用户名: 密码: 验证码:
砷损害学习记忆能力与NMDA受体功能变化的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言及目的
     砷(Arsenic,As)是一种类金属,在自然界广泛分布于岩石、土壤和水环境中。世界上大约有20多个国家发现有地砷病病区或高砷区存在,饮用含砷超过0.05 mg/L水的人口在5 000万人以上,慢性砷中毒患者达数十万。孟加拉、印度和中国是全世界病情最重、病区面积最大、受危害人口最多的国家。在我国目前暴露于饮用水砷浓度等于或超过0.05 mg/L的人口为560万,暴露在饮用水砷浓度等于或超过0.01 mg/L的人口为1466万,这还不包括由于燃煤引起的燃煤型地方性砷中毒。
     砷对健康的危害是多方面的,可引发多器官的组织学和功能上的异常改变,严重者还可导致癌症,临床上以末梢神经炎、皮肤色素代谢异常、掌跖部皮肤角化、肢端缺血坏疽、皮肤癌变为主要表现。儿童每单位体重的日平均砷摄入量要高于人一生的日平均摄入量(特别是当砷来源于土壤时,因为儿童有近地游戏及爱吮吸手的习惯),而且由于儿童处于生理发育阶段对化学物质的毒作用更为敏感。流行病学调查显示,砷中毒对青少年的中枢神经系统损害主要表现为对学习记忆能力的损害。动物实验结果与流行病学调查一致。目前,砷致学习记忆能力损害的分子机理尚不十分清楚。
     海马是脑边缘系统中最重要的结构之一,是学习记忆等高级神经活动的重要部位。长时程增强(long-term potentiation,LTP)现被认为是海马学习记忆的细胞突触模式,在细胞水平检测学习记忆能力的最经典的指标。N-甲基-D-天门冬氨酸受体是兴奋型氨基酸特异性受体的一种、具有许多不同变构调控位点并对Ca2+高度通透的配体门控性离子通道,是由NR1、NR2(A-D)和NR3(A-B)亚单位组成的异聚体,近年来被认为是学习记忆中的关键物质而受到人们的关注。NMDA受体的亚基组成、受体胞内信号转导通路在LTP的诱导和维持中起重要作用。文献报道,急、慢性砷暴露可以抑制大鼠海马LTP的诱导和维持。因此,我们推测砷可能通过影响NMDA受体各亚基的表达水平及胞内信号传导通路,从而损害青少年的学习记忆能力。
     本研究以幼鼠为模型,通过饮水砷染毒,观察砷暴露对大鼠学习记忆能力、对NMDA受体各亚基的表达水平及胞内信号传导通路的影响,以探讨砷致学习记忆损害的分子机制,为防治砷中毒提供理论依据。
     方法
     1.选用断乳健康SPF级Sprague-Dawley雄性大鼠180只,体重40-50 g,在标准SPF级动物房内饲养。对照组大鼠饮用灭菌自来水,实验组大鼠分别饮用2.72 mg/L、13.6 mg/L和68 mg/L亚砷酸钠水溶液。饮水每两天更换一次。染毒时间分别为:1个月、2个月和3个月。用Morris水迷宫对大鼠进行行为学检测。实验终期,大鼠经10%水合氯醛腹腔麻醉,心脏采血后,断头分离脑组织,将脑组织在冰冷生理盐水中漂洗,用滤纸吸干,置于-70℃冰箱保存。
     2.采用微波消解-氢化物发生-原子荧光光谱法(HG-AFS)测定血砷、脑砷含量。分别取全血0.5 mL、脑组织0.2 g于聚四氟乙烯管,经微波消解仪消化。测量前,每个样品加5 ml 5%硫脲+5%抗坏血酸,然后用5%盐酸定容,混匀,用氢化物发生-原子荧光光谱法测定血砷和脑砷含量。砷的测定采用砷标准溶液进行质量控制。
     3.用Morris水迷宫检测大鼠的空间学习记忆能力改变,测试包括定位航行实验、空间探索实验和可视平台实验三个部分。
     4.大鼠经腹腔麻醉后,断头,在冰上快速分离海马,用双面刀片切取1 mm3海马CA1区组织块,2.5%的戊二醛溶液4℃固定24 h。漂洗,1%锇酸后固定,丙酮脱水,饱和醋酸铀电子染色,环氧树脂-618包埋。半薄切片(片厚1μm),TECNAI-10电子显微镜观察,照相。
     5.收集暴露3个月的大鼠海马,采用RT-PCR、Western-blot和免疫组化法检测海马中NMDA受体NR1、NR2A、NR2B亚基基因和蛋白表达。
     6.检测饮水砷暴露对大鼠海马NMDA受体信号传导通路的影响。用SignaTECT蛋白激酶检测试剂盒测定CaMKII活性,用Western-blot检测CaMKIIα的蛋白表达及磷酸化状态;用Western-blot检测PSD-95、SynGAP、ERK1/2蛋白表达。
     结果
     1.实验期间,实验组和对照组大鼠外观和一般情况良好,没有出现中毒症状。从第六周开始,68 mg/L剂量组大鼠体重增幅减慢,与对照组和其它两个实验组相比,差异有统计学意义(P<0.05)。这种差异一直维持到实验结束。
     2.在三个时间点,各实验组大鼠血砷、脑砷值均显著高于对照组,差异有统计学意义(P<0.05)。结果表明,砷在大鼠血液和脑组织中有不同程度的蓄积,我们成功的建立了砷中毒大鼠模型。
     3.染毒1个月和2个月的大鼠,空间学习记忆能力受损不明显;染毒3个月,砷暴露组大鼠逃逸潜伏期延长(P<0.05),而空间探索实验和可视平台实验数据差异均没有统计学意义。说明砷暴露组大鼠已经出现了学习记忆损害。
     4.透射电镜观察发现,砷暴露组能见到较多变性神经元,胞体皱缩变小,形态不规则;胞浆浓缩,基质染色变深;细胞器肿胀、空化,线粒体肿胀,脊减少或无脊,粗面内质网RER扩张。毛细血管周围结构明显水肿,血管管腔不规则,内皮细胞中部分粗面内质网、高尔基复合体、线粒体可见明显的扩张。突触前成分中突触小泡数量较少,轴突空化,轴突质淡。
     5.饮水砷暴露后,大鼠海马NMDA受体NR2A亚基的mRNA和蛋白表达都受到抑制,与对照相比具有统计学意义(P<0.05);而NR1和NR2B亚基的mRNA和蛋白表达没有受到明显影响。
     6.砷暴露后,大鼠海马CaMKII活性受到明显抑制,与对照相比具有统计学意义(P<0.05);CaMKIIα的蛋白表达及磷酸化状态没有改变。砷暴露后,PSD-95、ERK1/2蛋白表达下降(P<0.05),而SynGAP蛋白表达增高(P<0.05)。
     结论
     1.饮水砷暴露后,砷能进入血液循环,透过血脑屏障在脑组织内蓄积,引起脑组织超微结构改变,损害大鼠的空间学习记忆能力。
     2.砷暴露抑制NMDA受体NR2A亚基的表达,对NR1和NR2B亚基表达没有明显影响。NMDA受体亚基表达的改变,会影响LTP的诱导和维持。
     3.砷暴露改变NMDA受体表达、降低CaMKII的活性、抑制PSD-95和ERK1/2的蛋白表达、刺激SynGAP蛋白表达。这些改变都会抑制LTP的诱导和维持,进而影响学习记忆,这可能是砷致学习记忆损害的机制之一。
Background and purpose
     Arsenic is a naturally occurring element widely present in the environment. Worldwide, more than 20 industrialized and less industrialized countries have drinking water contaminated with arsenic. There are more than 50 million people exposed to groundwater arsenic concentrations above the World Health Organization maximum permissible limits 50μg/L, many thousands of people developed arsenicalism. The three most affected areas in the world are Bangladesh, India and China. In both these areas, most of the source of arsenic is geological in origin, contaminating aquifers which provide water for over one million tube wells. In China, more than 5.6 million people are exposed to groundwater arsenic concentrations above 50μg/L, and more than 14.66 million people are exposed to groundwater arsenic concentrations above 10μg/L. Moreover, there are many people exposed to high levels of arsenic from burning coal.
