用户名: 密码: 验证码:
非光滑三明治系统的辨识和控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实际工程系统中,通常存在着死区、间隙和迟滞等非光滑非线性特性,事实上,这些非光滑非线性特性存在于液压执行器驱动的飞机升降梯、带压电执行器的电子扫描隧道显微镜、超精密运动平台,齿轮传动的伺服定位平台等系统中。由此可见,这些非光滑非线性特性不是孤立存在的,而是与系统其他环节相联接,往往是夹在两个线性动态环节之间。为了研究问题的方便,我们称这样的系统为非光滑的三明治系统。在这类非光滑的三明治系统中,非光滑非线性环节的输入和输出往往不能直接测量,所以要对其进行辨识和控制存在着较大的困难。尤其当非线性环节为间隙或迟滞时,这些环节不仅具有非光滑性而且还具有多值映射的特性,使得传统的辨识与控制方法往往难以直接用于对其进行有效的辨识与控制。因此,本论文研究了带有死区、间隙和迟滞的非光滑的三明治系统的辨识与控制问题,主要研究成果有:
     首先,根据关键项分离原则,提出了一种描述带有死区三明治系统的模型,这个模型具有新的表达形式。根据这个模型,我们提出了一种改进的一般性递推辨识算法,并且证明了算法的收敛性,将用于光滑线性动态系统辨识的方法推广应用到非光滑非线性动态系统的辨识中。有关仿真结果和对X-Y定位平台的辨识实验结果都验证了该方法的有效性。
     其次,根据关键项分离原则,提出了一种间隙非线性特性的新形式的参数模型,将间隙的输入-输出之间的多值映射转换为一种单值映射。针对这类系统提出了改进的一般递推辨识算法,分析了算法的收敛性,拓宽了系统参数收敛的条件。随后分别研究了带有间隙的Hammerstein、Wiener和三明治系统的辨识问题。实现了这类带有间隙的动态系统模型的在线辨识。
     由于带有死区或间隙的三明治系统是非光滑系统,所以我们引入了Clarke次梯度和Clarke次微分的概念,提出了一种基于梯度的递推辨识算法,根据bundle思想得到一种针对非凸和非光滑系统的次梯度方向的递推搜索方法,仿真结果表明了这种方法的有效性,为这类三明治系统的辨识和控制提供了一种新的选择。
     由于迟滞的复杂特性,采用上述的递推辨识算法难以辨识其模型。因此我们将其视为黑箱系统,提出了一种改进的Prandtl-Ishlinksii (PI)模型。在这个改进的PI模型中,利用非对称广义间隙算子作为PI模型的基本算子,辨识过程中,提出了一种基于bundle思想的Levenberg-Marquardt算法对间隙算子的参数和模型的权值进行优化估计。与其他的PI模型相比,这种改进的PI模型不需费时费力地凭经验确定间隙算子的参数,而且还获得了简化的模型结构和较高的建模精度。对压电陶瓷驱动器和超声波电机中的迟滞建模实验获得了令人满意的结果。
     通常迟滞的特性与其输入信号的频率有关,我们称这类迟滞特性为依赖输入频率的迟滞特性。在实际工程中,输入信号的频率往往是变化的。为了便于在线获得迟滞输入信号的频率的变化信息,我们证明了输入信号的导数与输入信号频率两者间存在一定的关系,从而可以用输入信号的导数对输入信号频率的变化进行估计。并用bundle思想估计迟滞的输出对其输入的Clarke次梯度,以提取迟滞运动方向的一些特征。通过构造包含输入导数、迟滞输出对其输入的次梯度等信息的扩展输入空间,把迟滞的多值映射转换为一个单值的映射。在此空间上,建立了一个基于神经网络的依赖输入频率的迟滞模型。这个方法同样也扩展到了带有迟滞的三明治系统的辨识中。这种方法用于具有迟滞特性的压电陶瓷执行器和X-Y微位移定位平台的带迟滞三明治系统的建模中,所获得的实验结果均表明:所提出的方法有潜在的工程应用价值。
     最后,我们研究了一类带有间隙三明治系统的内模控制方法,这类三明治系统的第一个线性子系统的输出可测并且是最小相位系统。我们提出了一种改进的离散时间内模控制策略。在这个改进的控制策略中,首先利用第一个线性子系统的逆模型对第一个线性子系统进行补偿,使得对这类带间隙三明治系统的控制问题简化为一个带有间隙的Hammerstein系统的控制问题,然后提出了相应的模型的新的形式及其逆模型,使得模型误差中包含了间隙影响所产生的误差。考虑到带有间隙的系统在工作时会在不同的工作区切换,为了提高控制系统的鲁棒性与动态响应性能,我们根据模型不同的工作区,提出了控制滤波器的分段设计方法。仿真结果表明了我们所提出的改进内模控制方法的有效性。
Dead zone, backlash and hysteresis often exist in practical engineering systems. Actually, those non-smmoth nonlinearities exist in plane elevator droved by hydraulic actuators, electronic scanner microscope with piezoceramic actuators, ultraprecise moving stage and positioning servo control system with gear and so on. Therefore, those non-smooth nonlineairies do not exist isolatively but with the other sub-systems. In fact, they are more likely sandwiched between two linear subsystems in engineering applications. For the convenience of dealing with the problem of such systems, we define this kind of the systems as the sandwich systems. In the nonsmooth sandwich systems, the input and output of the nonlinear sub-system often cannot be measurable directly. Thus, the identification of this sort of systems becomes even more difficult especially when the nonlinear sub-system is backlash or hysteresis which is a nonsmooth nonlinearity with multi-valued mapping. So it is not easy to use the traditional identification and control methods to effectively handle the problems of modeling and control of such systems. In this dissertation, the identification and control on those nonsmooth systems, i.e., the sandwich system with dead zone, backlash or hysteresis are investigated. The main contributions are briefly described as follows:
     Firstly, based on the key term separation principle, a novel form of the model to describe the sandwich system with dead zone is proposed. Then, a modified recursive general identification algorithm (MRGIA) is developed to estimate the model parameters. Also, the convergence of the algorithm is proved. Thus, the identification scheme usually used for smoothly linear dynamic systems is extended to the case of non-smoothly dynamic systems. Moreover, both the simulation and the modeling of the X-Y moving positioning stage demonstrate the effectiveness of the proposed method.
     Secondly, based on the key term separation principle, we developed a parametrical model to describe the characteristic of the backlash. In the proposed scheme, the multi-valued mapping between the input and output of the backlash is transformed into a one-to-one mapping. Then, a MRGIA method is proposed for the identification of such kind of systems. The corresponding convergence of the algorithm is analyzed and the looser convergent conditions of the algorithm are obtained. Moreover, the extensions of the identification method to the Hammerstein, Wiener and sandwich systems with backlash are discussed respectively.
     A gradient based recursive identification method is proposed for sandwich systems with dead zones or backlash. As the sandwich systems with dead zone or backlash are non-smooth systems, the gradients cannot exist at the nonsmooth points of the system. Thus, the Clarke subgradient and Clarke subdifferential are introduced to approximate the gradients at the nonsmooth points. The bundle method based recursive algorithm is proposed to search for the subgradient direction. The method to handle the case for nonsmooth and nonconvex systems is also investigated. The presented simulation results illustrate the effectiveness of the proposed method. This provides us with one of the new options for the identification and control of the nonsmooth sandwich systems.
     Due to the complexity of hysteresis, it is hard for us to apply the above-mentioned recursive identification method to the modeling of the behavior of hysteresis. Hence, in this dissertation, we consider hysteresis as a black box. A modified Prandtl-Ishlinksii (PI) model is presented. In the modified PI model, an asymmetrically generalized backlash operator is used as the elementary operator of the PI model. In order to estimate the weights of the operators as well as the thresholds and slopes of the operators, the Levenberg-Marquardt algorithm based on the bundle method is developed. Compared with the other types of PI models which usually specify the parameters of the models by time-consuming empirical procedure, the proposed modified PI modeling method can determine the optimizing parameters of the model automatically. Moreover, the proposed modeling method can obtain a simplified model structure as well as the accurate model. The experimental results respectively on a piezoceramic actuator and an ultrasonic motor have shown the proposed method has achieved satisfactory modeling results.
