personalized targeted therapy in advanced non-small cell lung cancer[J]. Cleve Clin J Med,2012,79 Electronic Suppl 1:eS56-60.
    [32]Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature,1998,391(6669):806-811.
    [33]Yang Y, Hu Y, Wang Y, et al. Nanoparticle Delivery of Pooled siRNA for Effective Treatment of Non-Small Cell Lung Caner[J]. Mol Pharm,2012.
    [34]蒲丹,李为民,周陶友,等.hnRNPB_1基因的RNA干扰抑制肺癌细胞A549增殖研究[J].四川大学学报(医学版),2009,(03):389-392.
    [35]Hannon GJ. RNA interference[J]. Nature,2002,418(6894):244-251.
    [36]Knight SW, Bass BL. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans[J]. Science, 2001,293(5538):2269-2271.
    [37]Zamore PD. RNA interference:listening to the sound of silence[J]. Nat Struct Biol, 2001,8(9):746-750.
    [38]Poulin GB. A guide to using RNAi and other nucleotide-based technologies[J]. Brief Funct Genomics,2011,10(4):173-174.
    [39]Stark GR, Kerr IM, Williams BR, et al. How cells respond to interferons[J]. Annu Rev Biochem,1998,67:227-264.
    [40]孙莉萍,翁建,张秀明,等.siRNA的化学修饰和临床应用[J].生命的化学,2005,25(4):339-342.
    [41]Choudhary S, Lee HC, Maiti M, et al. A double-stranded-RNA response program important for RNA interference efficiency [J]. Mol Cell Biol,2007,27(11):3995-4005.
    [42]Sohail M, Doran G, Riedemann J, et al. A simple and cost-effective method for producing small interfering RNAs with high efficacy [J]. Nucleic Acids Res, 2003,31(7):e38.
    [43]Dohmen C, Edinger D, Frohlich T, et al. Nanosized multifunctional polyplexes for receptor-mediated siRNA delivery[J]. ACS NANO,2012,6(6):5198-5208.
    [44]Yang S, Tutton S, Pierce E, et al. Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells[J]. Mol Cell Biol, 2001,21(22):7807-7816.
    [45]Jubb AM, Strickland LA, Liu SD, et al. Neuropilin-1 expression in cancer and development[J]. J Pathol,2012,226(1):50-60.
    [46]Zhao L, Jiang L, Wang L, et al. UbcH10 expression provides a useful tool for the prognosis and treatment of non-small cell lung cancer[J]. J Cancer Res Clin Oncol, 2012,138(11):1951-1961.
    [47]Chen YS, Li HR, Miao Y, et al. Local injection of lentivirus-delivered livinshRNA suppresses lung adenocarcinoma growth by inducing a G0/G1 phase cell cycle arrest[J]. Int J Clin Exp Pathol,2012,5(8):796-805.
    [48]Bell DW, Brannigan BW, Matsuo K, et al. Increased prevalence of EGFR-mutant lung cancer in women and in East Asian populations:analysis of estrogen-related polymorphisms[J]. Clin Cancer Res,2008,14(13):4079-4084. [49] Keedy VL, Temin S, Somerfield MR, et al. American Society of Clinical Oncology provisional clinical opinion:epidermal growth factor receptor (EGFR) Mutation testing for patients with advanced non-small-cell lung cancer considering first-line EGFR tyrosine kinase inhibitor therapy[J]. J Clin Oncol,2011,29(15):2121-2127. [50] Butts CA, Bodkin D, Middleman EL, et al. Randomized phase Ⅱ study of gemcitabine plus cisplatin or carboplatin [corrected], with or without cetuximab, as first-line therapy for patients with advanced or metastatic non small-cell lung cancer[J]. J Clin Oncol,2007,25(36):5777-5784. [51] Rosell R, Robinet G, Szczesna A, et al. Randomized phase Ⅱ study of cetuximab plus cisplatin/vinorelbine compared with cisplatin/vinorelbine alone as first-line therapy in EGFR-expressing advanced non-small-cell lung cancer[J]. Ann Oncol, 2008,19(2):362-369. [52] Lynch TJ, Patel T, Dreisbach L, et al. Cetuximab and first-line taxane/carboplatin chemotherapy in advanced non-small-cell lung cancer:results of the randomized multicenter phase III trial BMS099[J]. J Clin Oncol,2010,28(6):911-917. [53] Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer[J]. N Engl J Med,2006,355(24):2542-2550. [54] Shaw AT, Yeap BY, Solomon BJ, et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement:a retrospective analysis[J]. Lancet Oncol,2011,12(11):1004-1012. [55] Roberts PJ, Stinchcombe TE, Der CJ, et al. Personalized medicine in non-small-cell lung cancer:is KRAS a useful marker in selecting patients for epidermal growth factor receptor-targeted therapy?[J]. J Clin Oncol,2010,28(31):4769-4777. [56] Li M, Liu L, Liu Z, et al. The status of KRAS mutations in patients with non-small cell lung cancers from mainland China[J]. Oncol Rep,2009,22(5):1013-1020.