     Chronic arsenic toxicity results in multisystem disease, such as peripheral neuritis, skin lesions (Hyperpigmentation, palmar and solar keratosis), peripheral vascular disease, hypertension, Blackfoot disease, and high risk of cancers. Young children (i.e., ages 0–6 years) may receive a much higher daily dose of chemical per-unit-body-weight than a lifetime average daily dose, particularly for chemicals in soil, because of their greater hand-to-mouth behavior than adults. Young children may also be more sensitive to the toxic effects of some chemicals than older age groups because of developmental and physiological differences. Epidemiological investigations found that arsenic toxicity can cause central nervous system impairment in adolescents, and the main manifestations of it are impairment of learning and memory. Animal experiments also found arsenic toxicity can impair the ability of learning and memory in rats. Up to now, the mechanism of the learning and memory impairment are poorly understood.
     The hippocampus is a part of the limbic system that is crucial to memory function and spatial navigation. Long-term potentiation (LTP) is widely accepted as a cellular and molecular model of information processing and storage by neural network. N-methyl-D-aspartate receptor (NMDAR) is one member of the glutamate-gated ion-channel receptor, with a high permeability to Ca2+ ions. To date, three main families of NMDAR subunits have been identified: NR1, NR2 (A-D) and NR3 (A-B). Many of the important NMDAR properties are influenced by the subunits composing the receptor assembly. NMDAR widely expresses in the central nervous system, and plays key roles in excitatory synaptic transmission. NMDAR subunit composition and its postsynaptic signaling pathway have important role in the induction and maintenance of LTP. Literatures have reported that acute and chronic arsenic exposure can significantly inhibit the induction and maintenance of LTP. So, we presume that arsenic exposure can impair the ability of learning and memory in adolescent through influencing the NMDAR subunit composition and its postsynaptic signaling pathway.
     The purpose of this study is to investigate the possible mechanism of arsenic neurotoxicity. We chose weaning Sprague-Dawley male rats as experimental model. The rats were assigned to four groups randomly (namely control, group A, group B and group C) and fed with water respectively containing 0, 2.72, 13.6 and 68 mg/L sodium arsenite for 1, 2, 3 months respectively. We will focus on the effects of arsenic exposure on learning and memory, the expression of NMDAR subunits and its postsynaptic signaling pathway.
     Methods
     1. A total of 180 weaning Sprague-Dawley male rats (40–50 g) were obtained from the Experimental Animal Center of this university, and kept in SPF laboratory animal room. The rats were assigned to four groups randomly and fed with water respectively containing 0, 2.72, 13.6 and 68 mg/L sodium arsenite for 1, 2, 3 months respectively. The As-containing water was freshly prepared every 2 days. Water used was free from bacterial contamination. Rats had free access to food.
     After arsenic exposure, samples of hippocampus were collected from two rats in each group for transmission electron microscopic study, and 10 rats from each group were tested in Morris water maze according to a modified procedure of Morris. At the end of spatial learning task, these rats were anesthetized with sodium pentobarbital by i.p. injection. Blood was collected by heart puncture; brains were separated and immediately transferred into liquid nitrogen, then stored at -70℃.
     2. The level of arsenic was determined using hydride generation atomic fluorescence spectrometry. Briefly, 0.2 g brain samples or 0.5ml blood were digested with 3 ml of concentrated HNO3 and 2 ml of concentrated H2O2 in microwave digestion system. Before measurement, added 10 ml 5% ascorbic acid and 5% sulfocarbamide to the digested samples then diluted to 50 ml with 5% hydrochloric acid. A blank digest was carried out in the same way. The concentration in diluted samples was determined in an atomic fluorescence spectrometer. The accuracy of the method was verified by standard reference materials.
     3. The acquisition of spatial learning and memory was assessed in the Morris water maze on three different components: hidden platform acquisition, probe trial and subsequent visible platform test.
     4. The hippocampus samples of 1 mm3 cube were dissected from CA1 area under anatomical microscope. After fixed in 2.5% glutaraldehyde, the specimens were sequentially processed with 1% osmium tetroxide, graded ethyl alcohols and embedded in EPON 618. The thin sections on copper mesh grids were stained with the heavy metals, uranyl acetate and lead citrate for contrast. After drying, the grids were then viewed on a transmission electron microscope.
     5. The expression of NMDAR subunits (NR1、NR2A、NR2B) in hippocampus were detected by the means of RT-PCR, Western-blot and immunohistochemistry. The hippocampi were collected from the rats exposed to arsenic for three months.
     6. To investigate the effect of arsenic exposure on the postsynaptic signaling pathway, we detected several important molecular. The activity of CaMKII was assayed with the SignaTECT Protein Kinase Assay Systems. Protein expression of CaMKIIα, p-CaMKIIα, PSD-95, SynGAP and ERK1/2 were detected by the means of Western-blot.
     Results
     1. General appearance and physical condition of arsenic-exposed and control rats were closely observed and no obvious difference was noticed. There were no differences in food intake between groups during the study. Compared with the rats in other three groups, rats in group C gained less body weights from the 6th week to the end of the study (P<0.05). Rats in group A and B did not show significant differences in body weight comparing with control rats.
     2. Blood arsenic content increased with the concentrations of arsenic in drinking water, and there was significant difference among the treatment groups for three exposure time respectively (P<0.05). The arsenic content in brain increased with the concentration of arsenic in drinking water. The statistical significances were present between individual experiment group and control for three exposure time respectively (P<0.05). The results indicated that we have successfully raised the arsenic poisoning rats.
     3. There was no obvious impairment of spatial learning in rats exposed to arsenic for 1 and 2 months. After 3 months arsenic exposure, the rats in group C exhibited significant deficit in hidden platform acquisition compared with control and group A (P<0.05). Rats in group A and B did not show significant deficit comparing with control rats at the end of arsenic exposure. There were no significant difference in the spatial probe test and visible platform trial among the four groups. The results indicated the impairment of spatial memory in rats of group C.
     4. In the hippocampus of arsenic-exposed rat, individual shrunk cells could be seen with condensed cytoplasm and nucleus. The mitochondrion became swollen and vacuolized along with the cristae disorder and less in number. Rough endoplasmic reticulum presented sacculated distension. Vascular endothelial cells presented swollen mitochondria and the lumen of blood vessel irregular in the hippocampus of arsenic exposed rat. Edema around the capillary was obvious. The quantity of synaptic vesicle in synapse was decreased, and edema inside cells and organelles were confirmed. These ultra-structural changes became worse with increasing dose of arsenic exposure.
     5. A decreasing trend of NR2A mRNA and protein levels in hippocampus was observed after arsenic exposure. Decreases of NR2A mRNA and protein expression in hippocampus of rats treated with arsenic was in a dose-dependent manner (P<0.05). The expressions of NR1 and NR2B in hippocampus were not affected by arsenic toxicity.
