用户名: 密码: 验证码:
三维金属体积成形过程无网格伽辽金方法及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属体积成形是一种少、无切削的金属加工方法,在现代生产中占有极其重要的地位。对金属体积成形过程进行准确的数值模拟不但可以节省昂贵的实验费用,而且对合理确定成形工艺、保证模具设计的一次性成功具有重要的理论指导意义和工程实用价值。随着数值计算方法和计算机技术的发展,数值模拟分析方法已经成为解决工程问题的重要方法。其中有限元方法(FEM)经过不断的发展成熟,在金属体积成形过程数值模拟中发挥着重要的作用。但在锻造、挤压等大变形成形过程中,金属材料的流动异常复杂,工件变形程度非常大,FEM在处理此类问题时常常面临网格发生畸变而必须进行频繁网格重划分的问题,网格重划分势必造成计算精度和计算效率的下降,甚至导致分析过程无法进行。
     无网格方法是近年来兴起的一种新的数值方法,它基于一系列离散节点进行近似,不需要节点的连接信息,克服了有限元法对网格的依赖,而且提供了连续性好、形式灵活的场函数,为大变形成形过程的数值模拟提供了一种有效途径。众多学者开始致力于无网格方法在金属体积成形过程中的应用研究,推动了金属体积成形过程无网格方法数值模拟技术的发展。但对三维非稳态金属体积成形过程的无网格方法数值模拟的研究还不完善,很多关键应用技术有待于进一步的研究。
     本文针对金属体积成形过程的特点和工艺要求,提出刚(粘)塑性无网格伽辽金方法(RVPEFGM),并将其应用于三维非稳态金属体积成形过程的数值模拟分析。在对金属体积成形过程刚(粘)塑性无网格伽辽金方法和数值模拟关键技术深入研究的基础上,开发数值模拟分析程序,以期为金属成形过程分析提供一种科学的无网格方法仿真技术工具。
     对三维无网格伽辽金方法(EFGM)开展了相关研究。当采用移动最小二乘(MLS)近似方案构造形函数时,会涉及到A~(-1)(x)矩阵的计算,研究了在三维问题中造成A(x)矩阵不可逆的原因,给出了A(x)矩阵不可逆的解决方法,并采用带权正交函数作为基函数,从而避免了对A(x)矩阵的求逆计算。节点影响域尺寸的大小对EFGM的计算精度和计算效率有很大的影响,影响域尺寸的确定要遵循“足够大又尽量小”的原则,为合理确定影响域尺寸,采用动态节点影响域方法,在保证EFGM的计算精度的同时兼顾计算效率。MLS形函数不具备插值性质,为方便EFGM本质边界条件的处理,采用混合变换法对MLS形函数进行局部修正,实现了EFGM本质边界条件的精确施加。研究了三维无网格伽辽金方法的具体实现过程,给出了规则六面体固定背景网格积分方案的实施方法和EFGM的程序设计步骤。研究了基函数、权函数、高斯积分阶次和节点密度等因素对EFGM的计算精度和效率的影响,得到了这些因素对计算精度和效率的影响规律。
     将无网格伽辽金方法与刚(粘)塑性流动理论相结合,建立了刚(粘)塑性无网格伽辽金方法(RVPEFGM),并将其应用于三维金属体积成形工艺过程的模拟。基于速度场函数的MLS近似离散形式,推导建立了三维金属体积成形问题中应变速率向量、等效应变速率、体积应变速率的离散格式。采用罚函数法施加体积不变条件,根据不完全广义变分原理,给出系统能量速率泛函的组成,推导出能量速率泛函各组成部分的变分,并获得其矩阵表示形式。研究模具和工件间的摩擦边界条件的处理方法,采用反正切摩擦模型描述摩擦接触边界条件,实现了任意形状模具的三维金属体积成形过程模拟分析中摩擦边界条件在三维局部坐标系下的正确施加,推导建立了三维金属体积成形问题RVPEFGM的刚度方程,在局部坐标系下总装刚度方程,采用Newton-Raphson迭代法对刚度方程进行求解。完善了刚(粘)塑性无网格伽辽金方法基础理论研究,给出了刚(粘)塑性无网格伽辽金方法分析三维金属体积成形过程的模拟分析步骤和程序流程。
     实际生产中,大多数金属体积成形工艺过程属于三维非稳态大变形金属塑性成形问题,其成形过程极其复杂,为把RVPEFGM应用于实际生产,并实现分析程序的通用性和自动化,进而发挥无网格方法处理金属体积成形问题的优势。本文结合金属体积成形过程的特点和工艺要求,对三维金属体积成形过程无网格伽辽金方法数值模拟的关键技术进行了深入研究。解决了诸如模具型腔的几何信息描述、接触节点局部坐标系的建立、初始速度场的确定、速度场的收敛性及控制技术、刚性区的处理、体积闭锁问题的处理、工件边界节点与模具的动态接触与脱离的自动处理、区域及边界积分的实施方案等若干关键技术。
     采用有限元网格方法描述模具型腔,建立了读取ASCII码格式的STL数据的接口程序。提出了边界接触节点局部坐标系的建立方法,并给出了整体坐标与局部坐标的转换矩阵。金属成形过程中存在着不产生塑性变形的刚性区,为避免刚性区导致的数值计算问题,给出了工件变形过程中刚性区的处理方法。初始速度场的选取直接决定着Newton-Raphson迭代的收敛性和收敛速度,采用直接迭代法生成初始速度场,能够改善Newton-Raphson迭代的收敛性。采用“急降缓升”方法搜索迭代收敛方向,进而确定衰减因子β的取值,提高了Newton-Raphson迭代的收敛速度。针对三维金属体积成形过程RVPEFGM分析中的体积闭锁和压力震荡问题,提出了体积应变率映射法,通过将体积应变率(?)_v映射到低维空间,建立了体积闭锁现象的缓解算法。重点研究了工件边界节点与模具表面接触和脱离的自动处理技术,形成了动态边界自动识别技术的具体算法。提出了根据接触节点到模具型腔三角形面片距离最小的原则进行接触节点位置修正的方法,有效解决了当采用自接触节点到模具型腔三角形面片做垂线进行修正接触节点位置时遇到的“法矢盲区”问题。针对金属体积成形的特点,将单位分解积分法引入到三维金属体积成形RVPEFGM数值积分计算中,解决了使用固定背景网格时因高斯积分点数量减少而致使模拟分析精度下降的问题。
     在上述刚(粘)塑性无网格伽辽金方法理论和关键技术研究的基础上,采用C++语言,自主开发了三维金属体积成形过程刚(粘)塑性无网格伽辽金方法数值模拟分析程序,实现了任意形状模具的三维非稳态大变形金属体积成形过程的RVPEFGM分析,并对锻造、挤压等工艺进行了数值模拟分析,通过与有限元软件分析结果和实验结果的比较,验证了所提出的方法及处理技术的正确性。同时在分析对比、实验验证、算例检验的基础上,不断修正模型和完善、维护程序,确保了建立的刚(粘)塑性无网格伽辽金方法的基本理论以及开发的数值模拟程序的准确性、可靠性。
     采用自主开发的三维刚(粘)塑性无网格伽辽金方法分析程序,对圆形挤压件等通道弯角挤压过程和转向节预成形件热模锻过程进行了系统模拟分析,获得了相关力学分析结果,对金属流动规律、工件等效应力和等效应变的分布以及载荷力的变化等进行了研究,为掌握等通道弯角挤压机理以及转向节预成形件成形工艺和模具设计的合理确定提供了科学指导,实现了对实际生产工艺和模具的优化设计。
The bulk metal forming process is a kind of metal working method having little or no cutting. It plays a significant role in modern manufacturing. An accurate simulation of the bulk metal forming process accurately can not only save high costs of the experiment, but also have significant theoretical guidance meaning and realistic application value for determining the reasonable forming process and ensuring die design completed at the first time successfully. With the development of calculation method and computer technology, numerical analysis method becomes a powerful tool to analyze engineering problems. Finite element method (FEM) has played an important role in the numerical simulation of bulk metal forming processes. However, when simulating large and severe deformation processes such as forging and extrusion, FEM often encounters some difficulties that meshes become severely distorted and remeshing is necessary because of complicated metal flowing and large deformation. And then the computation process can not be carried on continually and remeshing often brings excessively time-consuming and causes deterioration of computational precision especially.
     The meshless method is a new numerical computational method developed in recent years. Compared with FEM, the main benefit of the method is that the approximation field function is constructed entirely in terms of arbitrarily placed nodes of structures without using explicit mesh. And it shows obvious advantages in treating with large deformation problems because it gets rid of the reliance on the mesh and provides continuous and flexible field function. Many researchers have applied meshless method to solve metal forming problems in recent decade and made some achievements. And that drives the development of meshless numerical simulation technology applied for analyzing the metal forming process. But the researches on the application of meshless method in simulating three-dimensional unsteady bulk metal forming process are imperfect, and there are still many key application technologies to be further studied.
