用户名: 密码: 验证码:
空间诱导水稻蛋白变化特征及空间辐射地基模拟诱因分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探索空间环境的生物学效应机制,本文以模式植物水稻为材料,经过多次空间飞行,考察了不同水稻品系当代及第2代植株蛋白变化特征;并通过地基模拟重离子辐射基于水稻的蛋白表达谱分析了空间的辐射诱因;利用多蘖矮突变体的蛋白表达差异分析对空间诱导水稻分蘖突变的机制进行了探索。
     利用二维荧光差异显示双向电泳(2-D DIGE)技术获取了2次空间飞行当代、第2代和地基模拟辐射后多个水稻品系以及突变体材料分蘖期的99张双向电泳蛋白表达图谱,建立了包含所有品系共同表达的蛋白点以及品系特异表达蛋白点合集的群体,形成了标准图谱;以该标准图谱为统一范围使不同状态下的大量蛋白表达数据存在定性和定量上的可比性。串联质谱鉴定出204个差异表达蛋白,参与的生物功能涵盖代谢、调节、刺激应答、细胞活动和生殖。
     为分析空间飞行当代水稻蛋白变化特征及在子代的遗传特性,利用聚类、主成分分析等方法归纳并比较了不同空间飞行当代及第2代材料与地面对照之间的蛋白表达差异。发现卫星搭载与航天飞船的空间飞行能够使当代水稻叶片蛋白表达特征发生改变,但在不同类型的空间飞行中存在变化程度的区别:飞行时间越长,受空间辐射环境影响越大的材料,蛋白表达谱的差异就越大。从差异蛋白分子生物功能分布上分析了空间环境对水稻细胞生理生化功能的影响,空间飞行当代引起易变蛋白的功能主要包括核酸代谢、光反应、蛋白降解、抗真菌、抗胁迫和氨基酸代谢。空间飞行环境对水稻当代蛋白表达特征的改变在相应的第2代植株中可以发生延续和回复,回复与否以及回复的程度与水稻的品系敏感性相关。细胞壁形成、核酸代谢、蛋白降解、逆转录、氨基酸代谢、磷酸戊糖途径和抗胁迫功能的应答易在第2代回复;参与种子成熟、蛋白折叠、糖酵解、脂类合成、糖原合成和三羧酸循环的蛋白分子仅在第2代时产生应答。空间环境的生物学效应能够体现在蛋白表达层面上。
     发现了一些对空间环境敏感的蛋白分子,包括核苷二磷酸激酶1、Rieske铁-硫蛋白前体、半胱氨酸蛋白酶、异黄酮还原酶相似蛋白、S-类核糖核酸酶以及参与蛋白折叠的分子伴侣,它们能够作为水稻对空间环境应答的潜在蛋白分子标志物。
     空间辐射是一个非常复杂的复合高能粒子环境。为寻找空间环境的离子诱因,在地面模拟了空间2mGy剂量下不同能量的离子辐射,采用传能线密度(LET)分别为13.3keV/μm的12C离子、30keV/μm的12C离子、31keV/μm的20Ne离子、62.2keV/μm的12C离子和500keV/μm的56Fe离子对水稻种子进行处理,并与返回式卫星搭载的水稻蛋白表达模式进行比较。通过聚类、主成分分析和相关性分析后发现:LET-62.2keV/μm的12C离子辐射蛋白表达特征与空间环境最为类似。为进一步分析空间辐射环境的剂量效应,利用与空间效应相近的LET-62.2keV/μm的12C离子进行了不同累积剂量的辐射(剂量分别为2mGy、20mGy、200mGy、2000mGy),对辐射蛋白表达谱与空间材料进行比较后发现2mGy剂量的辐射效应与空间环境最为接近,证实了空间辐射的低剂量效应。通过基于蛋白表达谱的分析建立了新的空间环境辐射诱因效应评价体系。
     对空间诱变多蘖矮杆突变体R955及对照植株3个营养生长期叶片总蛋白的分离及定量分析发现,能量代谢、光合作用、蛋白代谢、氮元素同化、氨基酸代谢以及胁迫应答等过程均参与了空间环境诱导的突变分蘖发育。对差异蛋白在不同时期相对表达量的K-均值聚类分析显示不同功能蛋白表现不同表达模式;二元方差分析筛选出S-类核糖核酸酶可能与水稻分蘖突变性状直接关联。相关结果为空间环境诱发水稻产生分蘖突变的机制提供了新的见解。
In order to study the mechanisms of biological effects of space environment, in the present dissertation, the model plant rice was chosen as experimental material. After several seed spaceflights, proteomic expression profiles of different rice variety plants in 1st and 2nd generations were analysed. Space radiation inducement investigation through protein expression profile analysis based on on-ground simulated radiation experiments was also performed. In addition, mechanisms of tillering mutation induced by spaceflight were also explored by differential protein expression analysis of the tillering dwarf mutant.
     Using two-dimensional fluorescent differential electrophoresis (2-D DIGE) technology, 99 protein expression 2-D patterns were acquired from tillering rice plants of different varieties after two kinds of spaceflights in 1st and 2nd generations, after on-ground simulated radiation treatments and from the mutant variety. Standard gel image pattern including groups of proteins that co-expressed in all rice varieties and particularly expressed in every variety was established. The pattern was used as a normalized standard for comparing the large number of protein expression data in different status qualitively and quantitively. Tandem mass spectrometry identified 204 differentially expressed proteins that involved in biological processes including metabolic process, regulation of biological process, response to stimulus, cellular process and reproduction.
     For investigation of protein expression profiles of rice plants after spaceflights and the hereditary capacity in the offspring plants, clustering and principal component analysis were performed to summarize and compare the protein expression variations between the space samples and their corresponding ground controls in different spaceflights and in 1st and 2nd generations. Results indicated that protein expression profiles were changed after seed space environment exposures onboard the satellite or space craft, but there were variations in the degree of difference in different types of flights: the longer the flight duration lasted, which meant that rice seeds were affected by space radiation environment heavier, the greater differences existed in protein expression profiles. Distribution of biological processes of differentially expressed proteins indicated that physiological and biochemical changes of rice cells were induced by space environment. The biological processes impacted in 1st generation plants after flights were nucleic acid metabolic process,light reaction,proteolysis,defense response to fungus,response to stress with amino acid and derivative metabolism. Alterations of protein expression profiles in 1st generation would resume or recover in the corresponding 2nd generation plants, the degree of recovery was associated with the sensitivity of the rice variety to environment. Changes of proteins involving in biological processes such as cell wall organization, nucleic acid metabolic process, proteolysis, RNA-dependent DNA replication, amino acid and derivative metabolism, pentose-phosphate shunt, response to stress tended to recover in 2nd generation plants; while seed maturation, protein folding, glycolysis, lipid biosynthetic process, glycogen biosynthetic process and tricarboxylic acid cycle related proteins only differentially expressed in 2nd generation plants. Therefore,the biological effects of space environment could be reflected in protein expression level.
     Some of the space-environment-sensitive proteins were found, including nucleoside diphosphate kinase 1, Rieske (Fe-S) protein precursor, cysteine protease, isoflavone reductase-like protein, S-like RNase and molecular chaperones participating in protein folding. They could be used as potential biomarkers that would answer to the stimulus from space environment.