     6. The activity of CaMKII in hippocampus was decreased significantly after arsenic exposure (P<0.05), while the protein expressions of CaMKIIαand p-CaMKIIαwere not affected. After arsenic exposure, the protein expressions of PSD-95, ERK1/2 decreased significantly (P<0.05). On the contrary, the protein level of SynGAP increased significantly (P<0.05).
     Conclusion
     1. After arsenic exposure from drinking water, arsenic can be rapidly absorbed into the blood circulation. Arsenic can penetrate the blood-brain barrier and accumulate in the brain. Its presence is associated with a series of ultra-structural pathological changes of the brain, and the impairment of spatial learning and behavioral tasks.
     2. Arsenic exposure can significantly inhibit the mRNA and protein expression of the NMDAR subunit NR2A. This change in NR2A was presented with the absence of changes in NR1and NR2B expression.
     3. Changed NMDAR subunit expression, lower CaMKII activity, lower expression of PSD-95 and ERK1/2 protein, together with higher expression of SynGAP protein after arsenic exposure, these results could inhibit the induction and maintenance of LTP. These changes maybe partly account for the molecular mechanism of learning and memory impairment caused by arsenic exposure.
引文
[1] Aarts M, Liu Y, Liu L, et a1. Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions[J]. Science, 2002, 298: 846-850.
    [2] Aposhian HV. Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity[J]. Annual Review of Pharmacology and Toxicology, 1997, 37: 397-419.
    [3] Bartlett TE, Bannister NJ, Lodge D. Differential roles of NR2A and NR2B-containing NMDA receptors in LTP and LTD in the CA1 region of two-week old rat hippocampus[J]. Neuropharmacology, 2007, 52: 60-70.
    [4] Bayer KU, Koninck PD, Leonard AS, et al. Interaction with the NMDA receptor locks CaMKII in an active conformation[J]. Nature, 2001, 411: 801-805.
    [5] Berman DE, Hazvi S, Rosenblum K. Specific and differential activation of mitogen-activated protein kinase cascades by unfamiliar taste in the insular cortex of the behaving rat[J]. The Journal of Neuroscience. 1998, 18(23): 10037-10044.
    [6] Blum S, Moore AN, Adams F. A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory[J]. The Journal of Neuroscience. 1999, 19(9): 3535-3544.
    [7] Calderón J, Navarro ME, Jimenez-Capdeville ME, et al. Exposure to Arsenic and Lead and Neuropsychological Development in Mexican Children[J]. Environmental Research, 2001, 85(2), 69-76.
    [8] Chen HJ, Rojas-Soto M, Kennedy MB. A Synaptic Ras-GTPase Activating Protein (p135 SynGAP) Inhibited by CaM Kinase II[J]. Neuron, 1998, 20: 895-904.
    [9] Cheung HH, Gurd JW. Tyrosine phosphorylation of the N-methyl-D-aspartate receptor by exogenous and postsynaptic density-associated Src-family kinases[J]. Journal of Neurochemistry, 2001, 78(3): 524-534.
    [10] Clayton DA, Mesches MH, Alvarez E, et al. A hippocampal NR2B deficit can mimic age-related changes in long-term potentiation and spatial learning in the Fischer 344 rat[J]. J. Neurosci. 2002, 22: 3628-3637.
    [11] Cohen NJ, Eichenbaum H. Memory, amnesia, and the hippocampal system[J].Cambridge, MA: MIT Press.1993.
    [12] Dhar P, Jaitley M, Kalaivani M, et al. Preliminary morphological and histochemical changes in rat spinal cord neurons following arsenic ingestion[J]. Neurotoxicology, 2005, 26: 309-320.
    [13] Dingledine R, Borges K, Bowie D, et al. The glutamate receptor ion channels[J]. Pharmacological Reviews, 1999, 51(1): 7-61.
    [14] Ehrlich I, Malinow R. Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity[J]. The Journal of Neuroscience, 2004, 24: 916–927.
    [15] El-Husseini AE, Schnell E, Chetkovich DM, et al. PSD-95 involvement in maturation of excitatory synapses[J]. Science, 2000, 290(5495): 1364-1368.
    [16] English JD, Sweatt JD. A Requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation[J]. Journal of Biological Chemistry. 1997, 272(31): 19103-19106.
    [17] Fink CC, Bayer KU, Myers JW, et al. Selective regulation of neurite extension and synapse formation by the beta but not the alpha isoform of CaMKII[J]. Neuron, 2003, 39: 283–297.
    [18] Fukunaga K, Miyamoto E. Current Studies on a Working Model of CaM Kinase II in Hippocampal Long-Term Potentiation and Memory[J]. The Japanese Journal of Pharmacology, 1999, 79(1): 7-15.
    [19] Gamble MV, Liu XH, Ahsan H, et al. Folate, Homocysteine, and Arsenic Metabolism in Arsenic-Exposed Individuals in Bangladesh[J]. Environmental Health Perspectives, 2005, 113(12): 1683-1688.
    [20] Giese KP, Fedorov NB, Filipkowski RK, et al. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinaseⅡin LTP and learning[J]. Science, 1998, 279(5352): 870-873.
    [21] Grant SG, O’Dell TJ. Multiprotein complex signaling and the plasticity problem[J]. Curr Opin Neurobiol, 2001, 11(3): 363-368.
    [22] Gylys KH, Fein JA, Yang F, et a1. Synaptic changes in Alzheimer's disease: increased amyloid-beta and gliosis in surviving terminals is accompanied by decreased PSD-95 fluorescence[J]. Am J Patho1. 2004, 165: 1809-1817.
    [23] Hahn CG, Wang HY, Cho DS, et a1. Altered neuregulin 1 erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia[J]. Nat Med, 2006, 12: 824-828.
    [24] Hayashi Y, Shi SH, Esteban JA, et al. Driving AMPA receptors into synapses by LTP and CaMKII: Requirement for GluR1 and PDZ domain interaction[J]. Science, 2000, 287: 2262–2267.
    [25] Honse YK, Nixon KM, Browning MD, et al. Cell surface expression of NR1 splice variants and NR2 subunits is modified by prenatal ethanol exposure[J]. Neuroscience, 2003, (122): 689–698.
    [26] Hooge RD, peter PD Deyn, et al. Application of the Morris water maze in the study of learning and memory[J]. Brain Research Reviews, 2001, 36: 60-90.
    [27] Hughes MF, Kenyon EM, Edwards BC, et al. Accumulation and metabolism of arsenic in mice after repeated oral administration of arsenate[J]. Toxicol Appl Pharmacol, 2003, 191: 202–210.
    [28] Hunter T, Schulman H. CaMKII structure--an elegant design[J]. Cell, 2005, 123, 765-767.
    [29] Hunter T. Signaling-2000 and beyond[J]. Cell, 2000, 100(1): 113-127.
    [30] Ito I, Kawakami R, Sakimura K, et al. Input-specific targeting of NMDA receptor subtypes at mouse hippocampal CA3 pyramidal neuron synapses[J]. Neuropharmacology, 2000, 39(6): 943-951.
    [31] Jin YP, Xi SH, Sun GF, et al. Arsenic speciation transported through the placenta from mother mice to their newborn pups[J]. Environ Res 2006, 101: 349-355.
    [32] Joyce ST, Robert B, Rosalind A, et al. Health effect levels for risk assessment of childhood exposure to arsenic[J]. Regulatory Toxicology and Pharmacology, 2004, 39(2): 99-110.
    [33] Juárez-Reyes A, Jiménez-Capdeville ME, Delgado JM, et al. Time course of arsenic species in the brain and liver of mice after oral administration of arsenate[J]. Archives of toxicology, 2009.
    [34] Kennedy MB. Signal-processing machines at the postsynaptic density[J]. Science, 2000, 290: 750-754.