     Therefore, according to the characteristics of bulk metal forming process and technological requirements, the paper establishes rigid/visco-plastic element free Galerkin method and applies it for the analysis of three-dimensional unsteady bulk metal forming process. On the basis of further studies of rigid/visco-plastic element free Galerkin method and corresponding key numerical simulation techniques, a meshless method numerical analysis procedure for simulating the bulk metal forming process is developed. And a scientific, accurate, reliable, and new meshless method numerical simulation tool is provided to the actual production.
     Researches on the three-dimensional element free Galerkin method are carried out. Element free Galerkin method uses moving least square method to construct shapefunction, and to obtain shape function A~(-1) (x) should be calculated firstly. The cases about matrix A(x) appearing irreversible in three-dimensional problems are discussed,and the approaches to treat with this problem are given. The paper employs the orthogonal function with the weight function as the basis function to avoid the processof calculating the inversion of matrix A(x). The size of node influence domain hasgreat effects on computational accuracy and efficiency of element free Galerkin method. The size of node influence domain should be determined following the rule of "sufficiently large and as small as possible". The dynamic node influence domain method is utilized to obtain reasonable node influence domain size, and this method not only guarantees the computational accuracy but also improves the computational efficiency. Due to the lack of Kronecker delta properties in the element free Galerkin method shape functions, the essential boundary conditions can't be imposed directly. In order to exert the boundary conditions directly, the mixed transformation method is adopted to modify shape function, then the modified shape function has the interpolation property and the essential boundary conditions can be enforced exactly and directly. The realization process for the three-dimensional element free Galerkin is studied. The implementation method of the regular hexahedron fixed background cell quadrature technique is introduced. And programming steps for element free Galerkin method are given. Influences of basis function, weight function, Gauss quadrature order and node density on the computational accuracy and efficiency are researched, and the influence law is obtained.
     Combining element free Galerkin method and rigid/visco-plastic flow theory, the paper establishes the three-dimensional rigid/visco-plastic element free Galerkin method, and applies it to analyze three-dimensional bulk metal forming process. The velocity field is approximated by MLS method. Based on the expression of velocity field approximation function, the discretized formats of strain rate vector, effective strain rate and volumetric strain rate are established. By employing penalty function method to constrain incompressibility condition, and according to incomplete generalized variational principle, compositions of total energy rate functional are given. Moreover, the variations of the compositions are derived and expressed in matrix forms. The treatment method for the frictional conditions along the workpiece-die interface is studied. The arctangent frictional model is used to implement the frictional boundary conditions. Boundary condition is imposed correctly in the three-dimensional local coordinate system for simulating three-dimensional bulk metal forming process with arbitrarily geometrical shaped dies. The stiffness matrix equation of RVPEFGM is derived and assembled in the local coordinate system. The New-Raphson iterative procedure is implemented to solve stiffness matrix equation until a converged result is obtained. Basic theory research of rigid/visco-plastic element free Galerkin method is improved. Also simulation analysis steps and program flow are presented.
     Most bulk metal forming process in practical production belongs to three-dimensional unsteady metal plastic process with severe and complex deformation. Applying RVPEFGM to guide practical production and improving the generality and automation of the analysis program can take advantages of meshless method in treating with bulk metal forming process. According to the characteristics of bulk metal forming process and technological requirements, the related key simulation techniques for analyzing three-dimensional bulk metal forming process used by element free Galerkin method are studied. The problems, such as the description of dies, establishment of local coordinate system for contact points, the way to get initial velocity field, numerical iteration convergence and control method for velocity field, method for dealing with the rigid region, method to release the volumetric locking problem, node detachment and contact criterion, and implement of regional and boundary numerical integration, are solved.