    [57]Riely GJ, Kris MG,Rosenbaum D, et al. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma[J]. Clin Cancer Res, 2008,14(18):5731-5734. [58] Kobayashi M, Sonobe M, Takahashi T, et al. Clinical significance of BRAF gene mutations in patients with non-small cell lung cancer [J]. Anticancer Res, 2011,31(12):4619-4623. [59] Hu YL, Huang B, Zhang TY, et al. Mesenchymal stem cells as a novel carrier for targeted delivery of gene in cancer therapy based on nonviral transfection[J]. Mol Pharm,2012,9(9):2698-2709.[60] 杨雪琴,李雁.基因治疗中非病毒载体研究进展[J].武汉大学学报(医学版),2008,29(2):279-282.[61] Zhong Z, Wan Y, Shi S, et al. Co-delivery of adenovirus and carmustine by anionic liposomes with synergistic anti-tumor effects[J]. Pharm Res,2012,29(1):145-157. [62] Kawabata A, Baoum A, Ohta N, et al. Intratracheal administration of a nanoparticle-based therapy with the angiotensin II type 2 receptor gene attenuates lung cancer growth[J]. Cancer Res,2012,72(8):2057-2067.
    [63]Zarogouldis P, Karamanos NK, Porpodis K, et al. Vectors for inhaled gene therapy in lung cancer. Application for nano oncology and safety of bio nanotechnology[J]. Int J Mol Sci,2012,13(9):10828-10862.
    [64]杨飞飞,黄伟,李云飞,等.siRNA非病毒递送载体的研究现状[J].药学学报,2011,(12):1436-1443.
    [65]张小丽,唐恩洁,朱道银.RNA干扰bcl-2基因质粒载体的构建[J].亚太传统医药,2010,(02):5-7.
    [66]郜岩,孙茂盛.腺病毒载体的研究进展及其在轮状病毒疫苗研究中的应用[J].中国生物制品学杂志,2012,(03):378-382.
    [67]Gotoh A, Kanno T, Nagaya H, et al. Gene therapy using adenovirus against malignant mesothelioma[J]. Anticancer Res,2012,32(9):3743-3747.
    [68]Yao XL, Yoshioka Y, Ruan GX, et al. Optimization and internalization mechanisms of PEGylated adenovirus vector with targeting peptide for cancer gene therapy [J]. Biomacromolecules,2012,13(8):2402-2409.
    [69]Liu D, Kadota K, Ueno M, et al. Adenoviral vector expressing short hairpin RNA targeting Wnt2B has an effective antitumour activity against Wnt2B2-overexpressing tumours[J]. Eur J Cancer,2012,48(8):1208-1218.
    [70]Liu XR, Cai Y, Cao X, et al. A new oncolytic adenoviral vector carrying dual tumour suppressor genes shows potent anti-tumour effect[J]. J Cell Mol Med, 2012,16(6):1298-1309.
    [71]朱成英,张俊萍.腺相关病毒载体与肿瘤免疫治疗的研究进展[J].中国肿瘤生物治疗杂志,2012,(05):565-568.
    [72]刁勇,许瑞安.重组腺相关病毒载体诱导的天然免疫反应及机制[J].微生物学报,2012,(05):550-557.
    [73]王启钊,吕颖慧,刁勇,等.重组腺相关病毒载体的泛素化机制及其应用[J].浙江大学学报(医学版),2012,(05):586-591.
    [74]吕素芳,郭广君,肖跃强,等.逆转录病毒载体及其在动物病毒病的研究进展[J].动物医学进展,201 1,(02):86-90.
    [75]叶玲玲,许建,李世崇,等.基于逆转录病毒载体的外源基因表达系统的评价和应用[J].生物工程学报,2011,(08):1225-1231.
    [76]Hargrove PW, Kepes S, Hanawa H, et al. Globin lentiviral vector insertions can perturb the expression of endogenous genes in beta-thalassemic hematopoietic cellsfJ]. Mol Ther,2008,16(3):525-533.
    [77]Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector[J]. Science,1996,272(5259):263-267.
    [78]Kafri T, Blomer U, Peterson DA, et al. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors[J]. Nat Genet,1997,17(3):314-317.
    [79]王玉丽,黄伟,岳红,等.小干扰RNA治疗药物载体递送技术研究进展[J].国际药 学研究杂志,2010,(02):136-138+146.
    [80]Kafri T, van PH, Gage FH, et al. Lentiviral vectors:regulated gene expression[J]. Mol Ther,2000,1(6):516-521.