    [35] Kim JH, Liao DZ, Lau LF, et al. SynGAP a synaptic RasGAP that associates with the PSD-95, SAP90 protein family[J]. Neuron, 1998, 20: 683–691.
    [36] Komiyama NH, Watabe AM, Carlisle HJ, et al. SynGAP Regulates ERK, MAPK Signaling, Synaptic Plasticity, and Learning in the Complex with Postsynaptic Density 95 and NMDA Receptor[J]. The Journal of Neuroscience, 2002, 22(22): 9721–9732.
    [37] Kruger K, Binding N, Straub H, Mu?hoff U. Effects of arsenite on long-term potentiation in hippocampal slices from young and adult rats[J]. Toxicol. Lett. 2006, 165: 167-173.
    [38] Krüger K, Repges H, Hippler J, et al. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats[J]. Toxicology and Applied Pharmacology, 2007, 225: 40-46.
    [39] Krüger K, Straub H, Hirner AV, et al. Effects of monomethylarsonic and monomethylarsonous acid on evoked synaptic potentials in hippocampal slices of adult and young rats[J]. Toxicology and Applied Pharmacology, 2009, 236: 115-123.
    [40] Krüger Ka, Gruner J, Madeja M, et al. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals[J]. Archives of toxicology, 2006, 80: 492-501.
    [41] Krüger Kb, Binding N, Straub H, et al. Effects of arsenite on long-term potentiation in hippocampal slices from young and adult rats[J]. Toxicology Letters, 2006, 165: 167–173.
    [42] Kutsuwada T, Sakimura K, Manabe T, et al. Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutantmice[J]. Neuron, 1996, 16: 333-344.
    [43] Lau WK, Yeung CW, Lui PW, et al. Different trends in modulation of NMDAR1 and NMDAR2B gene expression in cultured cortical and hippocampal neurons after lead exposure[J]. Brain Research, 2002, 932(1-2): 10-24.
    [44] Lee ST, Kim M. Aging and neurodegeneration molecular mechanisms of neuronal loss in Huntington’s disease[J]. Mech Ageing Dev. 2006, 127: 432-435.
    [45] Li R, Huang FS, Abbas AK, et al. Role of NMDA receptor subtypes in different forms of NMDA-dependent synaptic plasticity[J]. BMC Neurosci. 2007, 8(55): 1-12.
    [46] Lisman J. A mechanism for the Hebb and anti-Hebb processes underlying learning and memory[J]. Proc Natl Acad Sci USA, 1989, 86(23): 9574-9578.
    [47] Lisman J. Long-term potentiation outstanding questions and attempted synthesis[J].Philosophical Transactions: Biological Sciences. 2003, 358: 829–842.
    [48] Liu LD, Wong TP, Pozza MF, et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity[J]. Science, 2004, 304: 1021-1024.
    [49] Malinow R. AMPA receptor trafficking and long-term potentiation[J]. Philosophical Transactions of the Royal Society B. 2003, 358: 707–714.
    [50] Mallon AP, Auberson YP, Stone TW. Selective subunit antagonists suggest an inhibitory relationship between NR2B and NR2A-subunit containing N-methyl-D: -aspartate receptors in hippocampal slices[J]. Exp Brain Res. 2005, 162:374-383.
    [51] McDonald RJ, White NM. Parallel information processing in the water maze: Evidence for independent memory systems involving dorsal striatum and hippocampus[J]. Behavioral and Neural Biology, 1994,61: 260–270.
    [52] Migaud M, Charlesworth P, Dempster M, et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein[J]. Nature, 1998, 396(6710): 433-439.
    [53] Morris R. Developments of a water-maze procedure for studying spatial-learning in the rat[J]. Neurosci. Methods, 1984, 1: 47-60.
    [54] Morris RGM, Garrud P, Rawlins JNP, et al. Place navigation impaired in rats with hippocampal lesions[J]. Nature, 1982, 297: 681-683.
    [55] Morris RGM, Schenk F, Tweedie F, et al. Ibotenate lesions of hippocampus and/or subiculum: Dissociating components of allocentric spatial learning[J]. European Journal of Neuroscience, 1990,2: 1016–1028.
    [56] Nihei MK, Guilarte TR. NMDAR-2A subunit protein expression is reduced in the hippocampus of rats exposed to Pb2+ during development[J]. Molecular Brain Research, 1999, 66(1-2): 42-49.
    [57] O’Brien RJ, Lau LF, Huganir RL. Molecular mechanisms of glutamate receptor clustering at excitatory synapses[J]. Current Opinion in Neurobiology, 1998, 8: 364–369.
    [58] Petres J, Baron D, Hagedorn M. Effects of arsenic cell metabolism and cell proliferation: cytogenetic and biochemical Studies[J]. Environ. Health Perspect. 1977, 19: 223-227.
    [59] Petrick JS, Ayala-Fierro F, Cullen WR, et al. Monomethylarsonous acid (MMAIII) ismore toxic than arsenite in Chang human hepatocytes[J]. Toxicol Appl Pharmacol, 2000, 163: 203-207.
    [60] Pollay M, Roberts PA. Blood-brain barrier: a definition of normal and altered function[J]. Neurosurgery, 1980, 6: 675-685.
    [61] Porter K, Komiyama NH, Vitalis T, et al. Differential expression of two NMDA receptor interacting proteins, PSD-95 and SynGAP during mouse development[J]. Eur J Neurosci. 2005, 21(2): 351-362.
    [62] Redish AD, Touretzky DS, The Role of the hippocampus in solving the Morris water maze[J]. Neural Computation, 1998, 10: 73–111.
    [63] Roche KW, Standley S, McCallum J, et al. Molecular determinants of NMDA receptor internalization[J]. Nat Neurosci. 2001, 4(8): 794-802.
    [64] Rodriguez VM, Carrizales LJ, Capdeville ME, et al. The effects of Sodium arsenite exposure on behavioral parameters in rat[J]. Brain Res Bull, 2001, 55(2): 301-308.
    [65] Rodriguez VM, Carrizales L, Mendoza MS, et al. Effects of sodium arsenite exposure on development and behavior in the rat [J]. Neurotoxicology Teratology. 2002, 24: 743–750.
    [66] Rodriguez VM, Jiménez-Capdeville ME, Giordano M. The effects of arsenic exposure on the nervous system[J]. Toxicol. Lett. 2003, 145: 1-18.
    [67] Ronald KM, Mirshahi T, Woodward JJ, et al. Ethanol inhibition of N-methyl-D-aspartate receptors is reduced by site-directed mutagenesis of a transmembrane domain phenylalanine residue[J]. J Biol Chem. 2001, 276(48): 44729-44735.
    [68] Rowland LM, Astur RS, Jung Re, et al. Selective cognitive impairments associated with NMDA receptor blockade in humans[J]. Neuropsychopharmacology, 2005, 30(3): 633-639.
    [69] Rumbaugh G, Adams JP, Kim JH, et a1. SynGAP regulates synaptic strength and and mitogen-activated protein kinases in cultured neurons[J]. PNAS, 2006, 103(12): 4344-4351.
    [70] Sakimura K, Kutsuwada T, Ito I, et al. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit[J]. Nature, 1995, 373: 151-155.
    [71] Schmitt JM, Guire ES, Saneyoshi T, et al. Calmodulin-dependent kinasekinase/calmodulin kinase I activity gates extracellular-regulated kinase-dependent long-term potentiation[J]. J Neurosci. 2005, 25(5): 1281-1290.
    [72] Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions[J]. Journal of Neurology, Neurosurgery, and Psychiatry. 1957, 20: 11–21.