     The finite elements are used to describe the mould cavity, and the interface program for reading STL data in ASCII format is developed. The method to establish the local coordinate system for contact point is proposed, and the transformation matrix between global coordinate system and local coordinate system is given. There are rigid regions during metal forming process. The method for avoiding numerical problem caused by rigid region in metal plastic forming is given. Initial velocity field determines the convergence and convergence rate of Newton-Raphson iteration. The direct iteration method is used to get initial velocity field guess for Newton-Raphson iteration. The method of "rapid drop slow ascend" is employed to search convergencedirection and the selection method of the attenuation factorβis given, thus theconvergence velocity of the Newton-Raphson iteration can be improved. Volumetric strain rate projection method is proposed to solve volumetric locking and pressure oscillation problems. A releasing algorithm is realized by modifying the volumetric strain rate in the governing equation. The volumetric strain rate calculated according to velocity field is mapped onto a lower-order space to reduce the number of independent constraint equations. The automatic technique for handling the contact and detachment states among the deforming material boundary and die surfaces is focused. And concrete algorithms of dynamic adjusting techniques are established. The reposition of the contact node is modified in terms of shortest distance principle from the contact node to the triangle patch, thus the "blind area of normal vector" caused by drawing vertical line to triangle patches to search perpendicular point due to scatted die surface meshes can be solved. The partition of unity method is introduced into regional numerical integration to avoid the integration precision loss because of decreasing Gauss integration points in three-dimensional metal forming process simulated by RVPEFGM.
     Based on the studies of rigid/visco-plastic element free Galerkin method and related key technology, an analysis program for simulating three-dimensional bulk metal forming processes is developed. And the program is capable of simulating three-dimensional unsteady bulk metal forming processes with severe deformation and arbitrarily shaped dies. The typical metal forming processes such as forging and extrusion processes are analyzed. The effectiveness and validity of the proposed methods and techniques are demonstrated by comparing with the numerical data obtained by using FEM and experimental data. The accuracy and reliability of the rigid/visco-plastic element free Galerkin method and numerical simulation program are ensured by correcting theoretical model and maintaining programs based on the experimental verification and numerical examples analysis.
     An equal channel angle extrusion process and a furcation hot forging process are simulated by using the program developed in this paper. Detail mechanical data are obtained. The deformation rules, distributions of the effective stress and effective strain and the load stroke curves are studied. The deforming mechanism of the equal channel angle process is better understood and reasonable forming processes of furcation hot forging are obtained. The scientific guide for optimizing process and die design for practical metal forming production is realized.
引文
1.俞汉清,陈金德.金属塑性成形原理[M].北京:机械工业出版社,2001
    2.Clough R W.The finite element method in plane stress analysis[C].Proc.2nd ASCE Conference on Electronic Computation.Pittsburgh,PA.,1960,345-378
    3.Marcal P V,King I P.Elastic-plastic analysis of two-dimensional stress systems by the finite element method[J].International Journal of Mechanical Sciences,1967,9:143-150
    4.Lee C H,Kobayashi S.New solutions to rigid-plastic deformation problems using a matrix method[J].Trans.ASME,Journal of Engineer for Industry,1973,95:865-878
    5.Zienkiewicz O C,Godbole P N.Flow of plastic and viscoplastic solids with special reference to extrusion and forming process[J].International Journal for Numerical Methods in Engineering,1974,8:3-15
    6.Kobayashi S,Oh S I,Altan T.Metal forming and the finite element method[M].Oxford University Press,New York,1989
    7.李尚健.金属塑性成形过程模拟[M].北京:机械工业出版社,1999
    8.彭颖红.金属塑性成形仿真技术[M].上海:上海交通大学出版社,1999
