焊料纳米改性对无铅焊点界面反应及力学性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微电子产品的无铅化、小型化的趋势使得互连界面的脆性金属间化合物(IMC)趋向于占据更大的焊点体积份额,甚至使得互连焊点界面只包含几个IMC晶粒,成为影响微电子产品可靠性的关键科学问题。针对微电子封装可靠性的关键性问题,论文系统地研究了回流焊和时效过程中掺杂TiO_2纳米颗粒对IMC生长、互连界面微观结构和力学性能的影响机理,探索了有效抑制IMC生长和改善互连可靠性的掺杂方案,研究了无铅纳米复合焊料与焊盘金属基体(Cu基板)间界面反应动力学、焊点界面微观结构在时效过程中的演变对焊点可靠性的影响机理和应变速率及温度对复合焊料合金力学性能的影响,优化了无铅纳米复合焊料,为增强无铅焊接的可靠性提供设计、工艺和材料等方面的参考数据。其研究的主要结果如下:
     研究TiO_2纳米颗粒掺杂对Sn-3.0Ag-0.5Cu-xTiO_2(x=0,0.02,0.05,0.1,0.3和0.6wt.%)复合焊料的熔点、润湿性及显微组织影响的结果表明,掺杂TiO_2纳米颗粒对复合焊料熔点影响不大,但其与Cu基板的润湿性稍有提高。当TiO_2纳米颗粒的含量为0.1wt.%时,复合焊料与Cu基板的润湿性最好,其表面接触角最小值为8.4o,铺展面积最大值为155.24mm~2。电子扫描显微镜照片显示掺杂明显地细化了焊料基体的显微组织,其可能的机理为TiO_2纳米颗粒的表面吸附效应降低了复合焊料基体组织中Ag_3Sn晶粒的表面能,抑制了Ag_3Sn晶粒的生长和异常长大,从而细化了复合焊料的显微组织。
     研究TiO_2纳米颗粒掺杂对焊点在回流焊过程中界面液-固反应影响的结果表明,一部分TiO_2纳米颗粒会溶解在富Sn相中,一部分TiO_2纳米颗粒会沉降在Ag_3Sn相表面,还有一部分TiO_2纳米颗粒会沉降在Cu_6Sn_5相表面。掺杂TiO_2纳米颗粒后焊点界面IMC层厚度和IMC晶粒尺寸均减少。研究IMC生长指数结果表明,界面润湿反应的IMC生长是一种混合生长机制,IMC生长过程可分为三个阶段:包括扩散反应阶段、元素经晶粒间扩散的IMC扩散控制生长阶段和元素经IMC层扩散的IMC控制生长阶段。对IMC晶粒生长指数的研究结果表明,IMC晶粒生长是由原子互扩散和晶粒成熟共同控制。当TiO_2纳米颗粒含量为0.1wt.%时,IMC生长速率有最小值,抑制界面IMC层生长和细化IMC晶粒效果最显著。为了更好地理解界面反应和IMC生长机理,基于固体扩散理论建立了双相位滞后扩散模型和波动模型,模拟了回流焊过程中IMC层生长动力学;建立了Cu原子扩散通量驱动晶粒成熟生长模型,分析了回流焊过程中IMC晶粒生长机理。结果表明,回流焊过程中TiO_2纳米颗粒影响IMC生长机理符合异相成核和奥斯瓦尔德晶粒成熟机制。
     研究TiO_2纳米颗粒掺杂对焊点在120℃,150℃和190℃时效条件下界面固-固反应影响的结果表明,掺杂TiO_2纳米颗粒后焊点界面IMC层厚度减小,当TiO_2纳米颗粒含量为0.05-0.1wt.%时,IMC层厚度下降最显著。将Cu_6Sn_5和Cu_3Sn相看成一个整体时,界面IMC生长受扩散定律控制。将Cu_6Sn_5和Cu_3Sn相分别看成一个独立实体时,在190℃高温时效条件下,IMC层的生长主要是由扩散机制控制,而在120℃低温时效条件下,IMC层的生长是由扩散和界面反应共同控制。掺杂TiO_2纳米颗粒可以提高Cu_6Sn_5和Cu_3Sn相IMC层的活化能,减少原子的互扩散速率,从而抑制界面IMC层生长。比较Cu_6Sn_5和Cu_3Sn相IMC层的活化能可知,Cu_3Sn相IMC层有更高的活化能。观察焊点的微观结构演变可知,时效过程中掺杂TiO_2纳米颗粒抑制IMC生长机理可能为晶界钉扎机制。
     研究TiO_2纳米颗粒掺杂对Sn-3.0Ag-0.5Cu-xTiO_2复合焊料合金及焊点力学性能影响的结果表明,掺杂TiO_2纳米颗粒后复合焊料合金的显微硬度提高19%-37%。这种明显的强化效果是由于掺杂TiO_2纳米颗粒后减小了Ag_3Sn晶粒的平均尺寸和间距。复合焊料合金的极限拉伸强度(UTS)随着应变速率对数的增加而线性增大,随着温度的升高而线性减小。这是由于应变速率增加后位错增多,导致位错密度增加,位错间相互作用增强,从而提高复合焊料合金的抗形变能力。复合焊料焊点的拉伸强度随着时效时间的增加而减小。随着时效时间的增加,界面IMC层的生长导致焊点断裂模式发生变化,由最初的在焊料内部的韧性断裂变为既有韧性断裂又有脆性断裂的混合断裂模式,到最后沿着界面IMC的脆性断裂。研究结果还表明,含TiO_2纳米颗粒的复合焊料合金和焊点的拉伸强度比不含TiO_2纳米颗粒的焊料大,其机理可能为固溶强化和颗粒硬化机制。
With the trend towards miniaturization of microelectronic products andimplementation of lead-free soldering, the size of the microelectronic components and thusthe solder joints has been scaled down. As a result, the percentage of the volume of thebrittle intermetallic compounds (IMC) layer in solder joints trends to become higher, andpossibly only a few IMC grains is interconnected with solder joint interface, resulting inmore brittle fracture and affect the reliability of microelectronic products. Focusing on thekey issues of the reliability of microelectronic packaging, the influence of TiO_2nanoparticles dopant on the IMC growth, interconnection interface microstructure, andmechanical properties in reflow and aging processes has been investigated. The mechanismof effective inhibition of IMC growth and the doping scheme for the improvement of theinterconnect reliability have been explored. The interface reaction kinetics betweenlead-free nano-composite solder and Cu substrate, the effect of interface microstructureevolution on the reliability of solder joints during aging process, and the effect of strainrate and temperature on the mechanical properties of composite solder alloys have beensystematically investigated. The nano-composite solder has been optimized. The resultsachieved in the thesis can provide the reference in aspects of the solder joint reliabilitydesign, process and materials. The main conclusions obtained are as follows:
     The influence of TiO_2nanoparticles dopant on the melting point, wettability andmicrostructure in Sn-3.0Ag-0.5Cu-xTiO_2(x=0,0.02,0.05,0.1,0.3, and0.6wt.%)composite solders have been investigated. Results show that the melting points of theTiO_2-containing composite solders have no obvious change compared with TiO_2-freesolders. However, with an increase in the proportion of TiO_2nanoparticles, the wettabilityof the composite solders slightly increase and the microstructure of composite soldermatrix has obviously been changed. When the weight percentage of TiO_2nanoparticles is0.1wt.%, the wettability of composite solder is the best, the surface contact angle has aminimum value of8.40, while the spreading area has a maximum value of155.24mm~2.SEM photos show that dopant significantly refine the microstructure of the solder matrix. This is because the adsorption effect on the surface of TiO_2nanoparticles can reduce thesurface energy of Ag_3Sn grains in the composite solder matrix and inhibit the Ag_3Sn grainsgrowth.