    [73] Seger R, Krebs EG. The MAPK signaling cascade[J]. The FASEB Journal, 1995, 9: 726-735.
    [74] Selcher JC, Atkins CM, Trzaskos JM. A necessity for MAP kinase activation in mammalian spatial learning[J]. Learning and Memory. 1999, 6: 478-490.
    [75] Shen K, Teruel MN, Subramanian K, et al. CaMKIIbeta functions as an F-actin targeting module that localizes CaMKIIalpha/beta heterooligomers to dendritic spines[J]. Neuron, 1998, 21: 593–606.
    [76] Shen ZX, Chen GQ, Ni JH. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients[J]. Blood, 1997, 87: 3354-3360.
    [77] Sheng M, Kim MJ. Postsynaptic signaling and plasticity mechanisms[J]. Science, 2002, 298(5594): 776-780.
    [78] Shimizu E, Tang YP, Rampon C, et al. NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation[J]. Science, 2000, 290(5494): 1170-1174.
    [79] Single FN, Rozov A, Burnashev N, et al. Dysfunctions in mice by NMDA receptor point mutations NR1(N598Q) and NR1(N598R) [J]. J Neurosci, 2000, 20(7): 2558-2566.
    [80] Smith AH, Lingas EO, Mahfuzar Rahman.Contamination of drinking-water by arsenic in Bangladesh;a public health emergency[J].Bulletin of WHO, 2000, 78(9):1093-1103.
    [81] Soderling TR, Chang B, Brickey D. Cellular signaling through multifunctional Ca2+/Calmodulin dependent protein kinase II[J]. The journal of biological chemistry, 2001, 276(6): 3719–3722.
    [82] Sprengel R, Suchanek B, Amico C, et al. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo[J]. Cell, 1998, 92: 279-289.
    [83] Squire LR, Zola-Morgan S. Memory: Brain systems and behavior[J]. Trends inNeurosciences, 1988, 11(4): 170–175.
    [84] Stein V, House DR, Bredt DS, et al. Postsynaptic density-95 mimics and occludes hippocampal long-term potentiation and enhances long-term depression[J]. The Journal of Neuroscience. 2003, 23, 5503–5506.
    [85] Sutherland RJ, Hoesing, JM. Posterior cingulate cortex and spatial memory: A microlimnology analysis. In B. A. Vogt & M. Gabriel (Eds.), Neurobiology of cingulate cortex and limbic thalamus: A comprehensive handbook (pp. 461–477). Boston: Birkhauser. (1993)
    [86] Takagi N, Logan R, Teves L, et al. Altered interaction between PSD-95 and the NMDA receptor following transient global ischemia[J]. Journal of Neurochemistry, 2000, 74(1): 169-178.
    [87] Tang YP, Shimizu E, Dube GR, et al. Genetic enhancement of learning and memory in mice[J]. Nature, 1999, 401(6748): 63-69.
    [88] Toscano CD, O’Callaghan JP, Guilarte TR. Calcium calmodulin-dependent protein kinase II activity and expression are altered in the hippocampus of Pb2+ exposed rats[J]. Brain Research, 2005, 1044: 51–58.
    [89] Toso L, Poggi SH, Abebe D, et al. N-Methyl-D-aspartate subunit expression during mouse development altered by in utero alcohol exposure[J]. American Journal of Obstetrics and Gynecology, 2005, 193, 1534–1539.
    [90] Tsai SY, Chou HY, He-Men, et al. The effects of chronic arsenic exposure from drinking water on the neurobehavioral development in adolescence[J]. NeuroToxicology, 2003, 24(4-5): 747-753.
    [91] Wasserman GA, Liu XH, Parvez F, et al. Water arsenic exposure and children’s intellectual function in Araihazar, Bangladesh[J]. Environ Health Perspect, 2004, 112: 1329-1333.
    [92] Wright RO, Chitra A, Alan DW, et al. Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site[J]. NeuroToxicology, 2006, 27: 210-216.
    [93] Xu J, Kang N, Jiang L, Nedergaard M, et al. Activity-dependent long-term potentiation of intrinsic excitability in hippocampal CA1 pyramidal neurons[J]. J Neurosci. 2005, 25(7): 1750-1760.
    [94] Yamakura T, Shimoji K. Subunit- and site-specific pharmacology of the NMDA receptor channel[J]. Progress in Neurobiology, 1999, 59(3): 279~298.
    [95] Zola-Morgan S, Squire LR. Neuroanatomy of memory[J]. Annual Review of Neuroscience, 1993, 16: 547–563.
    [96]杜伟佳,黄敏之.人体生物材料中砷、氟检测的意义[J].职业与健康, 2003, 19(9): 49-50.
    [97]韩太真,李延海. NMDA受体的结构与药理学特性[J].心理科学进展, 2008, 16(3):464-474.
    [98]韩太真,吴馥梅.学习记忆的神经生物学[M].北京:北京医科大学中国协和医科大学联合出版社, 1998, 170.
    [99]韩太真,吴馥梅.学习与记忆的神经生物学[M].北京医科大学与中国协和医科大学联合出版社, 1998, P162.
    [100]侯筱宇,张光毅. NMDA受体信号复合体中蛋白质的相互作用[J].生命科学, 2003, 15(5): 274-278.
    [101]胡镜清,温泽淮,赖世隆. Morris水迷宫检测的记忆属性与方法学初探[J]. 2000, 17(2): 117-120.
    [102]黄春桃,吴锡南,刘苹. N-甲基-D-天冬氨酸受体在中枢神经系统的研究进展[J].中国行为医学科学, 2006, 15(4): 377-378.
    [103]库宝善.加压素与学习记忆[J].生理科学进展, 1981, 12 (1) : 81-84.
    [104]李洪才,叶卓明,李焕三.砷化物对大鼠记忆能力的影响[J].卫生毒理学杂志, 1999, 13(1): 36-37.
    [105]李昕,侯萍,孙贵范.饮水型砷暴露对人群甲基化代谢能力的影响[J].卫生研究, 2008, 37(6): 657-659.
    [106]梁超柯,地方性砷中毒研究评述[J].医学研究杂志, 2006, 35(12): 3-5.
    [107]廖素群.钙钙调素依赖性蛋白激酶与记忆[J].生物学教学. 2004, 29(7): 1-3.
    [108]刘鹏,朴丰源,王艳艳,等.孕鼠慢性砷暴露对胎鼠脑组织DNA的损伤和子代记忆功能的影响[J].中国冶金工业医学杂志, 2007, 24(4): 391-393.
    [109]沈雁峰,孙殿军,等.中国饮水型地方性砷中毒病区和高砷区水砷筛查报告[J].中国地方病学杂志,2005, 24(2):172-175.
    [110]隋南,陈双双,匡培梓.海马结构、前额皮层或尾-壳核损毁对大鼠空间认知能力的影响[J].心理学报, 1992, 24(4): 415-420.
    [111]孙贵范.深入研究慢性砷中毒的分子作用机制[J].中国地方病学杂志, 2004, 23(1): 1-2.
    [112]温二生,王凤珍,胡志苹.海马与学习记忆的研究进展[J].赣南医学院学报, 2006, 4: 651-652.
    [113]吴顺华.地方性砷中毒生物标志物的研究概况及展望[J].新疆医科大学学报, 2006, 29(1): 12-14.
    [114]席淑华,孙贵范,孙文娟,等.砷对仔代大鼠神经行为和学习记忆功能影响[J].中国公共卫生, 2006, 22(5): 559-560.
    [115]肖俊,张敏,潘娅,等.慢性染砷对大鼠学习记忆功能的影响[J].中国医学物理学杂志, 2006, 23(2): 114-117.