    9.刘建生,陈慧琴,郭晓霞.金属塑性加工有限元模拟技术与应用[M].北京:冶金工业出版社,2003
    10.Belytschko T,Krongauz Y,Organ D,et al.Meshless methods:an overview and recent developments[J].Computer Methods in Applied Mechanics and Engineering,1996,139(1-4):3-47
    11.张雄,刘岩,无网格法[M].北京:清华大学出版社,2005
    12.Liu G R,Gu Y T著.王建明,周学军译.无网格法理论及程序设计[M].济南:山东大学出版社,2007
    13.Lucy L B.A numerical approach to the testing of the fission hypothesis[J].The Astronomy Journal,1977,8(12):1013-1024
    14.Gingold R A,Monaghan J J.Smoothed particle hydrodynamics:theory and application to non-spherical stars[J].Monthly Notices of the Royal Astronomical Society,1977,181:375-389
    15.Monaghan J J.Particle methods for hydrodynamics[J].Computer Physics Report.1985,3:71-124
    16.Monaghan J J.An introduction to SPH[J].Computer Physics Communications,1988,48(1):89-96
    17.Monaghan J J.Smoothed particle hydrodynamics[J].Annual Review of Astronomy and Astrophysics,1992,30:546-574
    18.Monaghan J J.Simulating free surface flows with SPH[J].Journal of Computational Physics 1994,110(2):399-406.
    19.Gray J P,Monaghan J J,Swift R P.SPH elastic dynamics[J].Computer Methods in Applied Mechanics and Engineering,2001,190:6641-6662
    20.Monaghan J J.Smoothed particle hydrodynamics[J].Reports on Progress in Physics,2005,68:1703-1759
    21.Swegle J W,Hicks D L,Attaway S W.Smoothed particle hydrodynamics stability analysis[J].Journal of Computational Physics,1995,116:123-134
    22.Dyka C T,Randles P W,Ingel R P.Stress points for tension instability in SPH[J].International Journal for Numerical Methods in Engineering,1997,40(13):2325-2341
    23.Chen J K,Beraun J E,Jih C J.Improvement for tensile instability in smoothed particle hydrodynamics[J].Computational Mechanics,1999,23:279-287
    24.Jonhson G R,Stryk R A,Beissel S R.SPH for high velocity impact computations[J].Computer Methods in Applied Mechanics and Engineering,1996,139:347-373
    25.Michel Y,Chevalier J M,Durin C,et al.Hypervelocity impacts on thin brittle targets:experimental data and SPH simulations[J].International Journal of Impact Engineering,2006,33(1/12):441-451
    26.Liu M B,Liu G R,Zong Z,Lam K Y.Smoothed particle hydrodynamics for numerical simulation of underwater explosions[J].Computational Mechanics,2003,30(2):106-118
    27.Chen J K,Beraun J.E.Generalized smoothed particle hydrodynamics method for nonlinear dynamic problems[J].Computer Methods in Applied Mechanics and Engineering,2000,139:225-239
    28.Fang J N,Owens R G,Tacher L,et al.A numerical study of the SPH method for simulating transient viscoelastic free surface flows[J].Journal of Non-Newtonian Fluid Mechanics,2006,139(1/2):68-84
    29.Xiong H B,Chen L H,Lin J Z.Smoothed particle hydrodynamics modeling of free surface flow[J].Journal of Hydrodynamics,2006,18(1):443-445
    30.张锁春.光滑质点流体动力学(SPH)方法(综述)[J].计算物理,1996,13(4):385-397.
    31.徐立,孙锦山.一维激波管问题的SPH模拟[J].计算物理,2003,20(2):153-156
    32.闫晓军,张玉珠,聂景旭.空间碎片超高速碰撞数值模拟的SPH方法[J].北京航空航天大学学报,2005,31:351-354
    33.毛益明,武文远,陈广林,龚艳春.高速碰撞问题的SPH方法模拟[J].解放军理工大学学报(自然科学版),2003,4(5):84-87
    34.杨刚,韩旭,龙述尧.应用SPH方法模拟近水面爆炸[J].工程力学,2008,25(4):204-213
    35.崔伟峰,曾新吾.SPH算法在超高速碰撞数值模拟中的应用[J].国防科技大学学报,2007,29(2):43-46
    36.蔡清裕,崔伟峰,向东,曾新吾.模拟刚性动能弹丸侵彻混凝土的FE-SPH方法[J].国防科技大学学报.2003,25(6):87-90
    37.孙赫颖.材料在脉冲激光作用下热力响应的SPH模拟[D].国防科技大学硕士论文,2006.
    38.贝新源,岳宗五.三维SPH程序及其在斜碰撞问题的应用[J].计算物理,1997,14(2):155-166
    39.Lancaster P,Salkauskas K.Surfaces generated by moving least squares methods[J].Mathematics of Computation,1981,37:141-158
    40.Nayroles B,Touzot G,Villon P.Generalizing the finite element method:Diffuse approximation and diffuse elements[J].Computational Mechanics,1992,10:307-318
    41.Belytschko T,Lu Y Y,Gu L.Element-free Galerkin methods[J].International Journal for Numerical Methods in Engineering,1994,37(2):229-256
    42.Krysl P,Belytschko T.ESFLIB:A library to compute the element free Galerkin shape functions[J].Computer Methods in Applied Mechanics and Engineering,2001,190:2181-2205
    43.Belytschko T,Organ D,Krongauz Y.Coupled finite element-element-free Galerkin method[J].Computational Mechanics,1995,17(3):186-195
    44.Belytschko T,Krongauz Y,Organ,D,et al.Meshless methods:an overview and recent developments[J].Computer Methods in Applied Mechanics and Engineering,1996,139:3-47
    45.Lu Y Y,Belytschko T,Gu L.New implementation of the element free Galerkin method[J].Computer Methods in Applied Mechanics and Engineering,1994,113(3-4):397-414
    46.Chung H J,T Belytschko.Error estimate in the EFG method[J].Computational Mechanics,1998,21:91-100
    47.Krongauz Y,Belytschko T.EFG approximation with discontinuous derivatives[J].International Journal for Numerical Methods in Engineering,1998,41:1215-1233
    48.Belytschko T,Dolbow J.Numerical integration of the Galerkin weak form in meshfree methods[J].Computational Mechanics,1999,23:219-230