     Spaceflight represents a very complex environmental condition with highly ionizing radiations (HZE). To further investigate the incentives of ion effects in space environment, we performed on-ground simulated HZE particle radiations to rice seeds with the same dose (2mGy) as spaceflight but different liner energy transfer (LET) values (13.3keV/μm-12C, 30keV/μm-12C, 31keV/μm-20Ne, 62.2keV/μm-12C, 500keV/μm-56Fe) then compared the protein expression profiles between radiation and spaceflight plants. By data clustering, principal component analysis and correlation analysis, the results showed that protein expression profile of the LET-62.2keV/μm 12C radiation was most similar to spaceflight effect. The dose effect analysis of spaceflight by simulated radiations was also evaluated: radiations of LET-62.2KeV/μm 12C particles (most similar with spaceflight effect) with different cumulative doses (2mGy, 20mGy, 200mGy, 2000mGy) were further carried out. Comparisons of protein expression profiles between irradiated and spaceflight plants indicated that the 2mGy dose-value radiation shared most similar effect with the spaceflight, which confirmed the low-dose effect of space environment. A new space radiation environment effect incentive evaluation system was established based on the protein expression profile analysis.
     Comparative quantitative proteomic analysis between a high-tillering dwarf mutant R955 induced by spaceflight and its ground control was performed at three plant vegetative growth stages. It was found that biological processes including energy pathway, photosynthesis, protein metabolism, nitrogen assimilation, amino acid metabolism and response to stimulus were mainly involved in tillering mutation development. K-means clustering revealed that proteins regulated at different stages tended to be involved in different biological processes. Two-way analysis of variance (Two-way ANOVA) screened out that S-like RNases presented direct correlation with the high-tillering ability. The work might provide new insights for further understanding mechanisms of space induced tillering mutation in rice.
引文
[1]任维,魏金河.空间生命科学发展的动态回顾和展望[J].空间科学学报,2000,20:48-54.
    [2] Nechitailo G S, Mashinsky A L. Peculiarities of Biological Processes under Conditions of Microgravity[J]. Advances in Space Research, 1997, 20:1959-1965.
    [3] Schimmerling W. Overview of NASA's Space Radiation Research Program[J]. Gravitational and Space Biology Bulletin, 2003, 16:5-9.
    [4]魏力军.空间环境对水稻种子的诱变效应及遗传机制研究[D].哈尔滨:哈尔滨工业大学,2006:2-21.
    [5]咸世强.“神六”内的微重力及其场的分布[J].物理教学,2006, 8:38-42.
    [6] Jacquot J F, le Bail J L, Bardet M, et al. Exposure of Biological Preparations to Radiofrequency Electromagnetic Fields under Low Gravity[J]. Review of Scientific Instruments, 2010, 81:115103-115107.
    [7]王俊敏,徐建龙,魏力军,等.空间环境和地面γ辐照对水稻诱变的差异[J].作物学报,2006,32:1006-1010.
    [8] Li X, Jiang X G, Li J G. A Study on the Induction of Mutation of Paddy Rice under Space Conditions[J]. Space Medicine & Medical Engineering (Beijing), 1998, 11:21-25.
    [9]徐建龙,林贻滋,奚永安,等.水稻空间诱变育种的研究[J].核农学报,1997,11:9-14.
    [10]骆艺,王旭杰,梅曼彤,等.空间搭载水稻种子后代基因组多态性及其与空间重离子辐射关系的探讨[J].生物物理学报,2006,22:131-138.
    [11] Belyavskaya N A. Biological Effects Due to Weak Magnetic Field on Plants[J]. Advances in Space Research, 2004, 34:1566-1574.
    [12] Sytnik K M, Kordium E L, Beliavskaia N A, et al. Cytological Aspects of Higher Plant Ontogenesis under Microgravity[C]. Budapest:International Astronautical Congress, 1983:83-190.
    [13] Li S R, Liu M, Wang Y X. Influence of Space Conditons on Photosynthetic Pigment Contents and Chloroplast Ultra-Structure of Maize Leaves[J]. Space Medicine & Medical Engineering (Beijing), 1998, 11:396-400.
    [14] Halstead T W. Introduction:An Overview of Gravity Sensing, Perception and Signal Transduction in Animal and Plants[J]. Advances in Space Research, 1994, 14:315-316.
    [15]徐继,闫田,赵琦,等.空间环境对石刁柏幼苗向性生长及代谢过程的影响[J].生物物理学报,1997,13:660-664.
    [16]刘永定,林惠民,戴玲芬,等.返地卫星搭载对鱼腥藻和小球藻的影响[J].科学通报,1993,38:177-180.
    [17]王高鸿,陈兰洲,胡春香,等.空间飞行和辐射对微藻光合系统影响的观察[J].航天医学与医学工程,2005,15:51-55.
    [18] Qiu F, Li J G, Wong M L. Molecular Analysis of Long-Pod Mutant Line of Mung Bean Generated by Space Mutagenesis[J]. Scientia Agricultura Sinica, 1998, 31:38-43.
    [19]邢金鹏,陈受宜,朱立煌,等.水稻种子经卫星搭载后大粒型突变系的分子生物学分析[J].航天医学与医学工程,1995,8:109-113.
    [20] Mei M, Qiu Y, Sun Y. Morphological and Molecular Change of Maize Plant after Seeds been Flown on Recoverable Satellite[J]. Advances in Space Research, 1998, 22:1691-1697.
    [21]卫晓阳,孙喜庆,曹新生,等. +Gz暴露对大鼠脑星形胶质细胞S100蛋白表达的影响[J].航天医学与医学工程,2006,19:281-286.
    [22]孙喜庆,徐志鹏,张舒,等.模拟失重后高+Gx作用对大鼠脑胶质细胞酸性蛋白表达的影响[J].航天医学与医学工程,2006,19:19-22.
    [23] Mat??a I, González-Camacho F, Marco R, et al. Nucleolar Structure and Proliferation Activity of Arabidopsis Root Cells from Seedlings Germinated on the International Space Station[J]. Advances in Space Research, 2005, 36:1244-1253.
    [24] Kordyum E L. Biology of Plant Cells in Microgravity and under Clinostating[J]. International Review of Cytology. 1997, 171:1-78.
    [25] Heathcote D G, Brown A H,Chapman D K. The Phototropic Response of Triticum aestivum Coleoptiles under Conditions of Low Gravity[J]. Plant Cell and Environment, 1995, 18:53-60.
    [26] Planel H, Ganbin Y, Pianezzi B. Space Environmental Factors Affecting Responses to Radiation at the Cellular Level[J]. Advances in Space Research, 1989, 9:157-160.
    [27] Herneck G. Radiobiological Experiments in Space[J]. Nuclear Tracks and Radiation Measurements, 1992, 20:185-205.
    [28] Picket M, Gartenbach K E, Kranz A R. Heavy Ion Induced Mutation in Genetic Effective Cells of High Plant[J]. Advances in Space Research, 1992, 12:69-75.
    [29] Maksimova E N. Effect on Seeds of Heavy Charged Particles of Galactic Cosmic Radiation[J]. Kosmicheskaia Biologiia I Aviakosmicheskaia Meditsina, 1985, 19:71-74.
    [30] Nevzgodina L V, Maksimova E N. Cytogenetic Effects of Heavy Charges Particles of Galactic Cosmic Radiation in Experiments aboard Cosmos 1129 Biosatellite[J]. Kosmicheskaia Biologiia I Aviakosmicheskaia Meditsina, 1982, 16:67-71.