    [116]谢瑶芸,胡汉华,张晨,等.氟砷联合作用对大鼠子代脑组织影响的电镜观察[J].地方病通报, 2000, 15(2): 7-9.
    [117]徐鹤定,武春艳.胎儿酒精综合征[J].国外医学精神病学分册, 2002, 29(2): 90-93.
    [118]徐苑苑,李昕,孙贵范.内蒙古不同浓度砷暴露人群尿砷代谢产物研究[J].中国公共卫生, 2006, 22(8): 956-957.
    [119]杨烽.砷对小鼠学习与记忆能力的影响[J].微量元素与健康研究, 2003, 20(1): 1-3.
    [120]袁辉,杨胜,周文霞,等. MAPK级联信号通路与长时程增强[J].中国药理学通报, 2006, 22(7): 769-774.
    [121]张晨,凌冰,王国荃,等.氟砷联合染毒对大鼠子代神经行为发育的影响[J].卫生研究, 1999, 28(6): 337-339.
    [122]张敬军,夏作理.长时程增强与长时程抑制的研究[J].中国病理生理杂志. 2000, 16(12): 1331-1334.
    [123]张桃英,黎芳.猪肾中砷的氢化物发生原子荧光测定法[J].职业与健康, 2006,22(9): 661-663.
    [124]张彦文. N-甲基-D-天门冬氨酸受体在学习记忆中的作用研究进展[J].第三军医大学学报. 2004, 26(3): 266-268.
    [125]赵晶辉,王岩,翁旭初.陈述性记忆存储和巩固的神经机制[J].心理科学进展,2003,11(5): 494-499.
    [126]赵志刚,龚凌志.血脑屏障及药物通过血脑屏障方法的研究进展[J].中国药学杂志, 2000, 35(4): 227-230.
    [1] Bayer KU, Koninck PD, Leonard AS, et al. Interaction with the NMDA receptor locks CaMKII in an active conformation[J]. Nature, 2001, 411: 801-805.
    [2] Chen HJ, Rojas-Soto M, Kennedy MB. A synaptic ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II[J]. Neuron, 1998, 20: 895-904.
    [3] Chen PE, Wyllie DJ. Pharmacological insights obtained from structure-function studies of ionotropic glutamate receptors[J]. Br J Pharmacol. 2006, 147: 839–853.
    [4] Chiu J, Brien JF, Wu P, et al. Chronic ethanol exposure alters MK-801 binding sites in the cerebral cortex of the near-term fetal guinea pig[J]. Alcohol, 1999, 17(3): 215-221.
    [5] Cull-Candy SG, Stephen GB. NMDA Receptors[J]. Encyclopedia of life sciences, 2001, 1-8.
    [6] Devaud LL, Morrow AL, Nguyen UT. Ovariectomy has minimal effects on neuroadaptations associated with ethanol dependence in female rats[J]. Neurochem Int, 2000, 37(5-6): 433-442.
    [7] ElHusseini AE, Schnell E, et al. PSD-95 involvement in maturation of excitatory synapses[J]. Science, 2000, 290(5495): 1364-1368.
    [8] Furukawa H, Singh SK, Mancusso R, et al. Subunit arrangement and function in NMDA receptors[J]. Nature, 2005, 438: 185–192.
    [9] Gram KA,Culombo G. Discriminative stimulus effects of ethanol:effects of training dose on the substitution of the N-methyl-D-aspartate antagonists[J]. J Pharmacol Exp Ther, 1993, 264(5): 1241- l247.
    [10] Grant SG, O’Dell TJ. Multiprotein complex signaling and the plasticity problem[J]. Curr Opin Neurobiol, 2001, 11(3): 363-368.
    [11] Guilarte TR, McGlothan JL. Selective decrease in NR1 subunit splice variant mRNA in the hippocampus of Pb2+ exposed rats implications for synaptic targeting and cell surface expression of NMDAR complexes[J]. Molecular Brain Research, 2003, 113: 37–43.
    [12] Hollman M. Structure of ionotropic glutamate receptors. In: Jonas P and Monyer H (eds) Ionotropic Glutamate Receptors in the CNS, 1999, pp. 1-98. London: Springer.
    [13] Honse YK, Nixon KM, Browning MD, et al. Cell surface expression of NR1 splice variants and NR2 subunits is modified by prenatal ethanol exposure[J]. Neuroscience,2003, 122: 689–698.
    [14] Hunter T, Schulman H. CaMKII structure--an elegant design[J]. Cell, 2005, 123, 765-767.
    [15] Ikonomidou C, BittigauP, KochC, et al. Neurotransmitters and apoptosis in the developing brain[J]. Biochem Pharmacol, 2001, 62(4): 401-405.
    [16] Ito I, Kawakami R, Sakimura K, et al. Input-specific targeting of NMDA receptor subtypes at mouse hippocampal CA3 pyramidal neuron synapses[J]. Neuropharmacology, 2000, 39(6): 943-951.
    [17] Kennedy MB. Signal-processing machines at the postsynaptic density[J]. Science, 2000, 290: 750-754.
    [18] Kim JH, Liao DZ, Lau LF, et al. SynGAP a synaptic RasGAP that associates with the PSD-95, SAP90 protein family[J]. Neuron, 1998, 20: 683–691.
    [19] Lasley SM, Green MC, Gilbert ME. Rat hippocampal NMDA receptor binding as a function of chronic lead exposure level[J]. Neurotoxicology and Teratology 2001, 23: 185-189.
    [20] Lau WK, Yeung CW, Lui PW, et al. Different trends in modulation of NMDAR1 and NMDAR2B gene expression in cultured cortical and hippocampal neurons after lead exposure[J]. Brain Research, 2002, 932(1-2): 10-24.
    [21] Liu LD, Wong TP, Wang YT, et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity[J]. Science, 2004, 304: 1021-1025.
    [22] Mayer ML,Glutamate receptors at atomic resolution[J]. Nature, 2006, 440: 456-462.
    [23] Meddows E, Le Bourdelles B, Grimwood S, et al. Identification of molecular determinants that are important in the assembly of N-methyl-D-aspartate receptors[J]. J Biol Chem. 2001, 276: 18795-18803.
    [24] Monyer H, Burnashev N, Laurie DJ, et al. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors[J]. Neuron, 1994, 12: 529–540.
    [25] Nihei MK, Desmond NL, Guilarte TR, et al. N-methyl-aspartate receptor subunit changes are associated with lead-induced deficits of long-term potentiation and spatial learning[J]. Neuroscience, 2000, 99(2): 233–242.
    [26] O’Brien RJ, Lau LF, Huganir RL. Molecular mechanisms of glutamate receptorclustering at excitatory synapses[J]. Current Opinion in Neurobiology, 1998, 8: 364–369.
    [27] Paoletti P, Neyton J. NMDA receptor subunits: function and pharmacology[J]. Current Opinion in Pharmacology, 2007, 7(1):39~47.
    [28] Perez-Otano I, Schulteis CT, Contractor A, et al. Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors[J]. J Neurosci. 2001, 21: 1228–1237.
    [29] Ronald KM, Mirshahi T, Woodward JJ, et al. Ethanol inhibition of N-methyl-D-aspartate receptors is reduced by site-directed mutagenesis of a transmembrane domain phenylalanine residue[J]. J Biol Chem. 2001, 276(48): 44729-44735.
    [30] Shimizu E, Tang YP, Rampon C, et al. NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation[J]. Science, 2000, 290(5494): 1170-1174.