    49.Lu Y Y,Belytschko T,Tabbara M.Element-free Galerkin method for wave propagation and dynamic fracture[J].Computer Methods in Applied Mechanics and Engineering,1995,126:131-153
    50.Belytschko T,Tabbara M.Dynamic fracture using element-free Galerkin methods[J].International Journal for Numerical Methods in Engineering,1996,39:923-938
    51.Belytschko T,Organ D,Gerlach C.Element-free Galerkin methods for dynamic fracture in concrete[J].Computer Methods in Applied Mechanics and Engineering,2000,187:385-399
    52.Belytschko T,Krysl P,Krongauz Y.Three-dimensional explicit element-free Galerkin method [J].International Journal for Numerical Methods in Fluids,1997,24(12):1253-1270
    53.Gu Y T,Liu G R.A coupled element free Galerkin/boundary element method for stress analysis of tow-dimensional solids[J].Computer Methods in Applied Mechanics and Engineering,2001,190(34):4405-4419
    54.Kargamovin M H,Toussi H E,Fariborz S J.Elasto-plastic element-free Galerkin method[J].Computational Mechanics,2004,33:206-214
    55.Brighenti R.Application of the element-free Galerkin meshless method to 3-D fracture mechanics problems[J].Engineering Fracture Mechanics,2005,72:2808-2820
    56.Zhang Z,Liew K M,Cheng Y,Lee Y Y.Analyzing 2D fracture problems with the improved element-free Galerkin method[J].Engineering Analysis with Boundary Elements,2008,32:241-250
    57.Singh A,Singh I V,Prakash R.Meshless analysis of unsteady-state heat transfer in semi-infinite solid with temperature-dependent thermal conductivity[J].International Communications in Heat and Mass Transfer,2006,33:231-239
    58.Singh A,Singh I V,Prakash R.Meshless element free Galerkin method for unsteady nonlinear heat transfer problems[J].International Journal of Heat and Mass Transfer,2007,50:1212-1219
    59.Gurgel A G,Sales W F,de Barcellos C S,et al.An element-free Galerkin method approach for estimating sensitivity of machined surface parameters[J].International Journal of Machine Tools and Manufacture,2006,46:1637-1642
    60.Parreira G F,Silva E J,Fonseca A R,Mesquita R C.The element-free Galerkin method in three-dimensional electromagnetic problems[J].IEEE Transactions on Magnetics,2006,42:711-714
    61.周维垣,寇晓东.无单元法及其工程应用[J].力学学报,1998,30(2):193-202
    62.寇晓东,周维垣.应用无单元法近似计算拱坝开裂[J].水利学报,2000,10:28-35
    63.周维垣,黄岩松,林鹏.三维无单元伽辽金法及其在拱坝分析中的应用[J].水利学报,2005,36(6):644-649
    64.Zhang X,Lu M W,Wegner J L.A 2-D meshless model for jointed rock structures[J].International Journal for Numerical Methods in Engineering,2000,47(10):1649-1661
    65.张伟,张雄,陆明万.板壳问题的三维无网格伽辽金直接分析法[J].计算力学学报,2006,23:236-141
    66.张征,刘更,刘天祥.接触问题的自适应无网格伽辽金方法[J].中国机械工程,2007,18:2868-2873
    67.张伟星,庞辉.弹性地基板计算的无单元法[J].工程力学,2000,17(3):138-144.
    68.庞作会,葛修润等.一种新的数值方法--无网格伽辽金法(EFGM)[J].计算力学学报,1999,16(3):320-329
    69.崔青玲,李长生,刘相华,王国栋.模拟平板轧制的新方法无网格伽辽金法[J].东北大学学报,2005,26(5):463-466
    70.Guan Y J,Zhao G Q,Wu X,Lu P.Massive metal forming process simulation based on rigid/visco-plastic element-free Galerkin method[J].Journal of Materials Processing Technology,2007,187-188:412-416
    71.Lu P,Zhao G Q,Guan Y J,Wu X.Bulk metal forming process simulation based on rigid-plastic/viscoplastic element free Galerkin method[J].Materials Science & Engineering A,2008,479(1-2):197-212
    72.Guan Y J,Wu X,Zhao G Q,Lu P.Releasing algorithm for volumetric locking in metal forming simulation based on element-free Galerkin method[J].Materials Science Forum,2008,575-578:356-366
    73.Wu X,Guan Y J,Zhao G Q,Lu P.Adaptive rigid-plastic meshless Galerkin method and its application in analysis of extrusion processes[J].Chinese Journal of Mechanical Engineering,2007,20:26-31
    74.赵国群,吴欣,王卫东.刚塑性无网格方法中体积闭锁问题的缓解算法[J].机械工程学报,2006,42(6):73-77
    75.赵国群,吴欣,管延锦.刚塑性无网格方法中精度影响因素的研究[J].塑形工程学报,2006,13(3):13-18
    76.吴欣,赵国群,管延锦,路平.稳态挤压过程刚塑性无网格伽辽金方法分析[J].塑性工程学报,2006,13:5-10
    77.吴欣,赵国群,管延锦,路平.大变形成形过程刚塑性无网格伽辽金方法[J].中国机械工程,2006,17(19):1984-1987
    78.吴欣,赵国群,管延锦,路平.反向挤压过程的无网格伽辽金热力耦合分析[J].工程力学,2007,24:180-184
    79.管延锦,赵国群,路平,曹伟,吴欣.等径角挤压工艺的无网格数值模拟研究[J].塑性工程学报,2008,15:5-21
    80.吴欣,赵国群,路平,管延锦.基于一致径向基函数的金属塑性成形过程无网格方法分析[J].机械工程学报,2008,44:22-26
    81.Liu W K,Jun S,Zhang Y F.Reproducing Kernel Particle methods[J].International Journal for Numerical Methods in Fluids,1995,20:1081-1106
    82.Liu K W,Chen Y,Jun S,et al.Overview and applications of reproducing kernel particle methods[J].Archives of Computation Methods in Engineering:State of the Art Review,1996,3:3-80
    83.Liu K W,Jun S,Li S,et al.Reproducing kernel particle methods for structural dynamics[J].International Journal for Numerical Methods in Engineering,1995,38(10):1655-1679
    84. Jun S, Sihling T D, et al. Multiresolution reproducing kernel particle method for computational fluid dynamics [J]. International Journal for Numerical Methods in Fluids, 1997, 24(12):1391-1415
    