     As the performance of the hysteresis usually depends on the frequency of the input, especially the frequency of the input is increased to a certain value. This kind of hysteresis is called as rate-dependent hysteresis. In order to obtain the information of the frequency change of the input on-line, in his dissertation, we give the proof that the derivative of the input with respect to time has a certain relationship with the input frequency. Moreover, the movement direction of the hysteresis is estimated by using the derivative of the input based on the bundle method. Then, the Clarke subgradient of the hysteresis output with respect to its inputs is used to approximate the gradients at the nonsmooth points. By introducing the derivative of the input and the Clarke subgradient of the hysteresis output with respect to its input, an expanded input space is constructed to transform the multi-valued mapping of the hysteresis to a one-to-one mapping. Based on the expanded input space, the neural networks can be used to model the behavior of the rate-dependent hysteresis. Similarly, this method can also be utilized to identify and predict the sandwich systems with hysteresis. Furthermore, the experimental results on modeling of a piezoceramic actuator and an X-Y ultraprecise positioning stage are presented respectively to illustrate the performance of the proposed approach.
     Finally, the modified discrete-time internl model control method for a class of sandwich system with backlash is discussed. In this sort of systems, the output of the first linear subsystem can be measured directliy. In the control scheme, an inverse model based compensator is introduced to compensate for the effect of the first linear subsystem. Therefore, the sandwich systems with backlash can be simplified as the Hammerstein systems with backlash. Then, a novel form of the system model and the corresponding inverse model are constructed respectively. Thus, the model errors caused by both linear part and the backlash are included into the consideration of the control design. As the backlash model is switched among the different operating zones, the piecewise robust filters are proposed to improve the robust stability and transient performance of the control system. Finally, the simulation results based on the proposed method are also presented.
引文
[1]. Ronald K. Pearson J. Nonlinear input/output modeling[C]. J. Proc. Cont. 1995, 5(4): 197-211.
    [2]. Taware and G. Tao.Control of sandwich nonlinear systems. Springer-Verlag Berlin Heidelberg. 2003:1-15,29-54.
    [3]. Wei Bai. An optimal two-stage identification algorithm for Hammerstein-wiener nonlinear systems [J]. Automatica.1998, 34(3): 333-338.
    [4]. Yucai Zhu. Estimation of an N-L-N Hammerstein-Wiener model [J]. Automatica. 2002, 38: 1607 -1614.
    [5]. Wei Bai. A blind approach to the Hammerstein-Wiener model identification [J]. Automatica 2002, 38: 967-979.
    [6]. Philippe Crama, Johan Schoukens. Hammerstein-Wiener system estimator initialization [J]. Automatica. 2004, 40:1543-1550.
    [7]. Ronald K. Pearson, Martin Pottmann. Gray-box identification of block-oriented nonlinear models[J]. Journal of Process Control. 2000, 10: 301-315.
    [8]. Feng ding. Identification of Hammerstein nonlinear ARMAX system [J]. Automatica. 2005 41:1479-1489.
    [9].范伟,丁锋.Hammerstein非线性系统参数估计分离的三种方法[J].科学技术与工程. 2008, 8(6): 1671-1819.
    [10]. S.Rangan,G. Wolodkin and K.Polla. Identification methods for Hammerstein system [J]. Proc. CDC. New Orleans.1995:679-702.
    [11]. Boutayedb, M., H. Rafaralahy and M.Darouach. A robust and recursive identification method for Hammerstein model [C]. IFAC World Congress’96, San Trancisco: 447-452.
    [12]. Wei Bai and Minyue Fu. A blind approach to Hammerstein model identification[J]. IEEE Trans.Signal processing.2002,50:1610-1619.
    [13]. M.Boutayeb and M.Darouach. Recursive identification method for MISO Wiener- Hammerstein model [J]. IEEE Trans. Automatic control.1995, 40(2):287-291.
    [14]. Neil J. Bershad, Patrick Celkae,et.al. Analysis of stochastic gradient identification of Wiener-Hammerstein systems for nonlinearities with hermite polynomial expansions [J]. IEEE Trans. Signal processing. 2001, 49(5):1060-1072.
    [15]. Wlodzimierz Greblicki. Stochastic approximation in nonparametric identification of Hammerstein systems [J]. IEEE Trans. Automatic control. 2002, 47(11):1800-1810.
    [16]. Miroslaw Pawlak. On the series expansion approach to the identification of Hammerstein systems [J]. IEEE trans. Automatic control, 1991, 36(6):763-767.