     The influence of TiO_2nanoparticles dopant on liquid-solid interface reaction inSn-3.0Ag-0.5Cu-xTiO_2solder joints in reflow process has been investigated. Results showthat some of TiO_2nanoparticles are dissolved in the Sn-rich phase, some of themparticipate in the surface of Ag_3Sn phase, and the rest dissolves in surface of the Cu_6Sn_5IMC layer. Both of the thickness and grain size of IMC decrease when TiO_2nanoparticlesis added into the Sn-3.0Ag-0.5Cu solder system. According to the results of the IMC layergrowth exponents, it can be found that the growth kinetics of interfacical IMC layer is amixed growth mechanism. The wetting reaction process may contain three stages: thereaction diffusion stage, the grain boundary diffusion controlled IMC growth stage, and thevolume diffusion controlled IMC growth stage. The results of the IMC grain exponentsshow that the growth of IMC grains is controlled by atomic interdiffusion and grainmaturity. The data also show that Sn-3.0Ag-0.5Cu with about0.1wt.%TiO_2nanoparticlessolder system exhibits the smallest growth rate and gives the most prominent effect inretarding IMC growth and refining IMC grain size. In order to better understand theinterface reaction and IMC growth mechanism, a dual phase lag diffusion model and awave model based on the solid-state diffusion theory are presented for predicting the IMClayer growth in reflow process. A flux-driven ripening of copper-tin scallops is presentedfor predicting the IMC grain growth in reflow process. Based on the observation of themicrostructural evolution of the solder joints, a heterogeneous nucleation mechanism andOstwald grain ripening mechanism for retarding the IMC layer growth and refining theIMC grains due to TiO_2nanoparticles addition is proposed.
     The influence of TiO_2nanoparticles dopant on solid-solid interface reaction inSn-3.0Ag-0.5Cu-xTiO_2solder joints in120℃,150℃, and190℃aging process have beeninvestigated. Results show that the thickness of IMC decreases when TiO_2nanoparticlesare added into Sn-3.0Ag-0.5Cu solder system. There is a significant drop in IMC thickness when the weight percentage of TiO_2nanoparticles reaches0.05-0.1wt.%. When takenCu_6Sn_5and Cu_3Sn as a single entity, the IMC layer growth may be mainly controlled by aninterdiffusion-controlled mechanism. When taken Cu_6Sn_5and Cu_3Sn as independententities, at190℃higher aging temperature, the growth for both the Cu_6Sn_5and Cu_3SnIMC layers might be controlled by diffusion. At120℃lower aging temperature, thegrowth for both the Cu_6Sn_5and Cu_3Sn IMC layers are not compoletely diffusion controlled,bus also affected by chemical reaction. Results also show that adding TiO_2nanoparticles inSn-3.0Ag-0.5Cu solder system can increase the activation energy, and thus reduce theatomic diffusion rate, so as to inhibit the excessive growth of the IMC. Compared withCu_6Sn_5IMC layer, Cu_3Sn IMC layer has much higher activation energy. Based on theobservation of the microstructural evolution of the solder joints, a grain boundary pinningmechanism for inhibition of the IMC growth in aging process due to TiO_2nanoparticles isproposed.
     The influence of TiO_2nanoparticles dopant on mechanical properties inSn-3.0Ag-0.5Cu-xTiO_2composite solder alloys and solder joints have been investigated.Results show that the microhardness enhancement of these TiO_2-containing compositesolders is19%to37%compared with TiO_2-free noncomposite solder. The existence ofTiO_2nanoparticles in the solder matrix can apparently enhance the microhardness of thecomposite solder. This might be attributed to the reduction of the size and spacing betweenAg_3Sn grains in the solder matrix. The ultimate tensile strength (UTS) ofSn-3.0Ag-0.5Cu-xTiO_2composite solder alloys has a logarithmically linear increaserelation with strain rate and has a linear decrease with temperature. At higher strain rate,more and more dislocations are created. Increasing strain rate is accompanied by anincrease in the dislocation density. The increase in dislocation density will in turn increasethe interaction between dislocations and result in improving the composite solder alloysresistance to deformation. Tensile strength of solder joints drops with the aging time. Withan increase in aging time, the growth of interfacial IMC layer leads to change the fracturepattern in solder joints. The fracture pattern can be classified into three types with the increase in ageing time: ductile fracture in the solder at the begining, and then mixedfracture type containing ductile fracture and brittle fracture, and lately the brittle fracturealong the IMC interface for the long aging time. TiO_2-containing composite solder alloysand solder joints have higher UTS than TiO_2-free solder alloy and solder joint due to solidhardening and paricle hardening.
引文
[1]谷丰. SnAgCu无铅焊料润湿性及焊点电迁移研究[D].广州:华南理工大学,2010.
    [2]李勋平. BGA结构Cu(Ni)/Sn-3.0Ag-0.5Cu/Ni(Cu)微焊点显微组织形成和演化及剪切断裂行为的尺寸效应[D].广州:华南理工大学,2011.
    [3] Martin Goosey. An overview of the current status of lead-free assembly and lelatedissues [J]. Circuit World,2003,29(4):23-27.
    [4] M. R. Harrison, J. H. Vincent, H. A. H. Steen. Lead-free reflow soldering forelectronics assembly [J]. Soldering&Surface Mount Technology,2001,13(3):21-38.
    [5]安荣,刘威,杭春进,等.电子封装与组装焊点界面反应及微观组织研究进展[J].电子工艺技术,2011,32(6):321-329.
    [6] Desmond Y R Chong, F. X. Che, John H. L. Pang, et al. Drop impact reliability testingfor lead-free and lead-based soldered IC packages [J]. Microelectronics Reliability,2006,46(7):1160-1171.
    [7] Pan Kai-Lin, Zhou Bin, Yan Yi-Lin. Drop Dynamic Responses and Modal Analysis forBoard Level TFBGA [A].2007International Symposium on High Density packagingand Microsystem Integration [C], Shanghai,2007:1-5.
    [8] Liping Zhu, Marcinkiewicz W. Drop impact reliability analysis of CSP packages atboard and product levels through modeling approaches Components and PackagingTechnologies [J]. IEEE Transactions on Components and Packaging Technologies,2005(28):449-456.
    [9]尹立孟,李望云,位松,等.焊点尺寸对微焊点拉伸断裂强度的影响[J].电子元件与材料,2011,30(9):57-60.
    [10]邹长东.应用纳米尺寸效应降低Sn基无铅焊料熔化温度的基础研究[D].上海:上海大学,2010.
    [11] Abtew M., Selvaduary G. Lead-free solders in miccroeletronic [R]. Materials Scienceand Engineering-Report,2000,27(25):95-141.
    [12] Subramanian K. M., Lee J. G. Physical metallurgy in lead-free electronic solderdevelopment [J]. JOM Journal of the Minerals, Metals and Materials Society,2003,55(5):26-32.
    [13] Suganuma K. Advances in lead-free electronic soldering [J]. Current Opinion in SolidState and Materials Science,2001,5(1):55-64.
    [14] Plumbridge W. J. Second generation lead-free solder alloys a challenge tothermodynamic [J]. Monatshefte fur Chemie,2005,136(11):1811-1821.
    [15] Wu C. M. L., Yu D. Q., Law C. M. T., et al. Properties of lead-free solder alloys withrare earth element additions [R]. Materials Science and Engineering-Report,2004,44(1):1-44.