    [31] Setlow R B. The U. S. National Research Council’s Views of the Radiation Hazards in Space[J]. Mutation Research, 1999, 430:169-175.
    [32] Yu X, Wu H, Wei L. Characteristics of Phenotype and Genome Mutationsafter Space Flight in Rice[J]. Advances in Space Research, 2007, 40:528-534.
    [33]李常银,孙野青,杨谦.空间生物学研究进展[J].哈尔滨工业大学学报,2003,35:358-388.
    [34] Rogozin I, Pavlov Y. Theoretical Analysis of Mutation Hotspots and Their DNA Sequence Context Specificity[J]. Mutation Research, 2003, 544:65-85.
    [35] Linacero R, Freitas Alves E, Vázquez A M. Hot Spots of DNA Instability Revealed through the Study of Somaclonal Variation in Rye[J]. Theoretical and Applied Genetics, 2000, 100:506-511.
    [36] Kim M, Wolff E, Huang T, et al. Developing a Genetic System in Deinococcus radiodurans for Analyzing Mutations[J]. Genetics, 2004, 166:661-668.
    [37] Labra M, Di Fabio T, Grassi F, et al. AFLP Analysis as Biomarker of Exposure to Organic and Inorganic Genotoxic Substances in Plants[J]. Chemosphere, 2003, 52:1183-1188.
    [38] Azzam E I, de Toledo S M, Little J B. Direct Evidence for the Participation of Gap Junction-Mediated Intercellular Communication in The Transmission of Damage Signals fromαParticle Irradiated to Nonirradiated Cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98:473-478.
    [39] Wright E G. Radiation-Induced Genomic Instability in Haemopoietic Cells[J]. International Journal of Radiation Biology, 1998, 74:681-687.
    [40] Kadhim M A, MacDonald D A, Goodhead D T, et al. Transmission of Chromosomal Instability after Plutonium Alpha-Particle Irradiation[J]. Nature, 1992, 355:738-740.
    [41]张斌团,李文建,党秉荣,等.面向空间高能重离子与辐射屏蔽材料的反应截面地基研究[J].原子核物理评论,2011,28:88-96.
    [42] Hartman P S, Hlavacek A, Wilde H, et al. A Comparison of Mutations Induced by Accelerated Iron Particles Versus Those Induced by Low Earth Orbit SpaceRadiation in the FEM-3 Gene of Caenorhabditis elegans[J]. Mutation Research, 2001, 474:47-55.
    [43] Wei L, Yang Q, Xia H. Analysis of Cytogenetic Damage in Rice Seeds Induced by Energetic Heavy Ions On-Ground and after Spaceflight[J]. Radiation Research, 2006, 47:273-276.
    [44]徐建龙,李春寿,王俊敏,等.空间环境诱发水稻多蘖矮秆突变体的筛选与鉴定[J].核农学报,2003,17:90-94.
    [45] Kruger R P. Systems Biology[J]. Cell, 2011, 144:827-829.
    [46] Feinendegen L, Hahnfeldt P, Schadt E E, et al. Systems Biology and its Potential Role in Radiobiology[J]. Radiation and Environmental Biophysics, 2008, 47:5-23.
    [47] Wei L J, Qian Y, Yang Q, et al. Cytological Effects of Space Environment on Different Genotype of Rice[J]. Journal of Beijing Institute of Technology, 2007, 16:220-225.
    [48]魏力军,王俊敏,杨谦.水稻空间搭载与地面γ辐照诱变效应的比较研究[J].中国农业科学,2006,39:1306-1312.
    [49] Li Y, Liu M, Cheng Z. Space Environment Induced Mutations Prefer to Occur at Polymorphic Sites of Rice Genomes[J]. Advances in Space Research, 2007, 40:523-527.
    [50] Cheng Z, Liu M, Zhang M. Transcriptomic Analyses of Space-Induced Rice Mutants with Enhanced Susceptibility to Rice Blast[J]. Advances in Space Research, 2007, 40:540-549.
    [51]史金铭,黄磊,孙野青.低剂量重离子辐射对水稻种子和幼苗DNA甲基化的影响[J].激光生物学报,2009,18:608-613.
    [52]史金铭.空间诱变水稻种子基因组甲基化改变与低剂量辐射效应特征[D].哈尔滨:哈尔滨工业大学,2010:95-97.
    [53] Jin B, Li Y, Robertson K D. DNA Methylation:Superior or Subordinate in theEpigenetic Hierarchy[J]. Genes & Cancer, 2011, 2:607-617.
    [54] Li J, Bardag-Gorce F, Oliva J, et al. Gene Expression Modifications in the Liver Caused by Binge Drinking and S-Adenosylmethionine Feeding[J]. Genes & Nutrition, 2010, 5:169-179.
    [55]谭双香,胡瑞成,戴爱国,等. DNA甲基化抑制鼻咽癌细胞系膜联蛋白A1基因表达[J].生物化学与生物物理研究进展,2009,36:1319-1326.
    [56]谭双香,李君,易红,等.基因甲基化导致鼻咽癌组织14-3-3σ表达下调[J].生物化学与生物物理研究进展,2009,6:743-749.
    [57]王连嵋.空间环境引起水稻DNA甲基化与蛋白质组变化及其关联分析[D].哈尔滨:哈尔滨工业大学,2007:35-38.
    [58] Wilkins M R, Pasquali C, Appel R D, et al. From Proteins to Proteomes:Large Scale Protein Identification by Two-Dimensional Electrophoresis and Amino Acid Analysis[J]. Nature Biotechnology, 1996, 14:61-65.
    [59] O’Farrell P H. High Resolution Two-Dimensional Electrophoresis of Proteins[J]. Biological Chemistry, 1975, 250:4007-4021.
    [60] Usami M, Mitsunaga K, Nakazawa K. Two-Dimensional Electrophoresis of Protein from Cultured Postimplantation Rat Embryos for Developmental Toxicity Studies[J]. Toxicology in Vitro, 2007, 21:521-526.
    [61] Seyfried B K, Siekmann J, Belgacem O, et al. MALDI Linear TOF Mass Spectrometry of PEGylated (Glyco) Proteins[J]. Journal of Mass Spectrometry, 2010,45:612-617.
    [62] Bereman M S, Muddiman D C. Detection of Attomole Amounts of Analyte by Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) Determined Using Fluorescence Spectroscopy[J]. Journal of The American Society for Mass Spectrometry, 2007, 18:1093-1096.
    [63] Mertens B A, Van der Burgt Y M, Velstra B, et al. On the Use of Double Cross-Validation for the Combination of Proteomic Mass Spectral Data forEnhanced Diagnosis and Prediction[J]. Statistics & Probability Letters, 2011, 81:759-766.
    [64] Timothy D V. Global and Targeted Quantitative Proteomics for Biomarker Discovery[J]. Journal of Chromatography B, 2007, 847:3-11.
    [65] Gao L, Yan X, Li X. Proteome Analysis of Wheat Leaf under Salt Stress by Two-Dimensional Difference Gel Electrophoresis (2D-DIGE)[J]. Phytochemistry, 2011, 72:1180-1191.
    [66] Rivera-Monroy Z, Bonn G K, Guttman A. Fluorescent Isotope-Coded Affinity tag (FCAT) I:Design and Synthesis[J]. Bioorganic Chemistry, 2008, 36:299-311.