    [17]. Junhao Shi and Hun H. Sun. Nonlinear system identification for cascaded block model: an application to electrode polarization impedance [J]. IEEE Trans. Biomedical Engineering. 1990, 37(6): 574-587.
    [18]. Gerd Vandersteen. Non-parametric estimation of the frequency-response function of the linear blocks of a Wiener-Hammerstein model [J]. Automatica. 1997 33(7): 1351-1355.
    [19]. Ai Hui Tan and Keith Godfrey. Identification of Wiener–Hammerstein models using linear interpolation in frequency domain (LIFRED) [J]. IEEE Trans. Instrumentation andMeasurement.2002, 51(3):509-521.
    [20].李世华,吴福保,李奇.一种基于动态人工神经网络的Wiener模型辨识[J].控制理论与应用.2000. 17 (1): 92-75.
    [21]. Janczak. Identification of nonlinear systems. Springer-Verlag Berlin Heidelberg 2005:1-30.
    [22]. Anatoli Juditsky. Nonlinear black-box models in system identification: mathematical foundations [J]. Automatica. 1995, 31(12): 1725-1750.
    [23]. Adam Krzy˙zak, Marian A. Partyka. Global identification of nonlinear Hammerstein systems by recursive kernel approach [J]. Nonlinear Analysis. 2005, 63: e1263– e1272.
    [24]. Ivan Goethals, Kristiaan Pelckmans, Johan A.K. Suykens, et. al. Identification of MIMO Hammerstein models using least squares support vector machines [J]. Automatica.2005, 41:1263– 1272.
    [25].向微,陈宗海.基于Hammerstein模型描述的非线性系统辨识新方法[J].控制理论及应用.2007, 24(1): 143-147.
    [26].刘桂芝.基于Hammerstein模型的非线性预测控制[J].《微计算机信息》(测控自动化). 2007, 23(1):97-98.
    [27]. Sandra J. Norquay, Ahmet Palazoglu, and Jose Alberto Romagnoli. Application of Wiener model predictive control (WMPC) to a pH neutralization experiment [J]. IEEE Trans. Control system technonlogy.1999, 7 (4): 437-445.
    [28].杨剑锋,钱积新,赵均.基于稳态非线性模型和线性ARX模型组合的非线性预测控制[J]. 2008, 37(2):119-223.
    [29]. Ghobad Shafiee1, Mohammad Mehdi Arefi1, et.al. Model predictive control of a highly nonlinear process based on piecewise linear Wiener models[C]. 2006:113-118.
    [30]. T. Knohl, W.M. Xu, H. Unbehauen. Indirect adaptive dual control for Hammerstein systems using ANN [J]. Control Engineering Practice. 2003(11):377-385.
    [31]. H.Al-Duwaish, M.N.Karim, V. Chandrasekar. Use of multilayer feedforward neural networks in identification and control of Wiener model [J]. IEE Pror.-Control Theory Appl.1995, 143(3): 255-258.
    [32]. Mohammad M. Arefi, A. Montazeri, et.al. Wiener-neural identification and predictive control of a more realistic plug-flow tubular reactor [J]. Chemical Engineering Journal. 2008,138:274-282.
    [33]. Su Whan Sung, Jietae Lee. Modeling and control of Wiener-type processes [J]. Chemical Engineering Science 2004(59): 1515-1521.
    [34]. Y.M. Hlaing, M.-S. Chiu, et.al. Modeling and control of multivariable processes using generalized Hammerstein model [J]. Chemical Engineering Research and Design Trans IChemE, Part A. 2007:445-454.
    [35]. Alex D. Kalafatis, Liuping Wang, William R. Cluett. Linearizing feedforward-feedback control of pH processes based on the Wiener model [J]. Journal of Process Control.2005 (15): 103-112.
    [36]. C.L. Hwang. Nonlinear control design for a Hammerstein model system [J]. IEE Proc.-Control Theory Appl 1995, 142(4):277-285.
    [37]. Ilya Kolmanovsky and Tatiana Maizenberg. Optimal containment control for a class of stochastic systems perturbed by poisson and Wiener processes [J]. IEEE Trans. Automatic control. 2002, 47(12):2041-2046.