    [16]周敏波.无铅微互连焊点形成过程中早期界面反应和过冷凝固行为研究[D].广州:华南理工大学,2012.
    [17] G. Y. Li, B. L. Chen. Formation and growth kinetics of interfacial intermetallics inPb-free solder joint [J]. IEEE Transactions on Components and PackagingTechnologies,2003,26(3):651-658.
    [18]尹立孟,张新平.无铅微互连焊点力学行为尺寸效应的试验及数值模拟[J].机械工程学报,2010,46(2):55-60.
    [19]王会芬,侯昌锦,吴金昌.热老化条件下SAC305焊点的界面反应[J].电子工艺技术,2011,32(6):346-372.
    [20]姚健,卫国强,石永华.热时效对SnAgCu微焊点界面IMC和抗拉强度的影响[J].热加工工艺,2011,40(9):5-8.
    [21]黄明亮,柏冬梅.钎焊及时效过程中化学镀Ni-P与Sn-3.5Ag的界面反应[J].中国有色金属学报,2010,20(6):1189-1194.
    [22]邹建,吴丰顺,王波,等.电子封装微焊点中的柯肯达尔空洞问题[J].电子工艺技术,2010,31(1):1-5.
    [23]蒋礼,张桂英,周孑民.剪切蠕变下无铅焊点厚度的尺寸效应[J].电子元件与材料,2008,27(8):55-58.
    [24]张新平,尹立孟,于传宝.电子和光子封装无铅钎料的研究和应用进展[J].材料研究学报,2008,22(1):1-9.
    [25] M. Date, T. N. Tu. Interfacial reactions and impact reliability of Sn–Zn solder jointson Cu or electroless Au/Ni(P) bond-pads [J]. Journal of Materials Research,2004,19(10):2887-2895.
    [26] Desmond Y R Chong, F. X. Che, Hohn H. L. Pang, et al. Drop impact reliabilitytesting for lead-free and lead-based soldered IC packages [J]. MicroelectronicsReliability,2006,46:1160-1171.
    [27] Liping Zhu, Marcinkiewicz W.. Drop impact reliability analysis of CSP packages atboard and product levels through modeling approaches Components and PackagingTechnologies [J]. IEEE Transactions on Components, Packaging and ManufacturingTechnology, Part A: Packaging Technologies,2005,28(3):449-456.
    [28] Luan, Jing-En E. Goh, Kim-yong Yong. Design for Improvement of Drop ImpactPerformance of IC Packages [A].31stInternational Conference on ElectronicsManufacturing and Technology [C]. Petaling Jaya,2007:129-134.
    [29]王要利,张柯科,刘帅,等.微连接用Sn-2.5Ag-0.7Cu(0.1RE)钎料焊点界面Cu6Sn5的长大行为[J].稀有金属材料与工程,2010,39(1):117-121.
    [30] L. P. Feng, S. Y. Chang, L. C. Tsao, et al. Influence of nano-TiO2reinforcements onthe wettability and interfacial reactions of novel lead-free Sn3.5Ag0.5Zn compositesolder/Cu solder joints [A].12th International Conference on Electronic PackagingTechnology&High Density Packaging [C], Shanghai,2011:260-263.
    [31] Jianbiao Pan, Julie Silk, Mike Powers, et al. Effect of Gold Content on the Reliabilityof SnAgCu Solder Joints [J]. IEEE Transactions on Components, Packaging andManufacturing Technology,2011,1(10):1662-1669.
    [32] J. C. Leong, L. C. Tsao, C. J. Fang, et al. Effect of nano-TiO2addition on themicrostructure and bonding strengths of Sn3.5Ag0.5Cu composite solder BGApackages with immersion Sn interface finish [J]. Journal of Materials Science:Materials in Electronics,2011(22):1443-1449.
    [33] Nai-Shuo Liu, Kwang-Lung Lin. The effect of Ga content on the wetting reaction andinterfacial morphology formed between Sn-8.55Zn-0.5Ag-0.1Al-xGa solders and Cu[J]. Scripta Materialia,2006,54(2):219-224.
    [34] Guang Zeng, Songbai Xue, Liang Zhang. A review on the interfacial intermetalliccompounds between Sn-Ag-Cu based solders and substrates [J]. Journal of MaterialsScience: Materials in Electronics,2010,21(5):421-440.
    [35] X. P. Zhang, C. B. Yu, Y. P. Zhang, et al. Processing treatment of a lead-freeSn-Ag-Cu-Bi solder by rapid laser-beam reflowing and the creep property of itssoldered connection [J]. Journal of Materials Processing Technology,2007,192-193(1):539-542.
    [36] Y. Tang, Y. C. Pang, J. X. Zhan, et al. Effects of Sb Addition on Grain RipeningGrowth at Interface of Sn-Ag-Cu-xSb/Cu in Wetting Reactions [A].13thInternationalConference on Electronic Packaging Technology&High Density Packaging [C],Guilin,2012:219-223.
    [37] G. Y. Li, X. D. Bi, Q. Chen, et al. Influence of dopant on growth of intermetallic layersin Sn-Ag-Cu solder joints [J]. Journal of Electronic Materials,2011,40(2):165-175.
    [38]龙琳,陈强,廖小雨,等.添加Sb和LaB6对Sn3.0Ag0.5Cu/Cu界面IMC生长的影响[J],半导体技术,2012,37(1):42-46.
    [39] G. Y. Li, C. Tang, X. Y. Yan, et al. Effects of Surface Finishes on the IntermetallicGrowth and Micro-structure Evolution of the Sn3.5Ag0.7Cu lead-free Solder Joints
    [A].2009International Conference on Electronic Packaging Technology&HighDensity Packaging[C], Beijing,2009:807-811.
    [40] G. Y. Li. Effect of Dopant on Microstructure and Mechanical Properties of Pb-FreeSolder Joints [A]. Electronic Packaging Technology[C], Shanghai,2007:1-5.
    [41] G. Y. Li, Danial Shi. Effects of Bismuth on the Growth of Intermetallic Compounds inSn-Ag-Cu Pb-free Solder joints [J]. Transactions of Nonferrous Metals Society ofChina,2006(16):739-743.
    [42] G. Y. Li, B. L. Chen, X. Q. Shi, et al. Effects of Sb Addition on Mechanical Propertiesof Sn-3.5Ag-0.7Cu Solder Alloy and Joints [J]. Thin solid films,2006(504):421-425.
    [43] B. L. Chen, G. Y. Li. An Investigation of Effects of Sb on the Intermetallic Formationin Sn-3.5Ag-0.7Cu Solder Joints [J]. IEEE Transactions on Components andPackaging Technologies,2005(28):534-541.
    [44] G. Y. Li, B. L. Chen, J. N. Tey. Reaction of Sn-3.5Ag-0.7Cu-xSb solder with Cumetallization during reflow soldering [J]. IEEE Transactions on Electronics PackageManufacturing,2004,27(1):77-85.
    [45]马运柱,李永君,刘文胜.纳米颗粒增强无铅复合焊料的研究现状[J].电子元件与材料,2011,30(60):79-83.
    [46]刘彬,刘建萍,高小雨,等.热疲劳对纳米结构强化的无铅焊点性能的影响[J].稀有金属,2009,33(2):205-210.
    [47] H. Mavoori, S. Jin. Dispersion strengthening for dimensional stability inlow-melting-point solders [J]. Journal of the Minerals, Metals&Materials Society,2000,52(6):30-32.
    [48] F. Guo, J. Lee, S. Choi, et al. Processing and aging characteristics of eutecticSn-3.5Ag solder reinforced with mechanically incorporated Ni particles [J]. Journal ofElectronic Materials,2001,30(9):1073-1082.
