用户名: 密码: 验证码:
微流控芯片上单细胞生物电子检测和介电操控技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为实时监测生态变化和生物安全,实施现场监测污染环境下生物数量和尺寸的动态变化,开发能检测生物数量和测定不同粒径大小,而且能区分污染物与被检生物的实施现场、全自动的微流控芯片生物检测技术就显得尤为重要。
     本论文基于库尔特电子检测原理,设计了具有两个检测通道的差分微流控芯片,理论分析了输出信号的影响因素,推导获得了可优化通道尺寸设计的数学公式,并采用软光刻法加工出线宽最小为0.74μm的PDMS通道,采用二级差分放大检测系统,实现了220nm聚苯乙烯颗粒的电子检测,信噪比为4-10。
     在此基础上,论文提出了采用单位时间内检测到的生物个数来快速预测样品中单位体积生物个数的方法,实验获得了单位时间内通过微流控芯片检测区域的生物个数与被检样品中单位体积样品中生物个数的线性关系(线性相关系数大于0.99),利用该线性关系曲线,可在1-2分钟内完成待检样中的生物个数的预测。
     基于电子检测原理,本论文还实现了微藻粒径谱的快速测定。同时,还发现了颗粒形状和运动形式会影响RPS脉冲的形状,根据RPS脉冲是否对称,可分离计数球形微藻和不规则形状的伪蹄型藻。
     此外,论文通过采用直流介电泳和电渗流联合法,在微流控芯片上实现了不同尺寸微藻以及相近尺寸的单细胞生物(微藻)与杂质(聚苯乙烯颗粒)的连续、自动分离。该方法具有芯片加工简单、易于非专业人员使用等特点,可用于混有杂质的单细胞生物样品的前处理。
     最后,论文设计了集样品前处理和电子检测功能与一体的微流控芯片,利用该微流控芯片,顺序实现了微藻样品的连续介电泳杂质过滤和微藻电子检测。
     本文的研究丰富了传统的库尔特电子检测理论,并且对于发展应用于成分复杂的单细胞生物样品快速检测和分析的微流控芯片便携式仪器具有一定的价值。
In order to monitor the dynamic change of the ecology and organisms and consequently analyze the number and sizes of the organisms within the polluted environment, it is very important for the development and application of microfluidic chip based portable devices which can not only detect, count and size the organisms but also can differentiate the pollutants and the target species.
     Based on the Coulter principle and by designing two detection channels, the working principle and factors influencing the signal magnitudes are theoretically analyzed and an equation to optimize the chip design was derived, by means of the equivalent electrical circuit theory.
     Afterwards, a submicron size sensing gate with the smallest width of0.74μm was soft-lithographically fabricated by asymmetrically designing the sensing gate. With this sensing gate,220nm particles were successfully detected with the help of the two-stage differential amplification detection system. The S/N is4-10.
     A method of calculating sample concentration by counting the number of particles per unit time was proposed and experimentally verified. The experimental results show the counted number rate per unit time is a linear function of the sample concentration in cells/mL with a correlation coefficient (R2) larger than0.99. Using this experimentally obtained correlation curve, the number of organisms in the sample can be rapidly determined within1-2minutes.
     Algae size distribution was rapidly determined on a microfluidic chip. Also, it was found that the shape and the rotation of particle can influence the shape of the RPS pulse, which can be employed to differentiate the spherical algae and the irregular Pseudokirchneriella subcapitata.
     The continual separation of Pseudokirchneriella subcapitata and Chlorella vulgar is, algae and5μm polymer particles were achieved by combining DC dielectrophoresis and electroosmotic flow. This method is simple and can be employed for sample pretreatment by non-professional people.
     A microfluidic chip integrated with functions of dielectrophoresis separation and electric detection was designed and employed for the sequencial separation of impurities from the algae sample and algae electric detection.
     The researches in this diesseration improved the understanding of the traditional Coulter principle and have some values for the development of fast analysis techonologies and microfluidic chip based portable devices for the single cell organism detection within complex samples.
引文
[1]George M. Whitesides. The origins and the future of microfluidics, Nature,2006, 442:368-373.