    [38]. K. Anbumani, L. M. Patnaik and I. G. Sarma. Self-tuning minimum-variance control ofnonlinear systems of the Hammerstein model [J]. IEEE Trans. Automatic control. 1981, AC-16(4):959-961.
    [39]. C.H. Chen and S.D.Fassois. On the estimation of stochastic Wiener-Hammerstein-type system with non-smooth non-linearity[C]. Proceedings of the American Control Conference Albuquerque, New Mexico.1997:1494-1498.
    [40]. Jozef V?r?s. Parameter identification of Wiener systems with discontinuous nonlinearities [J].System &control Letters, 2001, 44:363-373.
    [41].李翠翠,朱芳来.基于样条逼近分段线性Hammerstein模型的辨识方法[J].中国科技信息2008 (8):36-39.
    [42]. Jozef V?r?s. Identification of nonlinear dynamic system using extended Hammerstein and Wiener models [J]. Control-Theory and Advanced Technology. 1995, 10(4):1203-1212.
    [43]. V. Cerone, D. Regruto. Bounding the parameters of linear systems with input backlash[C]. American Control Conference. Portland.2005: 4476-4481.
    [44]. Yasuhide Kobayashi and Tsuyoshi Okita. Identification of nonlinear systems with hysteresis characteristics [C]. Osaka.2002:1578-1581
    [45]. Michael Goldfarb and Nikola Celanovic. Modeling piezoelectric stack actuators for control of micromanipulation [J]. IEEE Trans. Control Systems, 1997:69-79.
    [46]. Han J. M. T. A. Adriaens, Willem L. de Koning, and Reinder Banning. Modeling piezoelectric actuators[J]. IEEE/ASME Trans. Mechatronics, 2000,5(4):331-341.
    [47]. Zs.Szaboa, I.Tugyi, Gy.Kadar,et.al. Identification procedures for scalar Preisach model[J]. Physica B 2004,343: 142–147.
    [48]. Ping ge and Musa Jouaneh. Modeling hysteresis in piezoceramic actuators [J]. Precision Engineering. 1995, 17: 211-221.
    [49].贾振元,王福吉,张菊,郭丽莎.超磁致伸缩执行器磁滞非线性建模与控制[J].机械工程学报. 2005, 41(7):131-135.
    [50]. Hong Hu. Compensation of hysteresis in piezoceramic actuators and control of nanopositioning system [Doctor thesis]. Canada. University of Toronto.2003.
    [51]. Y.K.Wen. Method for random vibration of hysteretic systems [J]. J.Engr.Mech.1976, 102: 249-263.
    [52]. Y.K.Wen. Equivalent linearization for hysteretic systems under random excitations [J]. J.Appl.Mech. ASME.1980, 47(1):150-154.
    [53]. Jack W. Macki, Paolo Nistri, Pietro Zecca. Mathematical models for hysteresis [J]. SIAM Review, 1993,35(1): 94-123.
    [54]. Chun-Yi Su, Qingqing Wang, Xinkai Chen, et.al. Adaptive variable structure control of class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis [J]. IEEE Trans. Automatic Control, 2005, 50 (12): 2069-2074.
    [55]. Kugi, y, D. Thull and K. Kuhnen. An infinite-dimensional control concept for piezoelectric structures with complex hysteresis [J]. Structural Control and Health Monitoring. 2006, 13: 1099–1119.
    [56]. Jyh-Da Wei and Chuen-Tsai Sun. Constructing hysteretic memory in neural networks [J]. IEEE Trans. Systems, Man and Cybernetics-Part B: Cybernetics.2000,30(4):601-609.
    [57]. M. Kuczmann and A. Iványi. A new neural-network-based scalar hysteresis model [J]. IEEE Trans. Magnetics. 2002 38(2): 857-860.
    [58]. Li Chuntao, Tan Yonghong. A neural networks model for hysteresis nonlinearity [J]. Sensors and Actuators A.2004, 112:49–54.
    [59]. Zhao Tong, Yonghong Tan, Xianwen Zeng. Modeling hysteresis using hybrid method of continuous transformation and neural networks [J].Sensors and Actuators A.2005, 119: 254-262.
    [60]. X. Zhao, Y. Tan. Neural network based identification of Preisach-type hysteresis in piezoelectric actuator using hysteretic operator [J]. Sensors and Actuators A 2006, 126:306-311.