    [31] Single FN, Rozov A, Burnashev N, et al. Dysfunctions in mice by NMDA receptor point mutations NR1(N598Q) and NR1(N598R) [J]. J Neurosci, 2000, 20(7): 2558-2566.
    [32] Soderling TR, Chang B, Brickey D. Cellular signaling through multifunctional Ca2+/Calmodulin dependent protein kinase II[J]. The journal of biological chemistry, 2000, 276(6): 3719–3722.
    [33] Sprengel R, Suchanek B. Importance of the intracellular domain of NR2 subunits for NMDA receptor functions in vivo[J]. Cell, 1998, 92: 279–289.
    [34] Toscano CD, McGlothan JL, Guilarte TR, et al. Developmental Pb2+ exposure alters NMDAR subtypes and reduces CREB phosphorylation in the rat brain[J]. Developmental Brain Research,2002, 139: 217–226.
    [35] Toso L, Poggi SH, Abebe D, et al. N-Methyl-D-aspartate subunit expression during mouse development altered by in utero alcohol exposure[J]. American Journal of Obstetrics and Gynecology, 2005, 193: 1534-1539.
    [36] Yang X, Criswell HE, Simson P, et al. Evidence for a selective effect of ethanol on NMDA responses: Ethanol affects a subtype of the ifenprodil-sensitive NMDA receptor[J]. J Pharmacol Exp Ther, 1996, 278(1): 114-124.
    [37] Zhu DM, Wang M, She JQ, et al. Protection by a taurine supplemented diet from lead-induced deficits of long-term potentiation-depotentiation in dentate gyrus of rats in vivo[J]. Neuroscience, 2005, 134: 215–224.
    [38]陈建国.突触可塑性及其功能[J].咸宁学院学报(医学版), 2004, 18(3): 153-156.
    [39]董爱荣,高天明,苏永春等. NMDA依赖的突触长时程增强和长时程抑制模型与仿真研究[J].第四军医大学学报, 2005, 26(16): 1529-1532.
    [40]高明奇,张天彪,周彬,等.慢性铅暴露对仔鼠脑海马NMDAR受体蛋白表达的影响[J].毒理学杂志, 2005, l9(3): 178-180.
    [41]黄春桃,吴锡南,刘苹. N-甲基-D-天冬氨酸受体在中枢神经系统的研究进展[J].中国行为医学科学, 2006, 15(4):377-378.
    [42]刘辉,张万琴. PSD-95对NMDA受体信号转导的整合作用[J].生理科学进展, 2001, 32(4): 343-346.
    [43]徐鹤定,武春艳.胎儿酒精综合征[J].国外医学精神病学分册, 2002, 29(2): 90-93.
    [44]杨杰.酒精对大脑发育有害影响的新发现[J].安徽教育学院学报. 2003, 21(6):70-71.
    [45]于海芙,吴光,崔松彪.慢性酒精中毒及戒断对大鼠海马NMDA受体亚基NR2B表达的影响[J].中国神经精神疾病杂志, 2007, 33(6): 365-367.
    [46]张军,吕京,等.宫内铅暴露降低海马NMDAR-2A mRNA表达及影响成年后大鼠海马长时程增强[J].卫生研究, 2001, 30(1): 4-7.
    [47]张均田,张庆柱,张永祥.神经药理学[M], 2008, p282.
    [48]赵正言,邵杰,竺智伟.铅的神经毒理机制研究进展[J].中国实用儿科杂志, 2006, 21(3): 163-165.
    [1] Bencko V, Symon K. Test of environmental exposure to arsenic and hearing changes in exposed children[J]. Environmental Health Perspective. 1977, 19: 95–101.
    [2] Bolla-Wilson K, Bleecker ML. Neuropsychological impairment following inorganic arsenic exposure[J]. Journal of Occupational Medicine, 1987, 29: 500–503.
    [3] Calderon J, Navarro ME, Jimenez-Capdeville ME. Exposure to arsenic and lead and neuropsychological development in Mexican children[J]. Environmental Research Section A, 2001, 85: 69-76.
    [4] Chattopadhyay S, Bhaumik S, Nag Chaudhury A, et al. Arsenic induced changes in growth development and apoptosis in neonatal and adult brain cells in vivo and in tissue culture [J]. Toxicology Letters, 2002, 128: 73–84.
    [5] Chen YC, Lin-Shiau SY, Lin JK. Involvement of reactive oxygen species and caspase 3 activation in arsenite induced apoptosis [J]. Journal of Cell Biology, 1998, 177: 324–333.
    [6] Cohen SM, Arnold LL. Methylated arsenicals-the implications of metabolism and carcinogenicity studies in rodents to human risk assessment[J]. Critical Reviews in Toxicology, 2006, 36: 99-133.
    [7] Colomina MT, Albina ML, Domingo JL, et al. In?uence of maternal stress on the effects of prenatal exposure to methylmercury and arsenic on postnatal development and behavior in mice: a preliminary evaluation[J]. Physiology and Behavior, 1997, 61: 455–459.
    [8] Danan M, Dally S, Conso F. Arsenic-induced encephalopathy [J]. Neurology, 1984, 11: 1524.
    [9] DeSesso JM, Jacobson CF, Scialli AR, et al. An assessment of the developmental toxicity of inorganic arsenic [J]. Reproductive Toxicology, 1998, 12: 385–433.
    [10] Ehrenstein OS, Poddar Shalini, Yan Yuan. Children’s intellectual function in relation to arsenic exposure [J]. Epidemiology, 2007, 18: 44–51.
    [11] Gerr F, Letz R, Green RC. Relationships between quantitative measures and neurologist’s clinical rating of tremor and standing steadiness in two epidemiological studies [J]. NeuroToxicology, 2000a, 21: 753–760.
    [12] Gerr F, Letz R, Ryan PB, et al. Neurological effects of environmental exposure to arsenic in dust and soil among humans [J]. NeuroToxicology, 2000b, 21: 475–487.
    [13] Gerr F, Letz R, Ryan PB, et al. Neurological effects of environmental exposure to arsenic in dust and soil among humans[J]. Neurotoxicology, 2000, 21(4): 475-487.
    [14] Gherardi RK, Chariot P, Vanderstigel M, et al. Organic arsenic-induced Guillain-Barre-like syndrome due to melarsoprol: a clinical, electrophysiological, and pathological study [J]. Muscle Nerve, 1990, 13: 637–645.
    [15] Goering PL, Aposhian HV, Mass MJ, et al. The enigma of arsenic carcinogenesis: role of metabolism[J]. Toxicology Science, 1999, 49 (1): 5-14.
    [16] Hughes MF. Arsenic toxicity and potential mechanisms of action [J]. Toxicology Letters, 2002, 133: 1–16.
    [17] Itoh T, Zhang YF, Murai S, Saito H, et al. The effect of arsenic trioxide on brain monoamine metabolism and locomotor activity of mice [J]. Toxicology Letters, 1990, 54: 345–353.
    [18] Kannan GM, Tripathi N, Dube SN, et al. Toxic effects of arsenic (III) on some hematopoietic and central nervous system variables in rats and guinea pigs [J]. Journal of Toxicology - Clinical Toxicology, 2001, 39: 675–682.
    [19] Krüger K, Repges H, Hippler J, et al. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats [J]. Toxicology and Applied Pharmacology, 2007, 225: 40-46.
    [20] Krüger K, Straub H, Hirner AV, et al. Effects of monomethylarsonic and monomethylarsonous acid on evoked synaptic potentials in hippocampal slices of adult and young rats[J]. Toxicology and Applied Pharmacology, 2009, 236: 115-123.
    [21] Krüger Ka, Gruner J, Madeja M, et al. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals [J]. Archives of toxicology, 2006, 80: 492-501.