    [49] C. M. L. Wu, D. Q. Yu, C. M. T. Law, et al. Porperties of lead-free solder alloys withrare earth element additions [J]. Materials Science and Engineering R,2004,44(1):1-44.
    [50] A. Lee, K. N. Subbramanian. Development of nano-composite lead-free electronicsolders [J]. Journal of Electronic Materials,2005,34(11):1399-1407.
    [51] F. Guo. Composite lead-free electronic solders [J]. Journal of Electronic MaterialsScience-Materials in Electronics,2007,18(1-3):129-145.
    [52] J. W. Lee, Z. H. Lee, H. M. Lee. Formation of intermetallic compounds in the Nibearing lead free composite solders [J]. Materials Transactions,2005,46(11):2344-2350.
    [53] J. Shen, Y. C. Liu, H. X. Gao. In situ nanoparticulate-reinforced lead-free Sn-Agcomposite prepared by rapid solidification [J]. Journal of Materials Science: Materialsin Electronics,2007,18(4):463-468.
    [54]韩永典. Ni涂层碳纳米管增强Sn-Ag-Cu无铅钎料的可靠性研究[D].天津:天津大学,2009.
    [55] J. Shen, Y. C. Liu, H. X. Gao, et al. Strengthening effects of ZrO2nanoparticles on themicrostructure and microhardness of Sn-3.5Ag lead-free solder [J]. Materials Scienceand Engineering A,2006,441(1-2):135-141.
    [56] Dong Hoon Kim, Moon Gi Cho, Sun-Kyoung Seo, et al. Effects of Co Addition onBulk Properties of Sn-3.5Ag Solder an Interfacial Reaction with Ni-P UBM [J].Journal of Electronic Materials,2009,38(1):39-45.
    [57] Jung-Sub Lee, Kun-Mo Chu, Rainer Patzelt, et al. Effects of Co addition in eutecticSn-3.5Ag solder on shear strength and microstructural development [J]. Journal ofElectronic Materials,2009,38(1):39-45. Microelectronic Engineering,2008,85(7):1577-1583.
    [58] D. C. Lin, T. S. Srivatsan, G. X. Wang, et al. Microstructural development in a rapidlycooled eutectic Sn-3.5%Ag solder reinforced with copper powder [J]. PowderTechnology,2006,166(1):38-46.
    [59] K. Mohan Kumar, V. Kripesh, L. Shen, et al. Study on the micstructure andmechanical properties of a novel SWCNT-reinforced solder alloy for ultra-fine pitchapplications [J]. Thin Solid Films,2006,504(1-2):371-378.
    [60] K. Mohan Kumar, V. Kripesh, Andrew A. O. Tay. Single-wall carbon nanotube(SWCNT) functionalized Sn–Ag–Cu lead-free composite solders [J]. Journal ofAlloys and Compounds,2008,450(1–2):229-237.
    [61] L. C. Tsao, S. Y. Chang, C. I. Lee, et al. Effects of nano-Al2O3additions onmicrostructure development and hardness of Sn3.5Ag0.5Cu solder [J]. Materials andDesign,2010,31(10):4831-4835.
    [62] L. C. Tsao, M. W. Wu, S. Y. Chang. Effect of TiO2nanoparticles on the microstructureand bonding strengths of Sn0.7Cu composite solder BGA packages with immersionSn surface finish [J]. Journal of Materials Science: Materials in Electronics,2012,23(3):681-687.
    [63] S. Y. Chang, C. C. Jian, T. H. Chuang, et al. Effect of addition of TiO2nanoparticleson the microstructure, microhardness and interfacial reactions of Sn3.5AgXCu solder[J]. Materials and Design,2011,32(10):4720-4727.
    [64] L. C. Tsao, C. H. Huang, C. H. Chung, et al. Influence of TiO2nanoparticles additionon the microstructural and mechanical properties of Sn0.7Cu nano-composite solder[J]. Materials Science and Engineering A,2012,545:194-200.
    [65] L. C. Tsao, S. Y. Chang. Effects of Nano-TiO2additions on thermal analysis,microstructure and tensile properties of Sn3.5Ag0.25Cu solder [J]. Materials andDesign,2010,31(2):990-993.
    [66] L. C. Tsao. Suppressing effect of0.5wt.%nano-TiO2addition into Sn-3.5Ag-0.5Cusolder alloy on the intermetallic growth with Cu substrate during isothermal aging [J].Journal of Alloys and Compounds,2011,509:8441-8448.
    [67] L. C. Tsao, W. T. Huang, M. W. Wu, et al. Suppressing effect of1wt.%nano-TiO2addition into low Ag content Sn-Ag-Cu solder alloy on the intermetallic growth withCu substrate during isothermal aging [A].13thInternational Conference on ElectronicPackaging Technology&High Density Packaging [C], Guilin,2012:465-468.
    [68]龙乐.电子封装技术发展现状及趋势[J].电子与封装,2012,12(1):39-43.
    [69] M. Abtew, G. Selvaduray. Lead-free Solders in Microelectronics [J]. Materials Scienceand Engineering,2000,27(5-6):95-141.
    [70]彩霞.高密度电子封装可靠性研究[D].上海:中国科学院上海微系统与信息技术研究所,2002.
    [71] Rao R. Tummala. Fundamentals of Microsystems Packaging [M]. USA: McGraw-Hill,2001:18.
    [72]孙鹏.电子封装中无铅焊点的界面演化和可靠性研究[D].上海:上海大学,2007.
    [73]田民波.电子封装工程[M].北京:清华大学出版社,2003:1-3,8-9,131-132.
    [74]郭福.无铅钎焊技术与应用[M].北京:科学出版社,2006:1,312,315.
    [75] M. Koyanagi, T. Fukushima, K. Lee, et al.3D Integration Technology andHeterogeneous Integration [J]. The Institute of Electronics, Information andCommunication Engineers Transactions on Electronics,2011, J94-C (11):355-364.
    [76]顾勇,王莎鸥,赵建明,等.高密度3-D封装技术的应用与发展趋势[J].电子元件与材料,2010,29(7):67-70.
    [77] Terrill, Rob E. Beene, Gary L..3D packaging technology overview and mass memoryapplications [A]. Proceddings of Aerospace Applications Confernece [C], Aspen,1996:347-355.
    [78]岑玉华.高密度封装[J].电子与封装,2003,3(1):14-17.
    [79]刘洋. SnAgCuNiBi无铅钎料焊接性能及IMC生长机制[D].哈尔滨:哈尔滨理工大学,2010.
    [80]颜学优.封装堆叠可靠性的研究[D].广州:华南理工大学,2010.
    [81]郎鹏,高志方,牛艳红.3D封装与硅通孔工艺技术[J].电子工艺技术,2009,30(6):323-326
    [82] Hongtao Ma, Jeffrey C. Suhling. A review of mechanical properties of lead-freesolders for electronic packaging [J]. Journal of Materials Science,2009,44(5):1141-1158.
    [83]夏阳华.无铅电子封装中的界面反应及焊点可靠性[D].上海:中国科学院上海微系统与信息技术研究所,2006.
    [84]张莎莎,张亦杰,马乃恒,等. Sn-Ag-Cu系无铅焊料性能研究进展[J].金属铸锻焊技术,2010,39(1):125-127.
    [85]张帅,薛松柏,张亮,等.关于Sn-Ag-Cu系无铅焊点可靠性研究的几个热点问题[J].焊接,2:31-35.