    [61].丁桂春,典型Wiener模型和Hammerstein模型数学模型辨识方法[J].系统仿真学报. 1992, 4(4):2-12.
    [62]. Han-Fu Chen. Recursive identification algorithms for Wiener model with discontinuous piece-wise linear function [J]. IEEE Trans. Automatic Control. 2006.51(3):390- 400.
    [63]. Gregor Dolanc, Stanko Strmcnik. Identification of nonlinear systems using a piecewise-linear Hammerstein model [J]. System & Control Letters. 2005,54:145-158.
    [64]. Wei Bai. Identification of linear systems with hard input nonlinearities of known structure[J]. Automatica. 2002,38:583-860.
    [65]. Ieroham S. Baruch. Rafael Beltran L. and BoykaNenkova. A mechanical system backlash compensation by means of a recurrent neural multi-model[C]. IEEE International Conference on Intelligent System. 2004:514-519.
    [66]. F. Giri, Y. Rochdi, F. Z. Chaoui et.al. Identification of Hammerstein systems in presence of hysteresis-backlash and hysteresis-relay nonlinearities [J]. Automatica. 2008, 44: 767–775.
    [67].胡怀中,孙连明,刘文江.一种具有间隙特性的非线性系统的辨识方法[J].微电子学与计算机. 2005, 22(9) 99-102.
    [68]. H. Kashiwagi, H.Harada and Y. Toyozawa Identification of nonlinear mechatronic servo system having backlash[C]. SICE Annual Conference in Sapporo. 2004:384-387.
    [69]. Avinash Taware, Gang Tao and Carole Teolis. Design and analysis of a hybrid control scheme for sandwich nonsmooth nonlinear systems [J]. IEEE Trans. Automatic control. 2002, 47(1): 145-150.
    [70]. Avinash Taware, Gang Tao and Carole Teolis. Neural-hybrid control of systems with sandwiched dead-zones [J]. Proceedings of the American Control Conference. Arlington.2001: 594-599.
    [71]. Avinash Tawarea, Gang Tao, Nilesh Pradhana, et.al. Friction compensation for a sandwich dynamic system [J]. Automatica.2003, 39:481-488.
    [72]. Gang Tao, Xiaoli Ma, Yi Ling, Optimal and nonlinear decoupling control of systems with sandwiched backlash [J]. Automatica, 2001, 37:165-176.
    [73]. M. L. Corradini , G. Orlando , G. Parlangeli. Robust control of nonlinear uncertain systems with sandwiched Backlash[C]. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005.Spain.2005: 8112-8117.
    [74]. M. L. Corradini, A. Manni and G. Parlangeli. Variable structure control of nonlinear uncertain sandwich systems with nonsmooth nonlinearities[C]. Proceedings of the 46th IEEE Conference on Decision and Control. USA.2007:2023-2028.
    [75]. Sophie Tarbouriech and Christophe Prieur. L2-performance analysis for sandwich systems with backlash[C]. Proceedings of the 45th IEEE Conference on Decision & Control Manchester Grand Hyatt Hotel.USA.2006: 3771-3776.
    [76]. Xinlong Zhao and Yonghong Tan. Neural adaptive control of dynamic sandwich systems with hysteresis[C]. Proceedings of the 2006 IEEE International Symposium on Intelligent Control. Germany.2006:82-87.
    [77].赵新龙,谭永红,赵彤.迟滞三明治系统基于Duhem算子的自适应控制[J].控制与决策. 2007, 22(10):1134-1138
    [78]. Zheng, M. V. Kothare and M. Morari. Anti-windup design for internal model control[J]. J. Int. J. Control, 1994,60:1015-1024.
    [79].杨华,范鸿滏.一种非线性系统的辨识和控制方法[J].黑龙江自动化技术与应用,1990, (1):23-26.
    [80]. Petre Stoica. On the convergence of an iterative algorithm used for Hammerstein system identification [J]. IEEE Trans. Automatic Control. 1981, AC-26(4):967-969.
    [81]. Han-Fu Chen. Pathwise convergence of recursive identification algorithms for Hammerstein systems [J]. IEEE Trans. Automatic Control.2004,49(10): 1641-1649.
    [82].方崇智,萧德云.过程辨识.清华大学出版社.2004:292-331.