    [2]白树猛,田黎.指示生物在海洋污染监测中的应用.海洋科学,2010,34(1):80-83.
    [3]Verlecar X N, Desai S R, Anupam S. Biological indicators in relation to coastal pollution along Karnataka coast. India Water Research,2006,40(17):304-312.
    [4]Casazza, Gianna, Silvestri et al. The use of bio indicators for quality assessments of the marine environment:Examples from the Mediterr anean Sea. Journal of Coastal Conservation,2002,8(2):147-156.
    [5]K. A. Steidinger and K. Tangen, Dinoflagellates. Identifying Marine Phytoplankton. San Diego, USA:Academic Press,1997.
    [6]J. T. Carlton. Ballast water:the ecological roulette of marine biologicals invasions. ICES Annual Sci. Conf., Aaborg, Denmark,1995:1-7.
    [7]Ostenfeld, C. H. On the immigration of Biddulphia sinensis Grev. and its occurrence in the North Sea during 1903-1907 and on its use for the study of the direction and rate of flow of the currents. Meddelclser fra Kommissionen for Danmarks Fiskeri-og Havunders(?)gelser:Serie Plankton,1908,1(6):1-44.
    [8]Gollasch, S., Macdonald, E., Belson, S., Botnen, H., et. Life in ballast tanks. In:Leppakoski, E., Gollasch, S., Olenin, S. (Eds.), Invasive Aquatic Species of Europe:Distribution, Impacts and Management. Kluwer Academic Publishers, Dordrecht, The Netherlands,2002:217-231.
    [9]David, M., Gollasch, S., Cabrini, M., Perkovic, M., Bosnjak, D., Virgilio, D. Results from the First Ballast Water Sampling Study in the Mediterranean Sea-the Port of Koper Study. Marine Pollution Bulletin,2007,54(1):53-65.
    [10]Carlton, J. T., Geller, J. B. Ecological roulette:the global transport of nonindigenous marine organisms. Science,1993,261(5117):78-82.
    [11]Cohen, A. N., Carlton, J. T. Accelerated invasion rate in a highly invaded estuary. Science,1998,279:555-558.
    [12]Ruiz, G. M., Carlton, J. T., Grosholz, E. D., Hines, A. H. Global invasions of marine and estuarine habitats by non-indigenous species:mechanisms, extent and consequences. American Zoologist,1997,37(6):621-632.
    [13]Ruiz, G. M., Fofonoff, P.W., Carlton, J. T., et al. Invasion of coastal marine communities in North America:apparent patterns, processes and biases. Annual Review of Ecology and Systematics,2000,31 (1):481-531.
    [14]Ruiz, G. M., Rawlings, T. K., Dobbs, F. C. Global spread of microorganisms by ships. Nature,2000,408(6808):49-50.
    [15]Joachimsthal, E. L., Ivanov, V., Tay, S. T. L., Tat, J. H. Bacterial examination of ballast water in Singapore Harbour by flow cytometry with fish. Marine Pollution Bulletin,2004,49(4):334-343.
    [16]Aguirre-Macedo, M. L., Vidal-Martinez, V. M., Herrera-Silveira, J. A., Valdes-Lozano, D. S. Ballast water as a vector of coral pathogens in the Gulf of Mexico:the case of the Cayo Arcas coral reef. Marine Pollution Bulletin,2008,56(9):1570-1577.
    [17]Mackenzie. Alien invaders. New Scientist,1999,162:18-19.
    [18]Geoof R. From Ballast to Bouillabaisse. Science,2000,289-241.
    [19]Donald M A. Turning back the harmful tide. Nature,1997,388:613-614.
    [20]Steve Raaymakers. Report for the GEF/UNDP/IMO Global Ballast Water Management Programme (GloBallast), The Institute of Marine Engineering, Science & Technology Queens Golden Jubilee 2002 Marine Environment Award. London, October,2002.
    [21]李福秀.船舶压载水对海洋环境的危害.世界海运,1998,1:44.
    [22]Gregory M R. Global spread of microorganisms by ships. Nature,2000,408:49-50.