    [22] Krüger Kb, Binding N, Straub H, et al. Effects of arsenite on long-term potentiation in hippocampal slices from young and adult rats [J]. Toxicology Letters, 2006, 165: 167–173.
    [23] Larochette N, Decaudin D, Jacotot E, et al. Arsenite induces apoptosis via a direct effect on the mitochondrial permeability transition pore [J]. Experimental Cell Research, 1999,249: 413–421.
    [24] Morton WE, Caron GA. Encephalopathy: an uncommon manifestation of workplace arsenic poisoning? [J]. American Journal of Industrial Medicine, 1989, 15: 1–5.
    [25] Nagaraja TN, Desiraju T. Effects on operant learning and brain acetylcholine esterase activity in rats following chronic inorganic arsenic intake [J]. Human & Experimental Toxicology, 1994, 13: 353–356.
    [26] Nagaraja TN, Desiraju T. Regional alterations in the levels of brain biogenic amines, glutamate, GABA, and GAD activity due to chronic consumption of inorganic arsenic in developing and adult rats [J]. Bulletin of Environmental Contamination and Toxicology, 1993, 50: 100–107.
    [27] Orrenius S. Mechanisms of oxidative cell damage. In: Poli G, eds. Free radicals: from basic science to medicine [J]. Blood, 1993: 47-64.
    [28] Petrick JS, Ayala-Fierro F, Cullen WR, et al. Monomethylarsonous acid (MMAIII) is more toxic than arsenite in Chang human hepatocytes[J]. Toxicology and Applied Pharmacology, 2000, 163: 203-207.
    [29] Pryor GT, Uyeno ET, Tilson HA, et al.Assessment of chemicals using a battery of neurobehavioral tests: a comparative study [J]. Neurobehavioral Toxicology and Teratology, 1983, 5: 91–117.
    [30] Rasco JF, Hood RD. Effects of maternal restraint stress and sodium arsenate in mice [J]. Reproductive Toxicology, 1994, 8: 49–54.
    [31] Rodriguez VM, Carrizales L, Jimenez-Capdeville ME, et al. The effects of sodium arsenite exposure on behavioral parameters in the rat [J]. Brain Research Bulletin, 2001, 55: 301–308.
    [32] Rodriguez VM, Carrizales L, Mendoza MS, et al. Effects of sodium arsenite exposure on development and behavior in the rat [J]. Neurotoxicology Teratology. 2002, 24: 743–750.
    [33] Rodríguez VM, Jiménez-Capdeville ME, Giordano M. The effects of arsenic exposure on the nervous system [J]. Toxicology Letters, 2003, 145(1): 1-18.
    [34] Rosado JL, Ronquillo D, Kordas K. Arsenic exposure and cognitive performance in Mexican schoolchildren [J]. Environmental Health Perspective, 2007, 115: 1371–1375.
    [35] Thomas DJ, Styblo M, Lin S. The cellular metabolism and systemic toxicity of arsenic [J]. Toxicology and Applied Pharmacology, 2001, 176: 127–144.
    [36] Tripathi N, Kannan GM, Pant BP, et al. Arsenic-induced changes in certain neurotransmitter levels and their recoveries following chelation in rat whole brain [J]. Toxicology Letters, 1997, 92: 201–208.
    [37] Tsai SY, Chou HY, The HW. The effects of chronic arsenic exposure from drinking water on the neurobehavioral development in adolescence[J]. NeuroToxicology, 2003, 24: 747–753.
    [38] Vahidnia A, Romijn F, Tiller M. Arsenic-induced toxicity, effect on protein composition in sciatic nerve [J]. Human & Experimental Toxicology, 2006, 25: 667-674.
    [39] Vahidnia A, Romijn F, van der Voet GB. Arsenic-induced neurotoxicity in relation to toxicokinetics: effects on sciatic nerve proteins [J]. Chemico-Biological Interactions, 2008, 176(2-3): 188-195.
    [40] Vahidnia A, van der Straaten RJ, Romijn F. Arsenic metabolites affect expression of the neurofilament and tau genes: an in-vitro study into the mechanism of arsenic neurotoxicity [J]. Toxicology In Vitro, 2007, 21(6): 1104-1112.
    [41] Vahter M, Concha G. Role of metabolism in arsenic toxicity[J]. Pharmacology and Toxicology, 2001, 89: 1-5.
    [42] Vahter M. Mechanisms of arsenic biotransformation[J]. Toxicology, 2002, 181-182: 211-217.
    [43] Valkonen S, Savolainen H, Jarvisalo J. Arsenic distribution and neurochemical effects in peroral sodium arsenite exposure of rats [J]. Bulletin of Environmental Contamination and Toxicology, 1983, 30: 303–308.
    [44] Wang SX, Wang ZH, Cheng XT. Arsenic and fluoride exposure in drinking water childrens IQ and growth in Shanyin county, Shanxi province, China [J]. Environmental Health Perspective, 2007, 115: 643–647.
    [45] Wasserman GA, Liu XH, Parvez F. Water arsenic exposure and children’s intellectual function in Araihazar, Bangladesh[J]. Environmental Health Perspective, 2004, 112: 1329–1333.
    [46] Wlodarczyk B, Bennett GD, Calvin JA, et al. Arsenic-induced alterations in embryonic transcription factor gene expression: implications for abnormal neural development [J]. Dev Genet. 1996a, 18: 306–315.
    [47] Wlodarczyk BJ, Bennett GD, Calvin JA, et al. Arsenic-induced neural tube defects inmice: alterations in cell cycle gene expression [J]. Reproductive Toxicology, 1996b, 10: 447–454.
    [48] Wright RO, Amarasiriwardena C, Woolf AD. Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site[J]. NeuroToxicology, 2006, 27: 210–216.
    [49] Zhang TL, Gao YX, Lu JF, et al. Arsenite, arsenate and vanadate affect human erythrocyte membrane [J]. Journal of Inorganic Biochemistry, 2000, 79: 195–203.
    [50]毕伟东,王成艳,王成贤.砷及砷化物与人类疾病[J].微量元素与健康研究, 2002 19(2): 76-79.
    [51]李达圣,安冬.砷中毒疾病机理研究进展[J].生国现代临床医学, 2005, 4(5): 32-37.
    [52]刘桂成,董学新,张爱华,等.砷元素慢性中毒的神经损害与发砷含量观察[J].微量元素与健康研究, 2000, 17(3): 23-24.
    [53]孙文娟,王凤芝,孙贵范.孕期和哺乳期母鼠饮水砷暴露对子代大鼠脑组织神经递质代谢酶的影响[J].环境与健康杂志, 2007, 24(5): 342-343.
    [54]文春晓.神经递质在学习记忆中的作用[J].武警医学院学报,2009, 18(1): 65-67.
    [55]席淑华,孙贵范,孙文娟,等.砷对仔代大鼠神经行为和学习记忆功能影响[J].中国公共卫生, 2006, 22(5): 559-560.
    [56]席淑华,孙贵范,孙文娟.砷对仔代大鼠神经行为和学习记忆功能影响[J].中国公共卫生, 2006, 22(5): 559-560.
    [57]肖俊,张敏,潘娅,等.慢性染砷对大鼠学习记忆功能的影响[J].中国医学物理学杂志, 2006, 23(2): 114-117.
    [58]杨克敌.环境卫生学(第6版)[M]. 2008, p244.
    [59]张爱华.砷与健康[M]. 2008, p1.
    [60]张晨,凌冰,王国荃,等.氟-砷联合染毒对大鼠子代神经行为发育的影响[J].卫生研究, 1998, 28(6): 337-339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700