    [83]. Lennart Ljung. Analysis of recursive stochastic algorithms [J]. IEEE Trans. Automatic Control. 1997, AC-22(4):551-575.
    [84]. C. Y. Su, Y. Stepanenko, J. Svoboda and T. P. Leung. Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis [J]. IEEE Trans. Automatic Control.2000, 15(12): 2427-2432.
    [85]. Luis A. Aguirre and S.A.Billings, Improved structure selection for nonlinear models based on term clustering [J]. Int. J. Control. 1995, 62 (3):569-587.
    [86]. Billings, S. A., Korenberg,M.J. and Chen, S. Identification of nonlinear output affine systems using an orthogonal least squares algorithm. International Journal of Systems Science, 1988, 19: 1559-1568.
    [87]. Kwong Ho Chan, Jie Bao, William J. Whiten. A new approach to control of MIMO processes with static nonlinearities using an extended IMC framework [J]. Computers and Chemical Engineering.2005, 30: 329-342.
    [88]. Dragan Neˇsi′c and Georges Bastin. Stabilizability and dead-beat controllers for two classes of Wiener–Hammerstein models [J]. IEEE Trans.Automatic control, 1999, 44(11): 2068-2071.
    [89]. R.K. Pearson. Selecting nonlinear model structures for computer control [J]. Journal of Process Control.2003, 13: 1-26.
    [90]. Brad E. Paden, Shankar S. Sastry. A calculus for computing filippov’s differential inclusion with application to the variable structure control of robot manipulators [J]. IEEE Transactions on Circuits and System. 1987,CAS- 34(1): 73-82.
    [91]. M.M. Makela, M. Miettinen, L. Luksan, et.al. Comparing nonsmooth nonconvex bundle methods in solving hemivariational inequalities [J]. Journal of Global Optimization. 1999, 14: 117-135.
    [92]. Scott A. Miller. An inexact bundle method for solving large structured linear matrix inequality [Doctor thesis]. USA. University of California, 2001.
    [93]. Marjo Haarala. Large-scale nonsmooth optimization [Doctor Thesis]. Jyv?skyl?. University of Jyv?skyl?, 2004.
    [94]. M  akel a, M. M. Survey of bundle methods for nonsmooth optimization [J]. Optimization Methods and Software. 2002, 17: 1-29.
    [95]. Kiwiel, K.C. Proximity. Control in bundle methods for convex nondifferentiable optimization [J]. Mathematical Programming.1990, 46:105-122.
    [96]. Kumpatis.Narendra, Kannan Parthasarathy. Identification and control of dynamical systems using neural networks [J]. IEEE Trans. Neural networks. 1990, 1(1):4-27.
    [97]. K. Kuhnen. Modeling, identification and compensation of complex hysteretic Nonlinearities– a modified Prandtl-Ishlinskii approach [J]. European Journal of Control. 2003, 9(4):407-418.
    [98]. M.J.D. Powell. Restart procedures for the conjugate gradient method [J]. Math. Programming. 1977, 12: 241-254.
    [99]. Jing Zhou, Changyun Wen and Ying Zhang. Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis [J]. IEEE Trans Automatic Control. 2004, 49(10):1751-1757.
    [100]. Haslinda Zabiri, Yudi Samyudia. A hybrid formulation and design of model predictive control for systems under actuator saturation and backlash [J]. Journal of Process Control.2006, 16:693 -709.
    [101]. C. W. Tao. Fuzzy control for linear plants with uncertain output backlashes [J]. IEEE Trans. System, Man and Cybernetics-part B: cybernetics. 2002, 32(3):373-380.
    [102]. Ian G. Horn, Jeffery R. Arulandu, Christopher J. Gombas, et.al. Improved filter design in internal model control [J]. Ind. Eng. Chem. Res. 1996, 35:3437-3441.
    [103]. Aniruddha Datta, and James Ochoat. Adaptive internal model control: design and stability analysis [J]. Automatica. 1996, 32(2):261-266.
    [104]. J.阿克曼[德国]著(赵世范,席裕庚等译).采样控制系统的分析与综合.科学出版社. 1991:41-92.
    [105]. Xinlong Zhao and Yonghong Tan. Modeling hysteresis and its inverse model using neural networks based on expanded input space method [J]. IEEE Trans Control Systems Technology, 2008, 16(3): 484-490

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700