    [67] Palma A D, Roveri A, Zaccarin M, et al. Extraction Methods of Red Blood Cell Membrane Proteins for Multidimensional Protein Identification Technology (MudPIT) Analysis[J]. Journal of Chromatography A, 2010, 1217:5328-5336.
    [68] Basilico F, Nardini I, Mori F, et al. Characterization of Factor VIII Pharmaceutical Preparations by Means of MudPIT Proteomic Approach[J]. Journal of Pharmaceutical and Biomedical Analysis, 2010, 53:50-57.
    [69] Husi H, Ward M A, Choudhary J S, et al. Proteomic Analysis of NMDA Receptor-Adhesion Protein Signaling Complexes[J]. Nature Neuroscience, 2000, 3:661-669.
    [70] Lee S, Lee S, Ko Y H, et al. Quantitative Analysis of Human Serum Leptin Using a Nanoarray Protein Chip Based on Single-Molecule Sandwich Immunoassay[J]. Talanta, 2009, 78:608-612.
    [71] Zhao L, Wu R A, Han G H, et al. The Highly Selective Capture of Phosphopeptides by Zirconium Phosphonate-Modified Magnetic Nanoparticles for Phosphoproteome Analysis[J]. Journal of the American Society for Mass Spectrometry, 2008, 9:1176-1186.
    [72] Nagano K, Shinkawa T, Kato K, et al. Distinct Cell Surface Proteome Profiling by Biotin Labeling and Glycoprotein Capturing[J]. Journal of Proteomics, 2011, 74:1985-1993.
    [73] Poschmann G, Sitek B, Sipos B, et al. Cell-Based Proteome Analysis:The First Stage in The Pipeline for Biomarker Discovery[J]. Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics, 2009, 1794:1309-1316.
    [74] Yao H X, Zhang Z Q, Xiao Z Q, et al. Identification of Metastasis Associated Proteins In Human Lung Squamous Carcinoma Using Two-Dimensional Difference Del Electrophoresis and Laser Capture Microdissection[J]. Lung Cancer, 2009, 65:41-48.
    [75] Heinemeyer J, Scheibe B, Schmitz U K, et al. Blue Native DIGE as a Tool for Comparative Analyses of Protein Complexes[J]. Journal of Proteomics, 2009, 72:539-544.
    [76]梁书剑.空间飞行诱导水稻种子产生蛋白质差异表达的特点和规律[D].哈尔滨:哈尔滨工业大学,2008:8-9.
    [77] Tonge R, Shaw J, Middleton B, et al. Validation and Development of Fluorescence Two-Dimensional Differential Gel Electrophoresis Proteomics Technology[J]. Proteomics, 2001, 1:377-396.
    [78] Hisako M H, Yuko Y, Sumio N, et al. Changes of Protein Profiles during Pollen Development in Lilium longiflorum[J]. Sexual Plant Reproduction, 2004, 16:209-214.
    [79] Zhou G, Li H, de Camp D, et al. 2D Differential In-Gel Electrophoresis for the Identification of Esophageal Scans Cell Cancer-Specific Protein Markers[J]. Molecular & Cellular Proteomics, 2002, 1:117-124.
    [80] Kumar S, Sohee L, H Steven, et al. Two-Dimensional Fluorescence Difference Gel Electrophoresis Analysis of the Urine Proteome in Human Diabetic Nephropathy[J]. Proteomics, 2005, 5:2648-2655.
    [81] KosováK, Vítámvás P, Prá?il I T, et al. Plant Proteome Changes under Abiotic Stress-Contribution of Proteomics Studies to Understanding Plant Stress Response[J]. Journal of Proteomics, 2011, 74:1301-1322.
    [82] Anderson N R, Ash J S, Tarczy-Hornoch P. A Qualitative Study of the Implementation of a Bioinformatics Tool in a Biological Research Laboratory[J]. International Journal of Medical Informatics, 2007, 76:821-828.
    [83] Keegan L, Gill G, Ptashne M. Separation of DNA Bind from the Transcription -Activating Function of Eukaryotic Regulatory Protein[J]. Science, 1986, 231:699-704.
    [84] Hoogland C, Mostaguir K, Appel R D, et al. The World-2DPAGE Constellation to Promote and Publish Gel-Based Proteomics Data Through the ExPASy Server [J]. Journal of Proteomics, 2008,71:245-248.
    [85] Vijayendran C, Burgemeister S, Friehs K, et al. 2DBase:2D-PAGE Database of Escherichia coli[J]. Biochemical and Biophysical Research Communications, 2007, 363:822-827.
    [86] Brohée S, Barriot R, Moreau Y, et al. YTPdb:A Wiki Database of Yeast Membrane Transporters[J]. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2010, 1798:31908-31912.
    [87] Evans G, Wheeler C H, Corbett J M, et al. Construction of HSC-2DPAGE:A Two-Dimensional Gel Electrophoresis Database of Heart Proteins[J]. Electrophoresis, 1997, 18:471-479.
    [88] Deng S S, Xing T Y, Zhou H Y, et al. Comparative Proteome Analysis of Breast Cancer and Adjacent Normal Breast Tissues in Human[J]. Genomics Proteomics Bioinformatics, 2006,4:165-172.
    [89] Sriyam S, Sinchaikul S, Tantipaiboonwong P, et al. Enhanced Detectability in Proteome Studies[J]. Journal of Chromatography B, 2007, 849:91-104.
    [90]吴学军,柴建华.比较基因组学和人类基因组研究[J].生物工程进展,2000,20:57-59.
    [91]郝柏林,张淑誉.生物信息学手册[M].上海:上海科技出版社,2000:10-30.
    [92]王巍,蒋劲松.第12届国际逻辑学、方法论与科学哲学大会纪实[J].哲学动态,2003,11:39-41.
    [93] Wang H Y, Zheng H R, Browne F, et al. Integration of Gene Ontology-Based Similarities for Supporting Analysis of Protein-Protein Interaction Networks[J]. Pattern Recognition Letters, 2010, 31:2073-2082.
    [94]高芸.基于基因本体论的生物信息个人数据库平台[J].生命科学研究,2004,8:65-70.
    [95] Koller A, Washburn M P, Lange B M, et al. Proteomic Survey of Metabolic Pathways in Rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99:11969-11974.
    [96] Imin N, Kerim T, Weinman J J, et al. Characterisation of Rice Anther Proteins Expressed at the Young Microspore Stage[J]. Proteomics, 2001, 1:1149-1161.
    [97] Woo S H, Fukuda M, Islam N. Efficient Peptide Mapping and Its Application to Identify Embryo Proteins in Rice Proteome Analysis[J]. Electrophoresis, 2002, 23:647-654.
    [98] Shen S, Matsubae M, Takao T, et al. A Proteomic Analysis of Leaf Sheaths from Rice[J]. Journal of Biochemistry, 2002, 132:613-620.
    [99] Von Zychlinski A, Kleffmann T, Krishnamurthy N, et al. Proteome Analysis of the Rice Etioplast:Metabolic and Regulatory Networks and Novel Protein Functions[J]. Molecular and Cellular Proteomics, 2005, 4:1072-1084.
    [100] Mikami S, Kishimoto T, Hori H, et al. Technical Improvement to 2-D PAGE of Rice Organelle Membrane Proteins[J]. Bioscience, Biotechnology, and Biochemistry, 2002, 66:1170-1173.