    [86]尹立孟,刘亮岐,杨艳.三种典型Sn-Ag-Cu无铅钎料的组织和性能研究[J].电子元件与材料,2010,29(5):48-50.
    [87] D. A. Shnawah, M. F. M. Sabri, I. A. Badruddin. A review on thermal cycling anddrop impact reliability of SAC solder joint in portable electronic products [J].Microelectronics Reliability,2012,52(1):90-99.
    [88] Satyanarayan, K. N. Prabhu. Reactive wetting, evolution of interfacial and bulk IMCsand their effect on mechanical properties of eutectic Sn-Cu solder alloy [J]. Advancesin Colloid and Interface Science,2011,166(1-2):87-118.
    [89] D. A. Shnawah, M. F. M. Sabri, I. A. Badruddin. A review on effect of minor alloyingelements on thermal cycling and drop impact reliability of low-Ag Sn-Ag-Cu solderjoints [J]. Microelectronics International,2012,29(1):47-57.
    [90] L. Ye, Z. H. Lai, J. Liu, et al. Microstructure investigation of Sn-0.5Cu-3.5Ag andSn-3.5Ag-0.5Cu-0.5B lead-free solders [J]. Soldering&Surface Mount Technology,2001,13(3):16-20.
    [91] J. W. Jang, D. R. Frear. Morphology of interfacial reaction between lead-free soldersand electroless Ni-P under bump metallizations [J]. Journal of Applied Physics,2000,88(11):6359-6363.
    [92] K. Chung, Y. C. Chan. Correlation between Ni3Sn4intermetallics and Ni3P due tosolder reaction-assisted crystallization of electroless Ni-P metallization in advancedpackages [J]. Journal of Materials Research,2000,15(11):2534-2539.
    [93] Y. D Jeon, S. Nieland, A. Ostmann, et al. Studies on the interfacial reactions betweenelectroless Ni UBM and95.5Sn-4.0Ag-0.5Cu Alloy [A].52ndInternationalConference on Electronic Components and Technology [C], San Diego,2002:740-746.
    [94] O. Fouassier, J. Chazelas, J. F. Silvain. Conception of a consumable copper reactionzone for a NiTi/SnAgCu composite material [J]. Composites Part A: Applied Scienceand Manufacturing,2002,33(10):1391-1395.
    [95] H. T. Lee, M. H. Chen, H. M. Jao, et al. Influence of interfacial intermatalliccompound on fracture behavior of solder joints [J]. Materials Science and Engineering:A,2003,358(1-2):134-141.
    [96] D. Q. Yu, C. M. L. Wu, C. M. T. Law, et al. Intermetallic compounds growth betweenSn–3.5Ag lead-free solder and Cu substrate by dipping method [J]. Journal of Alloysand Compounds,2005,392(1-2):192-199.
    [97] Dae-Gon Kim, Seung-Boo Jung. Interfacial reactions and growth kinetics forintermetallic compound layer between In–48Sn solder and bare Cu substrate [J].Journal of Alloys and Compounds,2005,386(1-2):151-156.
    [98] Z. Mei, A. J. Sunwoo, J. W. Morris. Analysis of low-temperature intermetallic growthin copper-tin diffusion couples [J]. Metallurgical Transactions A,1992,23(3):857-864.
    [99] P. T. Vianco, K. L. Erickson, P. L. Hopkins. Solid state intermetallic compound growthbetween copper and high temperature, tin-rich solders—part I: Experimental analysis[J]. Journal of Electronic Materials,1994,23(8):721-727.
    [100] K. L. Erickson, P. L. Hopkins, P. T. Vianco. Modeling the solid-state reactionbetween Sn-Pb solder and a porous substrate coating [J]. Journal of ElectronicMaterials,1998,27(11):1177-1192.
    [101] Y. G. Lee, J. G. Duh. Interfacial morphology and concentration profile in theunleaded solder/Cu joint assembly [J]. Journal of Materials Science: Materials inElectronics,1999,10(1):33-43.
    [102] Joo-Youl Huh, Sang-Uk Han, Chang-Yong Park. Effect of bismuth on the growthkinetics of intermetallic compounds in Sn-3.5Ag solder joints: A growth kinetic model[J]. Metals and Materials International,2004,10(2):123-131.
    [103] R. R. Chromik, E. J. Cotts. A Study of the Kinetics and Energetics of Solid StateReactions in Pd/Sn Diffusion Couples [J]. Materials research society symposiumproceedings,1995,398:307-312.
    [104] R. R. Chromik, E. J. Cotts. Thermodynamic and Kinetic Study of PhaseTransformations in Solder/Metal Systems [J]. Materials research society symposiumproceedings,1996,445:31-36.
    [105] K. F. Dreyer, W. K. Neils, R. R. Chromik, et al. Calorimetric study of the energeticsand kinetics of interdiffusion in Cu/Cu6Sn5thin-film diffusion couples [J]. AppliedPhysics Letters,1995,67(19):2795-2797.
    [106] Yin Chou, Ruey-Jen Yang. Two-dimensional dual-phase-lag thermal behavior insingle-/multi-layer structures using CESE method [J]. International Journal of Heatand Mass Transfer,2009,52(1-2):239-249.
    [107] J. K. Chen, J. E. Beraun. A simple model for interfacial phase growth in metal matrixcomposites [J]. Applied Science and Manufacturing,2000,31(7):727-731.
    [108] J. K. Chen, J. E. Beraun, D. Y. Tzou. A dual-phase-lag diffusion model for predictingintermetallic compound layer growth in solder joints [J]. Journal of ElectronicPackaging,2001,123(1):52-57.
    [109] J. K. Chen, J. E. Beraun. A dual-phase-lag diffusion model for interfacial layergrowth in metal matrix composites [J]. Journal of Materials Science,1999,34(24):6183-6187.
    [110] J. K. Chen, J. E. Beraun, D. Y. Tzou. A dual-phase-lag diffusion model for predictingthin film growth [J]. Semiconductor Science and Technology,2000,15(3):235-241.
    [111]刘雪华,唐电. Sn基焊料/Cu界面IMC形成机理的研究进展[J].电子元件与材料,2011,30(5):72-76.
    [112]李勋平,周敏波,夏建民,等.界面耦合作用对Cu(Ni)/Sn-Ag-Cu/Cu(Ni)BGA焊点界面IMC形成与演化的影响[J],金属学报,2011,47(5):611-619.
    [113]姚健,卫国强,石永华,等.电迁移极性效应及其对Sn-3.0Ag-0.5Cu无铅焊点拉伸性能的影响[J].中国有色金属学报,2011,21(12):3094-3099.
    [114] H. K. Kim, K. N. Tu. Kinetic analysis of the soldering reaction between eutecticSnPb alloy and Cu accompanied by ripening [J]. Physical Review B,1996,53(23):16027-16034.
    [115] K. N. Tu. Cu/Sn interfacial reactions: thin-film case versus bulk case [J]. MaterialsChemistry and Physics,1996,46(2-3):217-223.
    [116] H. K. Kim, H. K. Liou, K. N. Tu. Three‐dimensional morphology of a very roughinterface formed in the soldering reaction between eutectic SnPb and Cu [J]. AppliedPhysics Letters,1995,66(18):2337-2339.
    [117] H. K. Kim, K. N. Tu. Rate of consumption of Cu in soldering accompanied byripening [J]. Applied Physics Letters,67(14):2002-2004.
    [118] K. N. Tu, T. Y. Lee, J. W. Jang, et al. Wetting reaction versus solid state aging ofeutectic SnPb on Cu [J]. Journal of Applied Physics,2001,89(9):4843-4849.