    [23]Hayes, K. R. and Sliwa, C. Identifying potential marine pests-a deductive approach applied to Australia. Marine Pollution Bulletin.2003,46(1):91-98.
    [24]Pimentel, D. Economic and ecological costs associated with aquatic invasive species. In:Proceedings of the Aquatic Invaders of the Delaware Estuary Symposium, Malvern, Pennsylvania,2003:3-5.
    [25]Pimentel, D., Zuniga, R., Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics,2005,52(3):273-288.
    [26]Raaymakers, S. The ballast water problem:global ecological, economic and human health impacts. In:Presentation at the RECSO/IMO Joint Seminar on Tanker Ballast Water Management & Technologies, Dubai, UAE,2002:16-18.
    [27]Hebert P. D., Wilson C. C., Murdoch M. H. & Lazar R. Demography and ecological impacts of the invading molluse Dreisena polymorpha. Canadian Journal of zoology,1991,69:405-409.
    [28]Ballast Water News, Isurel. April-Jun,2000:1-8.
    [29]Alien invaders-putting a stop to the ballast water hitch-hikers. Focus on IMO, 1998:1-8.
    [30]GloBallast. Risk Assessments Underway. Ballast water News,2002.
    [31]周向华,王衍彬,叶兴干,等.电阻抗法在食品微生物快速检测中的应用.粮油加工与食品机械,2003,10:73-75.
    [32]王建中,屈晨雪.三种流式细胞术计数血小板方法的比较研究.中华检验医学杂志,2003,26(1):8-12.
    [33]周德庆.微生物学实验教程(第二版).北京:高等教育出版社,2006.
    [34]范秀容,李广武,沈萍.微生物学实验(第三版).北京:高等教育出版社,2006.
    [35]朱海霞,陈林海,张大伟,等.活性污泥微生物菌群研究方法进展.生态学报,2007,27(1):314-322.
    [36]明镇寰,岳春梅.生物硝化池污水中硝化细菌的快速定量研究.环境科学学报,2002,22(6):796-798.
    [37]耿慧霞,王来,王强.流式细胞仪在生物学中的应用.生物学杂志,2005,22(4):44-51.
    [38]W. H. Coulter, Means for Counting Particles Suspended in a Fluid.1953, US Patent No.2656508.
    [39]J. C. Maxwell. A Treatise on Electricity and Magnetism (3rd ed). Clarendon, Oxford, 1904.
    [40]Smythe, W. R. Flow around a sphere in a circular tube. Physics of Fluids,1961, 4(6):756-759.
    [41]Smythe, W. R. Flow around a spheroid in a circular tube. Physics of Fluids,1964, 7(5):633-638.
    [42]Anderson, J. L., & Quinn, J. A. The relationship between particle size and signal in coulter-type counters. Review of Scientific Instruments,1971,42 (8):1257-1258.
    [43]H. E. Kubitschek. Electronic measurement of particle size. Research (London), 1960,13:128-135.
    [44]E. C. Gregg and K. D. Steidley. Electronic counting and sizing of mammalian cells in suspension. Biophysical Journal,1965,5(4):393-405.
    [45]Grover NB, Naaman J, Ben-Sasson S, Doljanski F. Electrical Sizing of Particles in Suspensions:I. Theory. Biophysical Journal,1969,9(11):1398-1414.
    [46]Meredith, R. E., and C. W. Tobias. Resistance to potential flow through a cubic array of spheres. Journal of Applied Physics,1960,31(7):1270.
    [47]DeBlois, R. W., & Bean, C. P. Counting and sizing of submicron particles by the resistive pulse technique. Review of Scientific Instruments,1970,41(7):909-916.
    [48]DeBlois, R. W., Bean, C. P., & Wesley, R. K. A. Electrokinetic measurements with submicron particles and pores by the resistive pulse technique. Journal of Colloid and Interface Science,1977,61(2):323-335.
    [49]Fricke, H. A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse Systems I. The Electric conductivity of a suspension of homogeneous spheroids. Physical Review Letters,1924,24(5):575-587.