    [81]Gascon S, Paez-Gomez JA, Diaz-Guerra M, et al. Dual-promoter lentiviral vectors for constitutive and regulated gene expression in neurons[J]. J Neurosci Methods, 2008,168(1):104-112.
    [82]Scherr M, Battmer K, Ganser A, et al. Modulation of gene expression by lentiviral-mediated delivery of small interfering RNA[J]. Cell Cycle, 2003,2(3):251-257.
    [83]Sumimoto H, Kawakami Y. Lentiviral vector-mediated RNAi and its use for cancer research[J]. Future Oncol,2007,3(6):655-664.
    [84]Miest T, Saenz D, Meehan A, et al. Intensive RNAi with lentiviral vectors in mammalian cells[J]. Methods,2009,47(4):298-303.
    [85]Kesireddy V, der Ven PF v, Furst DO. Multipurpose modular lentiviral vectors for RNA interference and transgene expression[J]. Mol Biol Rep,2010,37(6):2863-2870.
    [86]Damiri B, Holle E, Yu X, et al. Lentiviral-mediated RNAi knockdown yields a novel mouse model for studying Cyp2b function[J]. Toxicol Sci,2012,125(2):368-381.
    [87]Banerjee D, Shimaoka M. Lentiviral gene transfer method to study integrin function in T lymphocytes[J]. Methods Mol Biol,2012,757:47-54.
    [88]Feng Y, Nie L, Thakur MD, et al. A multifunctional lentiviral-based gene knockdown with concurrent rescue that controls for off-target effects of RNAi[J]. Genomics Proteomics Bioinformatics,2010,8(4):238-245.
    [89]Tiscornia G, Singer O, Verma EM. Design and cloning of lentiviral vectors expressing small interfering RNAs[J]. Nat Protoc,2006,1(1):234-240.
    [90]Hung CF, Cheng TL, Wu RH, et al. A novel bidirectional expression system for simultaneous expression of both the protein-coding genes and short hairpin RNAs in mammalian cells[J]. Biochem Biophys Res Commun,2006,339(4):1035-1042.
    [91]Henry SD, der Wegen P v, Metselaar HJ, et al. Simultaneous targeting of HCV replication and viral binding with a single lentiviral vector containing multiple RNA interference expression cassettes[J]. Mol Ther,2006,14(4):485-493.
    [92]Sumimoto H, Hirata K, Yamagata S, et al. Effective inhibition of cell growth and invasion of melanoma by combined suppression of BRAF (V599E) and Skp2 with lentiviral RNAi[J]. Int J Cancer,2006,118(2):472-476.
    [93]ter BO,'t HK, Liu YP, et al. Lentiviral vector design for multiple shRNA expression and durable HIV-1 inhibition[J]. Mol Ther,2008,16(3):557-564.
    [94]Rintoul JL, Lemay CG, Tai LH, et al. ORFV:a novel oncolytic and immune stimulating parapoxvirus therapeutic[J]. Mol Ther,2012,20(6):1148-1157.
    [95]Podolska K, Stachurska A, Hajdukiewicz K, et al. Gene therapy prospects--intranasal delivery of therapeutic genes[J]. Adv Clin Exp Med,2012,21(4):525-534.
    [96]Peng Z. Current status of gendicine in China:recombinant human Ad-p53 agent for treatment of cancers[J]. Hum Gene Ther,2005,16(9):1016-1027.
    [97]Zarogouldis P, Karamanos NK, Porpodis K, et al. Vectors for inhaled gene therapy in lung cancer. Application for nano oncology and safety of bio nanotechnology[J]. Int J Mol Sci,2012,13(9):10828-10862.
    [98]Kawabata A, Baoum A, Ohta N, et al. Intratracheal administration of a nanoparticle-based therapy with the angiotensin II type 2 receptor gene attenuates lung cancer growth[J]. Cancer Res,2012.
    [99]Okamoto H, Shiraki K, Yasuda R, et al. Chitosan-interferon-beta gene complex powder for inhalation treatment of lung metastasis in mice[J]. J Control Release, 2011,150(2):187-195.
    [100]Shin JY, Lim HT, Minai-Tehrani A, et al. Aerosol delivery of beclinl enhanced the anti-tumor effect of radiation in the lungs of K-rasLA1 mice[J]. J Radiat Res, 2012,53(4):506-515.
    [101]Mae M, Crystal RG.Gene transfer to the pleural mesothelium as a strategy to deliver proteins to the lung parenchyma[J]. Hum Gene Ther,2002,13(12):1471-1482.
    [102]赵伟珠,王季堃,李巍,等.重组人p53腺病毒注射液联合顺铂治疗肺癌所致胸腔积液的临床研究[J].癌症,2009,(12):1324-1327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700