    [119] K. N. Tu, A. M. Gusak, M. Li. Physics and materials challenges for lead-free solders[J]. Journal of Applied Physics,2003,93(3):1335-1353.
    [120] J. O. Suh, K. N. Tu, N. Tamura. A synchrotron radiation X-ray microdiffraction studyon orientation relationships between a Cu6Sn5and Cu substrate in solder joints [J].Journal of Metals,2006,58(6):63-66.
    [121] J. O. Suh, K. N. Tu, G. V. Lutsenko. Size distribution and morphology of Cu6Sn5scallops in wetting reaction between molten solder and copper [J]. Acta Materialia,2008,56(5):1075-1083.
    [122] J. O. Suh, K. N. Tu, G. V. Lutsenko, et al. Size distribution and morphology ofCu6Sn5scallops in wetting reaction between molten solder and copper [J]. ActaMaterialia,2008,56(5):1075-1083.
    [123] J. O. Suh, K. N. Tu, N. Tamura. Preferred orientation relationship between Cu6Sn5scallop-type grains and Cu substrate in reactions between molten Sn-based soldersand Cu [J]. Journal of Applied Physics,2007,102(063511):1-7.
    [124] Bhedwar H, Ray K, Kulkarni S, et al. Kirkendall effect studies in copper-tindiffusion couples [J]. Scripta Materialia,1972(6):919-922.
    [125]王海东,张海.晶粒生长的蒙特卡罗模拟研究进展[J].材料导报,2007,21(2):72-86.
    [126]方斌,黄传真,许崇海,等.材料微观组织演变的蒙特卡罗仿真原理及应用[J].材料导报,2007,21(2):75-78.
    [127] B. Radhakrishnan, T. Zacharia. Simulation of Curvature-Driven Grain Growth byUsing a Modified Monte Carlo Algorithm [J]. Metallurgical and MaterialsTransactions A,1995(26A):167-180.
    [128] B. Radhakrishnan, T. Zacharia. Monte Carlo Simulation of Grain Boundary Pinningin the Weld Heat-Affected Zone [J]. Metallurgical and Materials Transactions A,1995(26A):2123-2130.
    [129]王永彪,王永欣.凝固过程中椭圆形颗粒对晶粒生长影响的相场法模拟[J].热加工工艺,2011,40(13):15-21.
    [130] I. M. McKenna, M. P. Gururajan, P. W. Voorhees. Phase field modeling of graingrowth: effect of boundary thickness, triple junctions, misorientation, and anisotropy[J]. Journal of Materials Science,2009,44(9):2206-2217.
    [131]张宪刚,宗亚平,王明涛,等.晶粒生长演变相场法模拟界面表达的物理模型[J].物理学报,2011,60(6):068201.
    [132] G. Couturier, R. Doherty, C. Maurice, et al.3D finite element simulation of theinhibition of normal grain growth by particles [J]. Acta Materialia,2005(53):977-989.
    [133] N. Moelans, B. Blanpain, P. Wollants. Phase field simulations of grain growth intwo-dimensional systems containing finely dispersed second-phase particles [J]. ActaMaterialia,2006(54):1175-1184.
    [134] M. A. A. Mohd Salleha, A. M. Mustafa Al Bakria, M. H. Zan, et al.Mechanical properties of Sn–0.7Cu/Si3N4lead-free composite solder [J]. MaterialsScience and Engineering: A,2012,556(30):633–637.
    [135] S. M. L. Naia, J. Weib, M. Guptaa. Interfacial intermetallic growth and shearstrength of lead-free composite solder joints [J]. Journal of Alloys and Compounds,2009,473(1-2):100-106.
    [136] Si Chen, Lili Zhang, Johan Liu, et al. A Reliability Study of NanoparticlesReinforced Composite Lead-Free Solder [J]. Materials Transactions,2010,51(10):1720-1726.
    [137]刘平.颗粒增强Sn3.8Ag0.7Cu复合无铅焊料的研究[D].天津:天津大学,2009.
    [138] K. Y. Lee, M. Li, K. N. Tu. Growth and Ripening of (Au,Ni)Sn4Phase in Pb-Freeand Pb-Containing Solders on Ni/Au Metallization[J]. Journal of Materials Research,2003,18(11):2562-2570.
    [139] Iver E. Anderson. Development of Sn-Ag-Cu and Sn-Ag-Cu-X alloys for Pb-freeelectronic solder applications [J]. Lead-Free Electronic Solders,2007:55-76.
    [140] Guangdong Li, Yaowu Shi, Hu Hao, et al. Effect of rare earth addition on shearstrength of SnAgCu lead-free solder joints [J]. Journal of Materials Science:Materials in Electronics,2009,20(2):186-192.
    [141] Pavol ebo, Zbigniew Moser, Peter vec, et al. Effect of indium on themicrostructure of the interface between Sn3.13Ag0.74CuIn solder and Cu substrate[J]. Journal of Alloys and Compounds,2009,480(2):409-415.
    [142] Chun Yu, Hao Lu, Shiming Li. Effect of Zn addition on the formation and growth ofintermetallic compound at Sn–3.5wt%Ag/Cu interface [J]. Journal of Alloys andCompounds,2008,460(1-2):594-598.
    [143] WeiMin Xiao, YaoWu Shi, GuangChen Xu, et al. Effect of rare earth on mechanicalcreep–fatigue property of SnAgCu solder joint [J]. Journal of Alloys and Compounds,2009,472(1-2):198-202.
    [144] Y. W. Wang, Y. W. Lin, C. T. Tu, et al. Effects of minor Fe, Co, and Ni additions onthe reaction between SnAgCu solder and Cu [J]. Journal of Alloys and Compounds,2009,478(1-2):121-127.
    [145] K. S. Kim, S. H. Huh, K. Suganuma. Effects of fourth alloying additive onmicrostructures and tensile properties of Sn–Ag–Cu alloy and joints with Cu [J].Microelectronics Reliability,2003,43(2):259-267.
    [146] Ping Liu, Pei Yao, Jim Liu. Evolutions of the interface and shear strength betweenSnAgCu–xNi solder and Cu substrate during isothermal aging at150°C [J]. Journal ofAlloys and Compounds,2009,486(1-2):474-479.
    [147] Pei Yao, Ping Liu, Jim Liu. Effects of multiple reflows on intermetallic morphologyand shear strength of SnAgCu–xNi composite solder joints on electrolytic Ni/Aumetallized substrate [J]. Journal of Alloys and Compounds,2008,462(1-2):73-79.
    [148] Feng Jiang Wang, Zhin Shui Yu, Kai Qi. Intermetallic compound formation atSn–3.0Ag–0.5Cu–1.0Zn lead-free solder alloy/Cu interface during as-soldered andas-aged conditions [J]. Journal of Alloys and Compounds,2007,438(1-2):110-115.
    [149] F. Sun, P. Hochstenbach, W. D. Van Driel, et al. Fracture morphology andmechanism of IMC in Low-Ag SAC Solder/UBM (Ni(P)-Au) for WLCSP [J].Microelectronics Reliability,2008,48(8-9):1167-1170.
    [150] Y. C Chan, Alex C. K So, J. K. L Lai. Growth kinetic studies of Cu–Sn intermetalliccompound and its effect on shear strength of LCCC SMT solder joints [J]. MaterialsScience and Engineering: B,1998,55(1-2):5-13.
    [151] Liang Zhang, Song-bai Xue, Li-li Gao, et al. Effects of rare earths on properties andmicrostructures of lead-free solder alloys [J]. Journal of Materials Science: Materialsin Electronics,2009,20(8):685-694.