    [50]Fricke, H. The Maxwell-Wagner dispersion in suspension of ellipsoids. Journal of Applied Physics,1953,57(9):934-937.
    [5l]Velick, S. & M. Gorin. The electrical conductance of suspensions of ellipsoids and its relation to the study of avian erythrocytes. Journal of Cellular Physiology,1940,23 (6):753-771.
    [52]Golibersuch DC. Observation of aspherical particle rotation in Poiseuille flow via the resistance pulse technique. I. Application to human erythrocytes. Biophysical Journal,1973,13(3):265-80.
    [53]Saleh,0. A. A novel resistive pulse sensor for biological measurements. Ph. D. thesis,2003, Princeton University.
    [54]Smythe. W. R. Off-axis particles in coulter type counters. Review of Scientific Instruments,43 (5):817-818.
    [55jBerge, L. I., Jossang, T., & Feder, J. Off-axis response for particles passing through long apertures in coulter-type counters. Measurement Science and Technology, 1990,1(6):471-474.
    [56]Saleh,0. A., & Sohn, L. Correcting off-axis effects in an on-chip resistive-pulse analyzer. Review of Scientific Instruments.2002,73(12)-.4396-4398.
    [57]Golibersuch, D. C. Observation of aspherical particle rotation in poiseuille flow via the resistance pulse technique:I. application to human erythrocytes. Biophysical Journal,1973,13 (3):265-280.
    [58]Carbonaro, A., Mohanty, S. K., Huang, H., Godley, L. A., & Sohn, L. L. Cell characterization using a protein-functionalized pore. Lab on Chip,2008,8(9): 1478-1485.
    [59]Coulter WH. High speed automatic blood cell counter and cell size analyzer. National Electronics Conference, Chicago,1956:1034-1040.
    [60]Kubitschek, H. E. Electronic counting and sizing of bacteria. Nature, 1958,182(4630):234-235.
    [61]Anderson, J. L., and J. A. Quinn. The relationship between particle size and signal in Coulter-type counters. Review of Scientific Instruments,1971,42: 1257-1258.
    [62]DeBlois, R. W., and R. K. A. Wesley. Sizes and concentrations of several type Concornaviruses and bacteriophage T2 by the resistive-pulse technique. Journal of Virology,1977,23:227-233.
    [63]DeBlois, R. W., E. E. Uzgiris, D. H. Cluxton, and H. M. Mazzone. Comparative measurements of size and polydispersity of several insect viruses. Analytical Biochemistry,1978,90(1):273-288.
    [64]Feuer, B. I., E. E. Uzgiris, R. W. Deblois, D. H. Cluxton, and J. Lenard. Length of glycoprotein spikes of vesicular stomatitis virus and sindbis virus, measured in situ using quasi elastic light scattering and a resisitve-pulse technique. Virology, 1978,90(1):156-161.
    [65]Von Schulthess, G. K., G. B. Benedek, and R. W. DeBlois. Measurement of the cluster size distributions for high functionality antigens cross-linked by antibody. Macromolecules.1980,13(4):939-945.
    [66]Von Schulthess, G. K., G. B. Benedek, and R. W. DeBlois. Experimental measurements of the temporal evolution of cluster size distributions for highfunctionality antigens cross-linked by antibody. Macromolecules.1983,16(3):434-440.
    [67]Pefferkorn, E., and R. Varoqui. Dynamics of latex aggregation-modes of cluster growth. Journal of Chemical Physics.1989,91(9):5679-5686.
    [68]Ouali, L., S. Stoll, E. Pefferkorn, A. Elaissari, V. Lanet, C. Pichot, and B. Mandrand. Coagulation of antibody-sensitized latexes in the presence of antigen. Polymers for Advanced Technologies,1995,6(7):541-546.
    [69]Bezrukov, S. M., I. Vodyanoy, and V. A. Parsegian. Counting polymers moving through a single ion channel. Nature,1994,370(6487):279-281.
    [70]Kasianowicz, J. J., E. Brandin, D. Branton, and D. W. Deamer. Characterization of individual polynucleotide molecules using a membrane channel. Proceedings of the National Academy of Sciences,1996,93(24):13770-13773.