    85. Liu K W, Hao S, Belytschko T, et al. Multiple scale meshfree methods for damage fracture and localization [J]. Computational Materials Science, 1999, 16: 197-205
    
    86. Chen J S, Pan C, Wu C T, Liu W K. Reproducing kernel particle methods for large deformation analysis of non-linear structures [J]. Computational Methods in Applied Mechanics and Engineering, 1996, 139: 195-227
    
    87. Liu W K, Jun S. Multiple-scale Reproducing Kernel Particle Methods for large deformation problems [J]. International Journal for Numerical Methods in Engineering, 1998, 41(7):1339-1362
    
    88. Chen S J, Roque C, Pan C, et al. Analysis of metal forming process based on meshless method [J]. Journal of Materials Processing Technology, 1998, 80-81(3): 642-646
    
    89. Xiong S, Liu W K, Gao J, et al. Simulation of bulk metal forming processes using the reproducing kernel particle method [J]. Computers and Structures, 2005, 83: 574-587
    
    90. Xiong S, Liu W K, Cao J, et al. On the utilization of reproducing kernel particle method for the numerical simulation of plane strain rolling [J]. International Journal of Machine Tools &Manufacture, 2003,43(1): 89-102
    
    91. Zhang Z Q, Zhou J X, Zhou N, et al. Shape optimization using reproducing kernel particle method and an enriched genetic algorithm [J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194: 4048-4070
    
    92. 周进雄,李梅娥,张红艳.再生核质点法研究进展[J].软科学进展, 2002,32(4):535-544
    
    93. Zhou J X, Zhang H Y, Zhang L. Reproducing kernel particle method for free and forced vibration analysis [J]. Journal of Sound and Vibration, 2005, 279: 389-402
    
    94. Liu W K, Chen Y, Uras R A, Chang C T. Generalized multiple scale reproducing kernel particle methods [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139:91-157
    
    95. Liu W K, Li S F, Belytschko T. Moving least-square reproducing kernel methods (I) methodology and convergence [J]. Computer Methods in Applied Mechanics and Engineering,1997, 143:113-154
    
    96. Liu W K, Han W M, Lu H S, et al. Reproducing kernel element method. Part I: Theoretical formulation [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193:933-951
    
    97. Li S F, Lu H S, Han W M, et al. Reproducing kernel element method. Part II: Globally conforming Im/Cn hierarchies [J]. Computer Methods in Applied Mechanics and Engineering, 2004,193:953-987
    98.Melenk J M,Babuska I.Partition of unity finite element method:basic theory and applications [J].Computer Methods in Applied Mechanics and Engineering,1996,139:289-314
    99.Babuska,I,Melenk J M.Partition of unity method[J].International Journal for Numerical Methods in Engineering,1997,40(4):727-758
    100.Strouboulis T,Babuska I,Copps K.Design and analysis of the generalized finite element method[J].Computer Methods in Applied Mechanics and Engineering,2000,181:43-69
    101.Duarte C A,Hamzeh O N,Liszka T J,et al.A generalized finite element method for the simulation of three-dimensional dynamic crack propagation[J].Computer Methods in Applied Mechanics and Engineering,2001,190:2227-2262,
    102.Dolbow J,Moes N,Belytschko T.Discontinuous enrichment in finite elements with a partition of unity method[J].Finite Elements in Analysis and Design,2000,36(3):235-260
    103.Alves M K,Rossi R.An extension of the partition of unity finite element method[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2005,27(3):209-216
    104.Gasser T C,Holzapfel G A.Modeling 3D crack propagation in unreinforced concrete using PUFEM[J].Computer Methods in Applied Mechanics and Engineering,2005,194:2859-2896
    105.Duarte C A,Oden J T.H-p clouds - an h-p meshless method[J].Numerical Methods for Partial Differential Equations,1996,12(6):673-705
    106.Duarte C A,Oden J T.H-p adaptive method using clouds[J].Computer Methods in Applied Mechanics and Engineering,1996,139:237-262
    107.Oden J T,Duarte C A M.New cloud-based hp finite element method[J].Computer Methods in Applied Mechanics and Engineering,1998,153:117-126
    108.Garcia O,Fancello E A,et al.Hp-clouds in Mindlin's thick plate model[J].International Journal for Numerical Methods in Engineering,2000,47(8):1381-1400
    109.Liszka T J,Duarte C A M,Tworzydlo W W.Hp-meshless cloud method[J].Computer Methods in Applied Mechanics and Engineering,1996,139:263-288
    110.刘欣,朱德懋,陆明万,张雄.平面裂纹问题的h,p,hp型自适应无网格方法的研究[J].力学学报,2000,32(3):308-318
    111.吴少平.固体力学中单位分解方法的研究[D].浙江大学硕士学位论文,2007
    112.曾清红.无网格数值模拟的并行算法及并行实现研究[D].中国科学技术大学博士学位论文,2006
    113.Atluri S N,Zhu T L.A new local meshless local Petorv-Galerkin(MLPG) approach in computational mechanics[J].Computational Mechanics,1998,22(2):117-127
    114.Atluri S N,Zhu T L.Meshless local Petrov-Galerkin(MLPG) approach for solving problems in elasto-statics[J].Computational Mechanics,2000,25:169-179
    115.Zhu T, Zhang J D, Atluri S N. A local boundary integral equation (LBIE) method in computational mechanics and a meshless discretization approach [J]. Computational Mechanics,1998,21: 183-195
    
    116. Zhu T, Zhang J D, Atluri S N. A meshless local boundary integrated equation (LBIE) method for solving nonlinear problems [J]. Computational Mechanics, 1998, 22: 174-186
    
    117. Atluri S N, Cho J Y, Kim H G. Analysis of thin beams, using the meshless local Petrov-Galerkin (MLPG) method, with generalized moving least squares interpolations [J]. Computational Mechanics, 1999, 24: 334-347
    
    118. Long S Y, Atluri S N. A meshless local Petrov-Galerkin (MLPG) method for solving the bending problems of a thin plate [J]. CMES-Computer Modeling in Engineering and Sciences,2002, 3:53-64
    
    119. Sladek J, Sladek V, Zhang Ch, et al. Analysis of orthotropic thick plates by meshless local Petrov-Galerkin (MLPG) method [J]. International Journal for Numerical Methods in Engineering, 2006, 67: 1830-1850
    
    120. Atluri S N, Zhu T L. Meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics [J]. Computational Mechanics, 2000,25: 169-179
    
    121.Han Z D, Atluri S N. Meshless local Petrov-Galerkin (MLPG) approaches for solving 3D problems in elasto-statics [J]. CMES-Computer Modeling in Engineering and Sciences, 2004, 6:169-188
    
    122. Long S Y, Liu K Y, Hu D A. A new meshless method based on MLPG for elastic dynamic problems [J]. Engineering Analysis with Boundary Elements, 2006, 30: 43-48
    
    123. Han Z D, Atluri S N. A meshless local Petrov-Galerkin (MLPG) approach for 3-dimensional elasto-dynamics [J]. CMC-Computers Materials & Continua, 2004,1(2): 129-140
    