    [152] Wenxing Dong, Yaowu Shi, Yongping Lei, et al. Effects of small amounts of Ni/P/Ceelement additions on the microstructure and properties of Sn3.0Ag0.5Cu solder alloy[J]. Journal of Materials Science: Materials in Electronics,2009,20(10):1008-1017.
    [153] X. P. Zhang, C. B. Yu, S. Shrestha, L. Dorn. Creep and fatigue behaviors of thelead-free Sn–Ag–Cu–Bi and Sn60Pb40solder interconnections at elevatedtemperatures [J]. Journal of Materials Science: Materials in Electronics,2007,18(16):665-670.
    [154] M. He, V. L. Acoff. Effect of Bi on the Interfacial Reaction between Sn-3.7Ag-xBiSolders and Cu [J]. Journal of Electronic Materials,2008,37(3):288-299.
    [155] C. M. L. Wu, Y. W. Wong. Rare-earth additions to lead-free electronic solders [J].Journal of Materials Science: Materials in Electronics,2007,18(1-3):77-91.
    [156] X. P. Zhang, L. M. Yin, C. B. Yu. Thermal creep and fracture behaviors of thelead-free Sn–Ag–Cu–Bi solder interconnections under different stress levels [J].Journal of Materials Science: Materials in Electronics,2008,19(4):393-398.
    [157]刘光华.稀土材料学[M].北京:化学工业出版社,2007:1-13.
    [158]王俭辛.稀土Ce对Sn-Ag-Cu和Sn-Cu-Ni钎料性能及焊点可靠性影响的研究
    [D].南京:南京航空航天大学,2009.
    [159] H. Hao, J. Tian, Y. W. Shi, et al. Properties of Sn3.8Ag0.7Cu Solder Alloy with TraceRare Earth Element Y Additions [J]. Journal of Electronic Materials,2007,36(7):766-774.
    [160]郝虎,田君,史耀武,等. SnAgCuY系稀土无铅钎料显微组织与性能研究[J].稀有金属材料与工程,2006,35(S2):121-123.
    [161] Yaowu Shi, Jun Tian, Hu Hao, et al. Effects of small amount addition of rare earth Eron microstructure and property of SnAgCu solder [J]. Journal of Alloys andCompounds,2008,453(1-2):180-184.
    [162] Zhigang Chen, Yaowu Shi, Zhidong Xia. Constitutive relations on creep forSnAgCuRE lead-free solder joints [J]. Journal of Electronic Materials,2004,33(9):964-971.
    [163] Zhigang Chen, Yaowu Shi, Zhidong Xia, et al. Properties of lead-free solder SnAgCucontaining minute amounts of rare earth [J]. Journal of Electronic Materials,2003,32(4):235-243.
    [164] Bo Li, Yaowu Shi, Yongping Lei, et al. Effect of rare earth element addition on themicrostructure of Sn-Ag-Cu solder joint [J]. Journal of Electronic Materials,2005,34(3):217-224.
    [165] Weimin Xiao, Yaowu Shi, Yongping Lei, et al. Comparative study of microstructuresand properties of three valuable SnAgCuRE lead-free solder alloys [J]. Journal ofElectronic Materials,2006,35(5):1095-1103.
    [166]卢斌,栗慧,王娟辉,等.添加微量稀土元素对Sn-Ag-Cu系无铅焊料性能的影响[J].稀有金属与硬质合金,2007,35(1):27-30.
    [167]卢斌,栗慧,王娟辉,等.稀土Er对Sn3.0Ag0.5Cu无铅焊料合金组织与性能的影响[J].中国有色金属学报,2007,17(4):518-524.
    [168] Y. Tang, G. Y. Li, X. Q. Shi. Low-Cycle Fatigue Behavior of95.8Sn-3.5Ag-0.7CuSolder Joints [J]. Journal of Electronic Materials,2013,42(1):192-200.
    [169] Y. Tang, Y. C. Pan, G. Y. Li. Influence of TiO2Nanoparticles on Thermal Property,Wettability and Interfacial Reaction in Sn-3.0Ag-0.5Cu-xTiO2Composite Solder [J].Journal of Materials Science: Materials in Electronics,2012, DOI10.1007/s10854-012-0980-6
    [170] Y. Tang, G. Y. Li, Y. C. Pan. Influence of TiO2Nanoparticles on IMC Growth inSn-3.0Ag-0.5Cu-xTiO2Solder Joints in Reflow Process [J]. Journal of Alloys andCompounds,2013,554:195-203.
    [171] H. Mavoori, S. Jin. New, creep-resistant, low melting point solders with ultrafineoxide dispersions [J]. Journal of Electronic Materials,1998,27(11):1216-1222.
    [172] D Lin, G. X Wang, T. S Srivatsan, et al. The influence of copper nanopowders onmicrostructure and hardness of lead–tin solder [J]. Materials Letters,2002,53(4-5):333-338.
    [173] D Lin, G. X Wang, T. S Srivatsan, et al. Influence of titanium dioxide nanopowderaddition on microstructural development and hardness of tin–lead solder [J]. MaterialsLetters,2003,57(21):3193-3198.
    [174]刘彬,邰枫,郭福,等.纳米结构强化无铅焊点的力学性能[J].复合材料学报,2009,26(2):11-17.
    [175]刘彬,邰枫,郭福,等.纳米结构强化的新型Sn-Ag基无铅复合钎料[J].材料工程,2009(8):38-48.
    [176]刘晓英. Sn基复合无铅钎料的研究[D].大连:大连理工大学,2010.
    [177] T. H. Chuang, M. W. Wu, S. Y. Chang, et al. Strengthening mechanism ofnano-Al2O3particles reinforced Sn3.5Ag0.5Cu lead-free solde [J]. Journal ofMaterials Science: Materials in Electronics,2011,22(8):1021-1027.
    [178] Tae-kyu Lee, Weidong Xie, Bite Zhou, et al. Impact of Isothermal Aging on LongTerm Reliability of Fine-Pith Ball Grid Array Packages with Sn-Ag-Cu SolderInterconnects: Die Size Effects [J]. Journal of Electronic Materials,2011(40):1967-1976.
    [179] S. M. L. Nai, J. Wei, M. Gupta. Influence of ceramic reinforcements on thewettability and mechanical properties of novel lead-free solder composites [J]. ThinSolid Films,2006,504(1-2):401–404.
    [180] S. M. L. Nai, J. Wei, M. Gupta. Improving the performance of lead-free solderreinforced with multi-walled carbon nanotubes [J]. Materials Science and Engineering:A,2006,423(1-2):166-169.
    [181] D. C. Lin, S. Liu, T. M. Guo, et al. An investigation of nanoparticles addition onsolidification kinetics and microstructure development of tin–lead solder [J].Materials Science and Engineering: A,2003,360(1-2):285–292.
    [182] K. Mohankumar, A. A. O. Tay. Nano-Particle Reinforced Solders for fine pitchapplications [A].6thElectronics Packaging Technology Conference [C]. Singapore,2004:455-461.
    [183] P. Liu, P. Yao, J. Liu. Effect of SiC Nanoparticle Addition on Microstructure andMicrohardness of Sn-Ag-Cu Solder Alloy [J]. Journal of Electronic Materials,2008,37(6):874-879.
    [184] Tai F, Guo F, Xia Z D, et al. Processing and creep properties of Sn-Cu compositesolders with small amounts of nanosized Ag reinforcement additions [J]. JournalElectronic Materials,2005(34):1357-1362.
    [185] Shen J, Chan Y C. Effects of ZrO2nanoparticles on the mechanical properties ofSn-Zn solder joints on Au/Ni/Cu pads [J]. Journal of Alloys and Compounds,2009,477(1-2):552-559.