    [101] Khan M M, Komatsu S. Rice Proteomics:Recent Developments and Analysis of Nuclear Proteins[J]. Phytochemistry, 2004, 65:1671-1681.
    [102] Heazlewood J, Howell K, Whelan J, et al. Towards an Analysis of the Rice Mitochondrial Proteome[J]. Plant Physiology, 2003, 132:230-242.
    [103] Ventelon-Debout M, Delalande F, Brizard J, et al. Proteome Analysis of Cultivar-Specific Degradation of Oryza sativa Indica and O. sativa Japonica Cellular Suspensions Undergoing Rice Yellow Mottle Virus Infection[J]. Proteomics, 2004, 4:216-225.
    [104] Separation of Proteins from Stressed Rice (Oryza sativa L.) Leaf Tissues by Two-Dimensional Polyacrylamide Gel Electrophoresis : Induction of Pathogenesis-Related and Cellular Protectant Proteins by Jasmonic Acid, UV Irradiation and Copper Chloride[J]. Electrophoresis, 1999, 20:3472-3478.
    [105] Agrawal G, Rakwal R, Yonekura M, et al. Proteome Analysis of Differentially Displayed Proteins as a Tool for Investigating Ozone Stress in Rice (Oryza sativa L.) Seedlings[J]. Proteomics, 2002, 2:947-959.
    [106] High-Resolution Two-Dimensional Electrophoresis Separation of Proteins from Metal-Stressed Rice (Oryza sativa L.) Leaves:Drastic Reductions/ Fragmentation of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase and Induction of Stress Related Proteins[J]. Electrophoresis, 2001, 22:2824-2831.
    [107] Salekdeh G, Sioponggo J, Wade L, et al. Proteomic Analysis of Rice Leaves during Drought Stress and Recovery[J]. Proteomics, 2002, 2:1131-1145.
    [108] Ramani S, Apte S K. Transient Expression of Multiple Genes in Salinity-Stressed Young Seedlings of Rice (Oryza sativa L.) cv. Bura rata[J]. Biochemical and Biophysical Research Communications, 1997, 233:663-667.
    [109] Shen S, Jing Y, Kuang T. Proteomics Approach to Identify Wound-Response Related Proteins from Rice Leaf Sheath[J]. Proteomics, 2003, 3:527-535.
    [110] Komatsu S, Muhammad A, Rakwal R. Separation and Characterization ofProteins from Green and Etiolated Shoots of Rice (Oryza sativa L.) Towards a Rice Proteome[J]. Electrophoresis, 1999, 20:630-636.
    [111] Tsunezuka H, Fikowara M, Kawasaki T, et al. Proteome Analysis of Programmed Cell Death and Defense Signaling Using the Rice Lesion Mimic Mutant Cdr2[J]. Molecular Plant-Microbe Interactions, 2005, 18:52-59.
    [112] Wei Z Q, Liu Y Y, Wang G L. An Irradiation Equipment for Investigation on Biological Effects of Heavy Ions[J]. Nuclear Technology, 1991, 14:341-346.
    [113] Berendt F J, Fr?hlich T, Schmidt S E, et al. Holistic Differential Analysis of Embryo-Induced Alterations in the Proteome of Bovine Endometrium in the Preattachment Period[J]. Proteomics, 2005, 5:2551-2560.
    [114]曹顺良,张忠平,李荣,等. BioDW:一个整合的生物信息学数据仓库平台[J].计算机科学,2003,30:104-104.
    [115] Link H, Weuster-Botz D. Metabolic Control Analysis of Cells in Fed-Batch Processes[J]. New Biotechnology, 2009, 25S:S339.
    [116] Kawakami K, Umena Y, Kamiya N, et al. Structure of the Catalytic, Inorganic Core of Oxygen-Evolving Photosystem II at 1.9 ? Resolution[J]. Journal of Photochemistry and Photobiology B:Biology, 2011, 104:9-18.
    [117] Kuznetsov A M, Zueva E M, Masliy A N, et al. Redox Potential of the Rieske Iron-Sulfur Protein : Quantum-Chemical and Electrostatic Study[J]. Biochimica et Biophysica Acta (BBA) -Bioenergetics, 2010, 1797:347-359.
    [118]陈为钧,赵贵文,顾月华. RuBisCO的研究进展[J].生物化学与生物物理进展,1999,26:433-437.
    [119] Tarze A, Deniaud A, Le Bras M, et al. GAPDH, a Novel Regulator of the Pro-Apoptotic Mitochondrial Membrane Permeabilization[J]. Oncogene, 2007, 26:2606-2620.
    [120] Mukai T, Arai Y, Yatsuki H, et al. Characterization of a Extreme Thermostable Fructose-1,6-Bisphosphate Aldolase from Hyperthermophilic BacteriumAquifex aeolicus[J]. Enzyme and Microbial Technology, 2009, 45:261-266.
    [121] Howard T, Lloyd J, Raines C. The in vivo Activities of Phosphoribulokinase and Glyceraldehyde Phosphate Dehydrogenase Can be Rapidly Altered Through Protein-Protein Interactions[J]. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology, 2007, 146 :S272-S273.
    [122] Burkard T R, Planyavsky M, Kaupe I, et al. Initial Characterization of the Human Central Proteome[J]. BioMed Central Systems Biology, 2011, 26:5-17.
    [123] Liang W, Ouyang S, Shaw N, et al. Conversion of D-Ribulose 5-Phosphate to D-Xylulose 5-Phosphate:New Insights from Structural and Biochemical Atudies on Human RPE[J]. Journal of Federation of American Societies for Experimental Biology, 2010, 25:497-504.
    [124] Fukayama H, Abe R, Uchida N. SDS-Dependent Proteases Induced by ABA and Its Relation to Rubisco and Rubisco Activase Contents in Rice Leaves[J]. Plant Physiology and Biochemistry, 2010, 48:808-812.
    [125] Foyer H, Bloom J, Queval G, et al. Photorespiratory Metabolism:Genes, Mutants, Energetics, and Redox Signaling[J]. Annual Review of Plant Physiology, 2009, 60:455-484.
    [126] Ghosh H, Preiss J. Adenosine Diphosphate Glucose Pyrophosphorylase. A Regulatory Enzyme in the Biosynthesis of Starch in Spinach Leaf Chloroplasts[J]. The Journal of Biological Chemistry, 1966, 241:4491-504.
    [127] Yan R, Rychlik W, Etchison D, et al. Amino Acid Sequence of the Human Protein Synthesis Initiation Factor eIF-4 Gamma[J]. The Journal of Biological Chemistry, 1992, 267:23226-23231.
    [128] Malys N, McCarthy J E G. Translation Initiation:Variations in the Mechanism Can be Anticipated[J]. Cellular and Molecular Life Sciences, 2010, 68:991-1003.
    [129] Narayanan N, Chou C P. Periplasmic Chaperone FkpA Reduces Extracytoplasmic Stress Response and Improves Cell-Surface Display on Escherichia coli[J]. Enzyme and Microbial Technology, 2008, 42:506-513.
    [130] Geraldine S M, Rose C. Interactions of Heat Shock Protein 47 with Collagen and the Stress Response:An Unconventional Chaperone Model?[J]. Life Sciences, 2010, 87:579-586.
    [131] Narberhaus F. Translational Control of Bacterial Heat Shock and Virulence Genes by Temperature-Sensing mRNAs[J]. RNA Biology, 2010, 7:84-89.