    124. Lin H, Atluri S N. Analysis of incompressible Navier-Strokes flows by the meshless MLPG method [J]. Computer Modeling in Engineering & Sciences, 2001,2:117-142
    
    125. Arefrnanesh A, Najafi M, Abdi H. Meshless local Petrov-Galerkin method with unity test function for non-isothermal fluid flow [J]. CMES-Computer Modeling in Engineering and Sciences, 2008, 25: 9-22
    
    126. Arefrnanesh A, Najafi M, Abdi H. A meshless local petrov-galerkin method for fluid dynamics and heat transfer applications [J]. Journal of Fluids Engineering, Transactions of the ASME,2005, 127: 647-655
    
    127. Wu Y L, Liu G R, Gu Y T. Application of meshless local Petrov-Galerkin (MLPG) approach to simulation of incompressible flow [J]. Numerical Heat Transfer, Part B: Fundamentals, 2005,48:459-475
    
    128. Gao L, Liu K, Liu Y. Applications of MLPG method in dynamic fracture problems [J]. CMES-Computer Modeling in Engineering and Sciences,2006,12(3):181-195
    129.Liu G R,Gu Y T.A local point interpolation method for stress analysis of two-dimensional solids[J].Structural Engineering and Mechanics,2001,11:221-236
    130.Liu G R,Yan L,Wang J G,et al.Point interpolation method based on local residual formulation using radial basis functions[J].Structural Engineering and Mechanics,2002,14:713-732
    131.龙述尧.弹性力学问题局部Petorv-Galerkin的方法[J].力学学报,2001,33(4):508-518
    132.熊渊博,龙述尧.薄板的局部Petrov-Galerkin方法[J].应用数学和力学,2004,28(2):189-196
    133.熊渊博,龙述尧,胡德安.薄板屈曲分析的局部Petrov-Galerkin方法[J].工程力学,2006,23:23-27
    134.张希,姚振汉.无网格彼得洛夫伽辽金法在大变形问题中的应用[J].工程力学,2006,23:16-20
    135.张希,姚振汉.ML PG法在塑性大变形和应变局部化问题中的应用[J].清华大学学报(自然科学版),2007,47:718-721
    136.付东杰.无网格局部边界积分方程方法研究:算法与应用[D].中国科学技术大学博士学位论文,2007
    137.张见明,姚振汉,李宏.二维势问题的杂交边界点法[J].重庆建筑大学学报,2000,22(6):105-107
    138.Fasshauer G E.Solving partial differential equations by collocation with radial basis functions:multilevel methods and smoothing[J].Advances in computational mathematics,1999,11:139-159
    139.Wendland H.Meshless Galerkin methods using radial basis functions[J].Mathematics of computation,1999,68:1521-1531
    140.Duan Y.Meshless Galerkin method using radial basis functions based on domain decomposition [J].Applied Mathematics and Computation,2006,179:750-762
    141.Duan Y.A note on the meshless method using radial basis functions[J].Computers and Mathematics with Applications,2008,55:66-75
    142.Wang J G,Liu G R.A point interpolation meshless method based on radial basis functions[J].International Journal for Numerical Methods in Engineering,2002,54(11):1623-1648
    143.Zhang X,Song K Z,Lu M W.Meshless methods based on collocation with radial basis function [J].Computational Mechanics,2000,26(4):333-343
    144.Zhang X,Song K Z,L M W.Hermite type collocation with radial basis functions[C].Proceedings of Internal Conference on Computational Engineering & Science.Los Angeles,USA,2000:20-25
    145.曾清红,卢德唐.耦合径向基函数与多项式基函数的无网格方法[J].计算物理,2005,22(1): 43-50
    
    146. Wu Z. Dynamically knots setting in meshless method for solving time dependent propagations equation [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 1221-1229
    
    147.吴宗敏.径向基函数、散乱数据似合与无网格偏微分方程数值解[J].数学进展, 2002,19:1-12
    
    148. Zhang Y X, Tan Y J. Solve partial differential equations by meshless subdomains method combined with RBFs [J]. Applied Mathematics and Computation, 2006,174: 700-709
    
    149. Zhang Y X, Tan Y J. Convergence of general meshless Schwarz method using radial basis functions [J]. Applied Numerical Mathematics, 2006, 56: 916-936
    
    150. Chen J S, Pan C, Roque C M O 1, et al. Lagrangian reproducing kernel particle method for metal forming analysis [J]. Computational Mechanics, 1998,22(3): 289-307
    
    151. Chen J S, Wang H P. New boundary condition treatments in meshfree computation of contact problems [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 187(3):441-468
    
    152. Yoon Sangpil, Chen J S. Accelerated meshfree method for metal forming simulation [J]. Finite Elements in Analysis and Design, 2002, 38(10): 937-948
    
    153.Bonet J, Kulaseqaram S. Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations [J]. International Journal for Numerical Methods in Engineering, 2000,47(6): 1189-1214
    
    154. Xiong S, Rodrigues J M C, Martins P A F. Application of the element free Galerkin method to the simulation of plane strain rolling [J]. European Journal of Mechanic A/Solids, 2004, 23:77-93
    
    155. Xiong S, Li C S, Rodrigues J M C, et al. Steady and non-steady state analysis of bulk forming processes by the reproducing kernel particle method [J]. Finite Elements in Analysis and Design,2005, 41(6): 599-614.
    