    [186]陈红圣. Sn-Bi系合金熔体结构转变及其对凝固和润湿性的影响[D].合肥:合肥工业大学,2008.
    [187]李松.电子封装焊料润湿性的研究[D].武汉:华中科技大学,2006.
    [188]徐刚. Sn-Zn系无铅钎料抗氧化性与润湿性研究[D].吉林:吉林大学,2007.
    [189] Masatoshi Kuroda, Daigo Setoyama, Masayoshi Uno, et al. Nanoindentation studiesof zirconium hydride [J]. Journal of Alloys and Compounds,2004,368(1-2):211-214.
    [190] D. M. Jacobson, G. Humpston. Depressing the melting point of solders and brazes byeutectic alloying [J]. GEC Journal of Research,1995,12(2):112-118.
    [191] J. Tateno. An empirical relation on the melting temperature of some ionic crystals [J].Solid State Communications,1972,10(1):61-62.
    [192]陈强.掺杂对电子封装无铅互连界面微结构和可靠性影响的机理研究[D].广州:华南理工大学,2011.
    [193] Zhang XiaoRui, Yuan ZhangFu, Zhao HongXin, et al. Wetting behavior andinterfacial characteristic of Sn-Ag-Cu solder alloy on Cu substrate [J]. ChineseScience Bulletin,2010,55(9):797-801.
    [194] Likun Zang, Zhangfu Yuan, Hongyan Xu, et al. Wetting process and interfacialcharacteristic of Sn-3.0Ag-0.5Cu on different substrates at temperatures rangingfrom503K to673K [J]. Apply Surface Science,2011,257(11):4877-4884.
    [195] Nai-Shuo Liu, Kwang-Lung Lin. The effect of Ga content on the wetting reactionand interfacial morphology formed between Sn-8.55Zn-0.5Ag-0.1Al-xGa soldersand Cu [J]. Scripta Materialia,2006,54(2):219-224.
    [196] J. G. Li. Kinetics of wetting and spreading of Cu-Ti alloys on alumina and glassycarbon substrates [J]. Journal of Materials Science Letters,1992,11(23):1551-1554.
    [197] K. W. Moon, W. J. Boettinger, U. R. Kattner, et al. Experimental and thermodynamicassessment of Sn-Ag-Cu solder alloys [J]. Journal of Electronic Materials,2000,29(10):1122-1136.
    [198]龚代涛,刘晓波,王国勇. Sn-Zn-Ag系无铅钎料焊接性能研究[J].电子工艺技术,2003,24(3):98-102.
    [199]孙莉.添加纳米颗粒的复合无铅钎料及其微连接接头性能研究[D].石家庄:石家庄铁道学院,2008.
    [200]商延赓. Sn基无铅钎料组织、性能和界面反应行为的研究[D].吉林:吉林大学,2007.
    [201] Katsuaki Suganuma, Toshikazu Murata, Hiroji Noguchi, et al. Heat Resistance ofSn–9Zn Solder/Cu Interface with or without Coating [J]. Journal of MaterialsResearch,2000,14(4):884-891.
    [202] M. Y. Chiu, S. S. Wang, T. H. Chuang. Intermetallic compounds formed duringinterfacial reactions between liquid Sn-8Zn-3Bi solders and Ni substrates [J]. Journalof Electronic Materials,2002,31(5):494-499.
    [203]石霖.合金热力学[M].北京:机械工业出版社,1992:456.
    [204] Q. J. Zhai, S. K. Guan, Q. Y. Shang. Alloy thermo-mechanism-theory and application
    [M]. Beijing: Metallurgy Industry Press,1999:67.
    [205] J. H. Yao, K. R. Elder, H. Guo, et al. Ostwald ripening in two and three dimensions[J]. Physical Review B,1992,45(14):8173-8176.
    [206] J. H. Lee, J. H. Park, Y. H. Lee, et al. Stability of channels at scalloplike Cu6Sn5layerin solder interconnections [J]. Journal of Materials Research,2001,16(5):1227-1230.
    [207] M. Schafer, W. Laub, J. M. Sabee, et al. A Numerical Method for PredictionIntermetallic Layer Thickness Developer during the Formation of Solder Joints [J].Journal of Electronic Materials,1996,25(6):992-1003.
    [208] Dongkai Shangguan. Lead-Free Solder Interconnect Reliability [M]. Beijing:Publishing House of Electronic Industry,2008:51-60.
    [209] Da Yu Tzou. The generalized lagging response in small-scale and high-rate heating[J]. International Journal of Heat and Mass Transfer,1995,38(17):3231-3240.
    [210] T. H. Chuang, H. M. Wu, M. D. Cheng, et al. Mechanisms for interfacial reactionsbetween liquid Sn-3.5Ag solders and cu substrates [J]. Journal of ElectronicMaterials,2004,33(1):22-27.
    [211] Won Kyoung Choi, Hyuck Mo Lee. Effect of soldering and aging time on interfacialmicrostructure and growth of intermetallic compounds between Sn-3.5Ag solderalloy and Cu substrate [J]. Journal of Electronic Materials,2000,29(10):1207-1213.
    [212] K. N. Tu. Solder Joint Technologies Materials, Properties, and Reliability [M]. NewYork: Springer,2007:127-151.
    [213] D. A. Porter, K. E. Easterling. Phase Transformations in Metals and Alloys [M].London: Chapman&Hall,1981:186.
    [214] R. E. Reed-Hill. Physical Metallurgy Principles [M]. Massachusetts: PWSPublishing Company,1972:306-307.
    [215] S. Murty, S. A. Kori, M. Chakraborty. Grain refinement of aluminium and its alloysby heterogeneous nucleation and alloying [J]. International Materials Reviews,2002,47(1):3-29.
    [216] T. Y. Lee, W. J. Choi, K. N. Tu, et al. Morphology, kinetics, and thermodynamics ofsolid-state aging of eutectic SnPb and Pb-free solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cuand Sn-0.7Cu) on Cu [J]. Journal of Materials Research,2002,17(2):291-301.
    [217] C. S. Huang, J. G. Duh. Interface reactions and phase equilibrium between Ni/Cuunder-bump metallization and eutectic SnPb flip-chip solder bumps [J]. Journal ofMaterials Research,2003,18(4):935-940.
    [218] J. C. M. Li. Possibility of Subgrain Rotation during Recrystallization [J]. Journal ofApplied Physics,1962,33:2958-2965.
    [219] V. C. Nardone, K. M. Prewo. On the strength of discontinuous silicon carbidereinforced aluminum composites [J]. Scripta Metallurgica,1986,20(1):43-48.
    [220]杨德庄.位错与金属强化机制[M].哈尔滨:哈尔滨工业大学出版社,1991:11.
    [221] R. M. Aikin, L. Christodoulou. The role of equizxed particles on the yield stress ofcomposites [J]. Scripta Metallurgica Material,1991,25(1):9-14.
    [222] T. H. Courtney. Mechanical behavior of materials [M]. New York: McGraw-Hill,1990:1-60.
    [223] R. W. Hertzberg. Deformation and fracture mechanics of engineering materials [M].New York: John Wiley and Sons,1996:1-30.
    [224]胡赓祥.材料科学基础[M].上海:上海交通大学出版社,2001:1-120.
    [225]李义发等.晶体位错理论基础(第一卷)[M].北京:科学出版社,2000:1-50.
    [226] L. Quan, D. Frear, D. Grivas, et al. Tensile behavior of Pb-Sn solder/Cu joints [J].Journal of Electronic Materials,1987,16(3):203-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700