    [132] Kampinga H H, Hageman J, Vos M J, et al. Guidelines for the Nomenclature of the Human Heat Shock Proteins[J]. Cell Stress Chaperones, 2009, 14:105-111.
    [133] Andersson I, Backlund A. Structure and Function of Rubisco[J]. Plant Physiology and Biochemistry, 2008, 46:275-291.
    [134] Takezawa A, Ohshima Y, Sudo T, et al. Renaturation of Lysozyme with a Protein Disulfide Isomerase Chaperone Results in Enzyme Super Activity[J]. Journal of Bioscience and Bioengineering, 2008, 106:503-506.
    [135] Moreno-Baylach M J, Felipo V, M?nnist? P T, et al. Expression and Traffic of Cellular Prolyl Oligopeptidase are Regulated During Cerebellar Granule Cell Differentiation, Maturation, and Aging[J]. Neuroscience, 2008, 156:580-585.
    [136] Peters J M, Franke W W, Kleinschmidt J A. Distinct 19S and 20S Subcomplexes of the 26S Proteasome and Their Distribution in the Nucleus and the Cytoplasm[J]. The Journal of Biological Chemistry, 1994, 269:7709-7718.
    [137] Lee D G, Ahsan N, Lee S H, et al. A Proteomic Approach in Analyzing Heat-Responsive Proteins in Rice Leaves[J]. Proteomics, 2007, 7:3369-3383.
    [138] Wiedmann B, Sakai H, Davis T A, et al. A Protein Complex Required forSignal-Sequence-Specific Sorting and Translocation[J]. Nature, 1994, 370:434-440.
    [139] Yano A, Shimazaki T, Kato A, et al. Molecular Cloning and Nucleotide Sequence cDNA Encoding Nucleoside Diphosphate Kinase of Rice (Oryza sativa L.) [J]. Plant Molecular Biology, 1993, 23:1087-1090.
    [140] Kawai M, Kidou S, Kato A, et al. Molecular Characterization of cDNA Encoding for Adenylate Kinase of Rice (Oryza sativa L.) [J]. The Plant Journal, 1992, 2:845-854.
    [141] Aneetha H, O’Dell D K, Tan B, et al. Alcohol Dehydrogenase-Catalyzed in vitro Oxidation of Anandamide to N-Arachidonoyl Glycine, a Lipid Mediator:Synthesis of N-Acyl Glycinals[J]. Bioorganic & Medicinal Chemistry Letters, 2009, 19:237-241.
    [142] Van Breusegem F, Dekeyser R, Gielen J, et al. Characterization of an S-Adenosylmethionine Synthetase Gene in Rice[J]. Plant Physiology, 1994, 105:1463-1464.
    [143] Nakamura T, Yamaguchi Y, Sano H. Four Rice Genes Encoding Cysteine Synthase:Asolation and Differential Responses to Sulfur, Nitrogen and Light[J]. Gene, 1999, 229:155-161.
    [144] Sreelakshmi Y, Sharma R. Differential Regulation of Phenylalanine Ammonia Lyase Activity and Protein Level by Light in Tomato Seedlings[J]. Plant Physiology and Biochemistry, 2008, 46:444-451.
    [145] Rothacker B, Ilg T. Functional Characterization of a Drosophila melanogaster Succinic Semialdehyde Dehydrogenase and a Non-Specific Aldehyde Dehydrogenase[J]. Insect Biochemistry and Molecular Biology, 2008, 38:354-366.
    [146] Yu H S, Ma L L, Zhang J X, et al. Characterization of Glycosyltransferases Responsible for Salidroside Biosynthesis in Rhodiola sachalinensis[J].Phytochemistry, 2011, 72:862-870.
    [147] Sun C H, Liu L C, Tang J Y, et al. RLIN1, Encoding a Putative Coproporphyrinogen III Oxidase, is Involved in Lesion Initiation in Rice[J]. Journal of Genetics and Genomics, 2011, 38:29-37.
    [148] Parey K, Warkentin E, Kroneck P M, et al. Reaction Cycle of the Dissimilatory Sulfite Reductase from Archaeoglobus fulgidus[J]. Biochemistry, 2010, 49:8912-8921.
    [149] Hoshida H, Tanaka Y, Hibino T, et al. Enhanced Tolerance to Salt Stress in Transgenic Rice that Overexpresses Chloroplast Glutamine Synthetase[J]. Plant Molecular Biology, 2000, 43:103-111.
    [150] Abiko T, Obara M, Ushioda A, et al. Localization of NAD-Isocitrate Dehydrogenase and Glutamate Dehydrogenase in Rice Roots:Candidates for Providing Carbon Skeletons to NADH-Glutamate Synthase[J]. Plant Cell Physiology, 2005, 46:1724-1734.
    [151] Terada Y, Aoki H, Tanaka T, et al. Cloning and Nucleotide Sequence of a Leaf Ferredoxin-Nitrite Reductase cDNA of Rice[J]. Bioscience Biotechnology & Biochemistry, 1995, 59:2183-2185.
    [152] Mou Z, He Y, Dai Y, et al. Novel Enoyl-ACP Reductase (FabI) Potential Inhibitors of Escherichia coli from Chinese Medicine Monomers[J]. Bioorganic & Medicinal Chemistry Letters, 2010, 20:56-59.
    [153] Kim B G, Lee Y, Hur H G, et al. Flavonoid- 3'-O-Methyltransferase from Rice : cDNA Cloning, Characterization and Functional Expression[J]. Phytochemistry, 2006, 67:387-394.
    [154] Attia M, F?rster A, Rachez C, et al. Interaction between Nucleosome Assembly Protein 1-like Family Members[J]. Journal of Molecular Biology, 2011, 407:647-660.
    [155] Yoshiba Y, Aoki C, Iuchi S, et al. Characterization of Four Extensin Genes inArabidopsis thaliana by Differential Gene Expression under Stress and Non-Stress Conditions[J]. DNA Research, 2001, 8:115-122.
    [156] Frenette-Charron J B, Breton G, Badawi M, et al. Molecular and Structural Analyses of a Novel Temperature Stress-Induced Lipocalin from Wheat and Arabidopsis[J]. FEBS Letters, 2002, 517:129-132.
    [157] Sachetto-Martins G, Franco L O, Oliveira D E. Plant Glycine-Rich Proteins:A Family or Just Proteins with a Common Motif[J]. Biochimica Et Biophysica Acta, 2000, 1492:1-14.
    [158] Wei J Y, Li A M, Li Y, et al. Cloning and Characterization of an RNase-Related Protein Gene Preferentially Expressed in Rice Stems[J]. Bioscience Biotechnology & Biochemistry, 2006, 70:1041-1045.
    [159] Bohlmann J, Stauber E J, Krock B, et al. Gene Expression of 5-Epi-Aristolochene Synthase and Formation of Capsidiol in Roots of Nicotiana attenuata and N. sylvestris[J]. Phytochemistry, 2002, 60:109-116.
    [160] Kim S T, Cho K S, Kim S G, et al. A Rice Isoflavone Reductase-Like Gene, OsIRL, is Induced by Rice Blast Fungal Elicitor[J]. Molecules and Cells, 2003, 16:224-231.