    156. Xiong S, Rodrigues J M C, Martins P A F. Simulation of plane strain rolling through a combined element free Galerkin-boundary element approach [J]. Journal of Materials Processing Technology, 2005,159: 214-223
    
    157. Xiong S, Martins P AF. Numerical solution of bulk metal forming processes by the reproducing kernel particle method [J]. Journal of Materials Processing Technology, 2006, 177(1-3): 49-52
    
    158. Park Y H. Rigid-plastic analysis for metal forming processes using a reproducing kernel particle method [J]. Journal of Materials Processing Technology, 2007, 183(2-3): 256-263
    
    159. Y.H. Park. Rigid-plastic meshfree method for metal forming simulation [J]. American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP, Computer Technology and Applications, 2003,458: 231-236
    160.Guo Y M,Nakanishi K.A backward extrusion analysis by the rigid-plastic integralless-meshless method[J].Journal of Materials Processing Technology,2003,140(1-3):19-24
    161.Guo Y M,Nakanishi K,Yokouchi Y.A nonlinear rigid-plastic analysis for metal forming problem using the rigid-plastic point collocation method[J].Advances in Engineering Software,2005,36(4):234-242
    162.Alfaro I,Bel D,Cueto E,et al.Three-dimensional simulation of aluminium extrusion by the α-shape based natural element method[J].Computer Methods in Applied Mechanics and Engineering,2006,195(33-36):4269-4286
    163.Kwon K C,Park S H,Youn S K.The least-squares meshfree method for elasto-plasticity and its application to metal forming analysis[J].International Journal for Numerical methods in Engineering,2005,64:751-788
    164.Kwon K C,Youn S K.The least-squares meshfree method for rigid-plasticity with frictional contact[J].International Journal of Solids and Structures,2006,43(25-26):7450-7481
    165.Li G Y,Belytschko T.Element-free Galerkin method for contact problems in metal forming analysis[J].Engineering Computations,2001,18(1-2):62-78
    166.Li G Y,Sidibe K,Liu G R.Meshfree method for 3D bulk forming analysis with lower order integration scheme[J].Engineering Analysis with Boundary Elements,2004,28(10):1283-1292
    167.卿启湘,李光耀,刘潭玉.棒材拉拔问题的弹塑性无网格法分析[J].机械工程学报,2004,40(1):85-89
    168.Wang H,Li G Y,Han X,et al.Development of parallel 3D RKPM meshless bulk forming simulation system[J].Advances in Engineering Software,2007,38(2):87-101
    169.娄路亮,曾攀,方刚.无网格方法及其在体积成形中的应用[J].塑性工程学报,2001,8(3):1-5
    170.李长生,熊尚武,Rodrigues J.金属塑性加工过程无网格数值模拟方法[M].沈阳:东北大学出版社,2004
    171.崔青玲,刘相华,王国栋,熊尚武.无网格RKPM法及其在体积成型中的应用[J].东北大学学报,2004,25(9):855-858
    172.崔青玲,李长生,刘相华,王国栋,熊尚武.无网格R KPM法模拟平板轧制过程[J].应用力学学报,2005,22(2):243-247
    173.崔青玲,李长生,刘相华,王国栋,熊尚武.无网格法及其在金属塑性成形中的应用[J].塑性工程学报.2005.12(1):38-42
    174.Wen H Y,Dong X H,Yan C L,Ruan X Y.Three dimension profile extrusion simulation using meshfree method[J].International Journal of Advanced Manufacturing Technology,2007,34: 270-276
    175.温宏宇,董湘怀,虞松,阮雪榆.基于配点型无网格法的金属体积成形过程数值模拟[J].中国机械工程,2006,17(16):1716-1718
    176.Liu Y H,Chen J,Yu S,et al.Analysis of three-dimensional upsetting process by the rigid-plastic reproducing kernel particle method[J].Acta Metallurgica Sinica(English Letters),2006,19(5):371-398
    177.Liu G R,Gu Y T.A point interpolation method for two-dimensional solids[J].International Journal for Numerical Methods in Engineering,2001,50(4):937-951
    178.Liu G R,Zhang G Y,Gu Y T,et al.A meshfree radial point interpolation method(RPIM) for three-dimensional solids[J].Computational Mechanics,2005,36(6):421-430
    179.Zhang G Y,Liu G R,Wang Y Y,et al.A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems[J].International Journal for Numerical Methods in Engineering,2007,72(13):1524-1543
    180.Onate E,Idelsohn S.Mesh-free finite point method for advective-diffusive transport and fluid flow problems[J].Computational Mechanics,1998,21(4-5):283-292
    181.Zhang X,Liu X H,Song K Z,et al.Least-squares collocation meshless method[J].International Journal for Numerical Methods in Engineering,2001,51(9):1089-1100
    182.潘小飞.高效稳定的无网格法若干问题的研究[D].清华大学博士学位论文,2006
    183.Gavete L,Benito J J,Falcon S,et al.Implementation of essential boundary conditions in a meshless method[J].Communications in Numerical Methods in Engineering,2000,16(6):409-421
    184.Zhu T,Atluri S N.A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method[J].Computational Mechanics,1998,21:211-222
    185.Kaljevic I,Saigal S.Improved element free Galerkin formulation[J].International Journal for Numerical Methods in Engineering,1997,40(16):2953-2974
    186.Beissel S,Belytschko T.Nodal integration of the element-free Galerkin method[J].Computer Methods in Applied Mechanics and Engineering,1996,139(1-4):49-74
    187.Chen J S,Wu C T,Yoon S,et al.A stabilized conforming nodal integration for Galerkin mesh-free methods[J].International Journal for Numerical Methods in Engineering,2001,50:435-466
    188.陈美娟,程玉民.改进的移动最小二乘法[J].力学季刊,2003,24(2):266-272.
    189.Chen J S,Yoon S,Wang H P,et al.An improved reproducing kernel particle method for nearly incompressible finite elasticity[J].Computer Methods in Applied Mechanics and Engineering,2000,181:117-145
    190.Philip J S,David H E著.周长发 译.计算机图形学几何工具算法详解[M].北京:电子工业出版社,2005
    191.Duflot M,Nguyen-Dang H.A truly meshless Galerkin method based on a moving least squares quadrature[J].International Journal for Numerical Methods in Engineering,2002,18:441-449
    192.王勖成.有限单元法[M].北京:清华大学出版社,2003
    193.Zhao G,Xu S,Luan Y,et al.Grain refinement mechanism analysis and experimental investigation of equal channel angular pressing for producing pure aluminum ultra-fine grained materials[J].Materials Science and Engineering A,2006,437(2):281-292
    194.吕炎.锻造工艺学[M].北京:机械工业出版社,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700