    [161] Truong N H, Park S M, Nishizawa Y, et al. Structure, Heterologous Expression, and Properties of Rice (Oryza sativa L.) Family 19 Chitinases[J]. Bioscience Biotechnology & Biochemistry, 2003, 67:1063-1070.
    [162] Chen M, Chory J, Fankhauser C. Light Signal Transduction in Higher Plants[J]. Annual Review of Genetics, 2004, 38:87-117.
    [163] Hatzfeld M. The Armadillo Family of Structural Proteins[J]. International Review of Cytology, 1999, 186:179-224.
    [164] Neves S R, Ram P T, Iyengar R. G Protein Pathways[J]. Science, 2002, 296:1636-1639.
    [165] Yang H J, Li Y Q, Hua J. The C2 Domain Protein BAP1 Negatively RegulatesDefense Responses in Arabidopsis[J]. The Plant Journal, 2006, 48:238-248.
    [166] Barford D. Molecular Mechanisms of the Protein Serine/Threonine Phosphatases[J]. Trends in Biochemical Sciences, 1996, 21:407-412.
    [167] Raven E L. Peroxidase-Catalyzed Oxidation of Ascorbate. Structural, Spectroscopic and Mechanistic Correlations in Ascorbate Peroxidase[J]. Subcellular Biochemistry, 2000, 35:317-349.
    [168] Urano J, Nakagawa T, Maki Y, et al. Molecular Cloning and Characterization of a Rice Dehydroascorbate Reductase[J]. FEBS Letters, 2000, 466:107-111.
    [169] Xie G, Kato H, Sasaki K, et al. Cold-Induced Thioredoxin h of Rice, OsTrx23, Negatively Regulates Kinase Activities of OsMPK3 and OsMPK6 in vitro[J]. FEBS Letters, 2009, 583:2734-2738.
    [170]汪本勤.植物SOD的研究进展[J].河北农业科学,2008,12:6-9.
    [171] Lin Y Z, Chen H Y, Kao R, et al. Proteomic Analysis of Rice Defense Response Induced by Probenazole[J]. Phytochemistry, 2008 , 69:715-728.
    [172] Hidema J, Zhang W, Yamamoto M, et al. Changes in Grain Size and Grain Storage Protein of Rice (Oryza sativa L.) in Response to Elevated UV-B Radiation under Outdoor Conditions[J]. Radiation Research (Tokyo), 2005, 46:143-149.
    [173] Petruccelli S, Molina M I, Lareu F J, et al. Two Short Sequences from Amaranth 11S Globulin are Sufficient to Target Green Fluorescent Protein and Beta-Glucuronidase to Vacuoles in Arabidopsis Cells[J]. Plant Physiology and Biochemistry, 2007, 45:400-409.
    [174]翁晓燕,陆庆,蒋德安.水稻Rubisco活化酶在调节Rubisco活性和光合日变化中的作用[J].中国水稻科学,2001,15:35-40.
    [175] Makino A, Nakano H, Mae T, et al. Photosynthesis, Plant Growth and N Allocation in Transgenic Rice Plants with Fecreased Rubisco under CO2 Enrichment[J]. Journal of Experimental Botany, 2000, 51:383-389.
    [176] Zhao C F, Wang J Q, Cao M L, et al. Proteomic Changes in Rice Leaves During Development of Field-Grown Rice Plants[J]. Proteomics, 2005, 5:961-972.
    [177] Li D, Li J Q, Ouyang S G, et al. An Integrated Strategy for Functional Analysis in Large-Scale Proteomic Research by Gene Ontology[J]. Progress in Biochemistry and Biophysics, 2005, 32:1026-1029.
    [178] Lee B, Yoshida Y, Hasunuma K. Nucleoside Diphosphate Kinase-1 Regulates Hyphal Development via the Transcriptional Regulation of Catalase in Neurospora crassa[J]. FEBS Letters, 2009, 583:3291-3295.
    [179] Pan L, Kawai M, Yano A, et al. Nucleoside Diphosphate Kinase Required for Coleoptile Elongation in Rice[J]. Plant Physiology, 2000, 122:447-452.
    [180] Hartsough M T, Steeg P S. Nm23/Nucleoside Diphosphate Kinase in Human Cancers[J]. Bioenergetics and Biomembranes, 2000, 32:301-308.
    [181] Harris N, Taylor J E, Roberts J A. Isolation of a mRNA Encoding a Nucleoside Diphosphate Kinase from Tomato that is Up-Regulated by Wounding[J]. Plant Molecular Biology, 1994, 25:739-742.
    [182] Cramer W A, Hasan S S, Yamashita E. The Q Cycle of Cytochrome bc Complexes:A Structure Perspective[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2011, 1807:788-802.
    [183]李宾兴,毛大璋,高振泮,等.假根羽藻Cytb6f蛋白复合体的分离与纯化[J].海洋与湖沼,2007,38:69-76.
    [184] Anderson J M. Cytochrome b6f Complex:Dynamic Molecular Organization Function and Acclimation[J]. Photosynthesis Research, 1992, 34:341-357.
    [185] Madue?o F, Napier J A, Cejudo F J, et al. Import and Processing of the Precursor of the Rieske Fe-S Protein of Tobacco Chloroplasts[J]. Plant Molecular Biology, 1992, 20:289-299.
    [186]张红岩,薛华,马欣荣,等.甘蓝型油菜半胱氨酸蛋白酶cDNA的克隆及组织特异性表达分析[J].应用与环境生物学报,2008,14:172-176.
    [187] Jones J T, Mullet J E. A Salt and Sehydration-Inducible Pea Gene, Cyp15a, Encodes a Cellwall Protein with Sequence Similarity to Cysteine Protease[J]. Plant Molecular Biology, 1995, 28:1055-1065.
    [188] Masahiro K, Kazuko Y, Hideo T. Structure and Expression of Two Genes that Encode Distinct Drought-Inducible Cysteine Proteinases in Arabidopsis thalian[J]. Gene, 1993, 129:175-182.
    [189] Renu K C, Srivalli B, Ahlawat Y S. Drought Induces Many Forms of Cysteine Proteases Not Observed During Natural Senescence[J]. Biochemical and Biophysical Research Communications, 1999, 255:324-327.
    [190] Tadamasa U, Shigemi S, Yuko O. Circadian and Senescence-Enhanced Expression of a Tobacco Cysteine Protease Gene[J]. Plant Molecular Biology, 2000, 44:649-657.
    [191] Robertson C D, Coombs G H, Noth M J, et al. Parasite Cysteine Proteases[J]. Perspectives in Drug Discovery and Design, 1996, 6:99-118.
    [192] Gang D R, Dinkova-Kostova A T, Davin L B. Phylogenetic Links in Plant Defense Systems:Lignans, Isoflavonoids and Their Reductases[J]. American Chemical Society, 1997:58-59.
    [193] Vass?o D G, Kim S J, Milhollan J K, et al. A Pinoresinol-Lariciresinol Reductase Homologue from the Creosote Bush (Larrea tridentata) Catalyzes the Efficient in vitro Conversion of p-Coumaryl/Coniferyl Alcohol Esters into the Allylphenols Chavicol/Eugenol, but Not the Propenylphenols p-Anol/Isoeugenol[J]. Archives of Biochemistry and Biophysics, 2007, 465:209-218.
    [194] Shoji T, Winz R, Iwase T, et al. Expression Patterns of Two Tobacco Isoflavone Reductase-Like Genes and Their Possible Roles in Secondary Metabolism in Tobacco[J]. Plant Molecular Biology, 2002, 50:427-440.
    [195] Gang D R, Kasahara H, Xia Z Q, et al. Evolution of Plant Defense Mechanisms. Relationships of Phenylcoumaran Benzylic Ether Reductases to Pinoresinol-Lariciresinol and Isoflavone Reductases[J]. The Journal of Biological Chemistry, 1999, 274:7516-7527.
    [196] Min T, Kasahara H, Bedgar D L, et al. Crystal Structures of Pinoresinol-Lariciresinol and Phenylcoumaran Benzylic Ether Reductases and Their Relationship to Isoflavone Reductases[J]. The Journal of Biological Chemistry, 2003, 278:50714-50723.
    [197] Babiychuk E, Kushnir S, Belles-Boix E, et al. Arabidopsis thaliana NADPH Oxidoreductase Homologs Confer Tolerance of Yeasts Toward the Thiol-Oxidizing Drug Diamide[J]. The Journal of Biological Chemistry, 1995, 270:26224-26231.
    [198] Lers A, Burd S, Lomaniec E, et al. The Expression of a Grapefruit Gene Encoding an Isoflavone Reductase-Like Protein is Induced in Response to UV Irradiation[J]. Plant Molecular Biology, 1998, 36:847-856.
    [199] Green P J. The Ribonucleases of Higher Plants. Annual Review of Plant Physiology and Plant Molecular Biology[J], 1994, 45:421-445.
    [200] Van Damme E J, Hao Q, Barre A, et al. Major Protein of Resting Rhizomes of Calystegia sepium (Hedge Bindweed) Closely Resembles Plant RNases but Has No Enzymatic Activity[J]. Plant Physiology, 2000, 122:433-445.
    [201] Dodds P N, Clarke A E, Newbigin E. Molecular Characterisation of an S-like RNase of Nicotiana alata that is Induced by Phosphate Starvation[J]. Plant Molecular Biology, 1996, 31:227-238.
    [202] Kariu T, Sano K, Shimokawa H, et al. Isolation and Characterization of a Wound-Inducible Ribonuclease from Nicotiana glutinosa Leaves[J]. Bioscience Biotechnology & Biochemistry, 1998, 62:1144-1151.
    [203] Hugot K, Ponchet M, Marais A, et al. A Tobacco S-like RNase Inhibits HyphalElongation of Plant Pathogens[J]. Molecular Plant-Microbe Interactions, 2002, 15:243-250.
    [204] Salekdeh G H, Siopongco J, Wade L J, et al. Proteomic Analysis of Rice Leaves during Drought Stress and Recovery[J]. Proteomics, 2002, 2:1131-1145.
    [205]王秀堂.玉米花期水分胁迫诱导基因PDI的克隆与功能分析[D].保定:河北农业大学,2007:13-16.
    [206] Puig A, Gilbert H F. Protein Disulfide Isomerase Exhibits Chaperone and Anti-Chaperone Activity in the Oxidative Refolding of Lysozyme[J]. The Journal of Biological Chemistry, 1994, 269:7764-7771.
    [207] Primm T P, Walker K W, Gilbert H F. Facilitated Protein Aggregation. Effects of Calcium on the Chaperone and Anti-Chaperone Activity of Protein Disulfide-Isomerase[J]. The Journal of Biological Chemistry, 1996, 271:33664-33669.
    [208] Wan X Y, Liu J Y. Comparative Proteomics Analysis Reveals an Intimate Protein Network Provoked by Hydrogen Peroxide Stress in Rice Seedling Leaves[J]. Molecular & Cellular Proteomics, 2008, 7:1469-1488.
    [209] Hashimoto M, Komatsu S. Proteomic Analysis of Rice Seedlings during Cold Stress[J]. Proteomics, 2007, 7:1293-1302.
    [210] Wang H, Zheng H Q, Sha W, et al. A Proteomic Approach to Analysing Responses of Arabidopsis thaliana Callus Cells to Clinostat Rotation[J]. Journal of Experimental Botany, 2006, 57:827-835.
    [211] Maguire M, Coates A R, Henderson B. Chaperonin 60 Unfolds its Secrets of Cellular Communication[J]. Cell Stress Chaperones, 2002, 7:317-329.
    [212]陈忠,苏维埃,汤章城.植物热激蛋白[J].植物生理学通讯,2000,36:289-296.
    [213] Yamagishi N, Yokota M, Yasuda K, et al. Characterization of Stress Sensitivityand Chaperone Activity of HSP105 in Mammalian Cells[J]. Biochemical and Biophysical Research Communications, 2011, 409:90-95.
    [214] Nevzgodina V, Gaubin Y, Kovalev E E, et al. Changes in Developmental Capacity of Artemia cyst and Chromosomal Aberrations in Lettuce Seeds Flown Aboard Salyut-7 (Biobloc III Experiment) [J]. Advances in Space Research, 1984, 4:71-76.
    [215] Li X, Qian Q, Fu Z, et al. Control of Tillering in Rice[J]. Nature, 2003, 422:618-621.
    [216] Sato Y, Hong S K, Tagiri A, et al. A rice Homeobox Gene, OSH1, is Expressed before Organ Differentiation in a Specific Region during Early Embryogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93:8117-8122.
    [217] Hubbard L, McSteen P, Doebley J, et al. Expression Patterns and Mutant Phenotype of Teosinte Branched 1 Correlate with Growth Suppression in Maize and Teosinte[J]. Genetics, 2002, 162:1927-1935.
    [218] Hanada K, Mastuo T, Hoshikawa K. Science of the Rice Plant (Vol. 1) [M]. Tokyo:Food and Agriculture Policy Research Center, 1993:16-19.
    [219] Hanada K, Mastuo T, Hoshikawa K, et al. Science of the Rice Plant (Vol, 2) [M]. Tokyo:Food and Agriculture Policy Research Center, 1995:28-35.
    [220]邵彩虹,王经源,林文雄.苗期水稻叶片发育进程的差异蛋白质组学分析[J].中国农业科学,2008,41:3831-3837.
    [221] Robert F, Chandler J R. Plant Morphology and Stand Geometry in Relation to Nitrogen[D]. Philippines:International Rice Research Institute, 1969, 4-9.
    [222] CazaléA C, Clément M, Chiarenza S, et al. Altered Expression of Cytosolic/Nuclear HSC70-1 Molecular Chaperone Affects Development and Abiotic Stress Tolerance in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2009, 60:2653-2664.
    [223] Iwata N, Takamure I, Wu H K, et al. List of Genes for Various Traits (with Chromosome and Main Literature) [J].Rice Genetics Newsletter, 1995, 12:61-93.
    [224] Yan J Q, Zhu J, He C X, et al. Quantitative Trait Loci Analysis for the Developmental Behavior of Tiller Number in Rice (Oryza sativa L.) [J]. Theoretical and Applied Genetics, 1998, 97:267-274.
    [225] Munné-Bosch S, Alegre L. Plant Aging Increases Oxidative Stress in Chloroplasts[J]. Planta, 2002, 214:608-615.
    [226] Srivalli B, Khanna-Chopra R. Induction of New Isoforms of Superoxide Dismutase and Catalase Enzymes in the Flag Leaf of Wheat during Monocarpic Senescence[J]. Biochemical and Biophysical Research Communications, 2001, 288:1037-1042.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700