    [71]Deamer, D. W., and D. Branton. Characterization of nucleic acids by nanopore analysis. Accounts of Chemical Research,2002,35(10):817-825.
    [72]Akeson, M., D. Branton, J. Kasianowicz, E. Brandin, and D. W. Deamer. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophysical Journal,1999,77(6):3227-3233.
    [73]Bayley, H., and C. R. Martin. Resistive-pulse sensing-from microbes to molecules. Chemical Review,2000,100(7):2575-2594.
    [74]Meller, A., L. Nivon, E. Brandin, J. Golovchenko, and D. Branton. Rapid nanopore discrimination between single polynucleotide molecules. Proceedings of the National Academy of Sciences,2000,97(3):1079-1084.
    [75]Bayley, H., and P. S. Cremer. Stochastic sensors inspired by biology. Nature, 2001,413:226-230.
    [76]Howorka, S., S. Cheley, and H. Bayley. Sequence-specific detection of individual DNA strands using engineered nanopores. Nature Biotechnology,2001,19(7):636-639.
    [77]Howorka, S., L. Movileanu,0. Braha, and H. Bayley. Kinetics of duplex formation for individual DNA strands within a single protein nanopore. Proceedings of the National Academy of Sciences,2001,98(23):12996-13001.
    [78]Meller, A., L. Nivon, and D. Branton. Voltage-driven DNA translocations through a nanopore. Physical Review Letter,2001,86(15):3435-3438.
    [79]Vercoutere, W., S. Winters-Hilt, H. Olsen, D. Deamer, D. Haussler, and M. Akeson. Rapid discrimination among individual DNA hairpin molecules at singlenucleotide resolution using an ion channel. Nature Biotechnology,2001,19 (3):248-252.
    [80]Wang, H., and D. Branton. Nanopores with a spark for single-molecule detection. Nature Biotechnology,2001,19(7):622-623.
    [81]Meller, A., and D. Branton. Single molecule measurements of DNA transport through a nanopore. Electrophoresis,2002,23(16):2583-2591.
    [82]Bates, M., M. Burns, and A. Meller. Dynamics of DNA molecules in a membrane channel probed by active control techniques. Biophysical Journal,2003,84(4):2366-2372.
    [83]Sauer-Budge, A. F., J. A. Nyamwanda, D. K. Lubensky, and D. Branton. Unzipping kinetics of double-stranded DNA in a nanopore. Physical Review Letters,2003, 90(23):238101.
    [84]Winters-Hilt, S., W. Vercoutere, V. S. DeGuzman, D. Deamer, M. Akeson, and D. Haussler. Highly accurate classification of Watson-Crick basepairs on termini of single DNA molecules. Biophysical Journal,2003,84(2):967-976.
    [85]Sanchez-Quesada, J., A. Saghatelian, S. Cheley, H. Bayley, and M. R. Ghadiri. Single DNA rotaxanes of a transmembrane protein. Angewandte Chemie International Edition,2004,43(23):3063-3067.
    [86]Wang, H., J. E. Dunning, A. P.-H. Huang, J. A. Nyamwanda, and D. Branton. DNA heterogenity and phosporylation unveiled by single-molecule electrophoresis. Proceedings of the National Academy of Sciences,2004,101 (37):13472-13477.
    [87]Xie, H.,0. Braha, L. Gu, S. Cheley, and H. Bayley. Single-molecule observation of the catalytic subunit of cAMP-dependent protien kinase binding to an inhibitor peptide. Chemistry & Biology,2005,12 (1):109-120.
    [88]Butler, T. Z., J. H. Gundlach, and M. A. Troll. Determination of RNA orientation during translocation through a biological nanopore. Biophysical Journal,2006, 90(1):190-199.
    [89]Danelon, C., E. M. Nestorovich, M. Winterhalter, M. Ceccarelli, and S. M. Bezrukov. Interaction of zwitterionic penicillins with the OmpF channel facilitates their translocation. Biophysical Journal,2006,90(5):1617-1627.
    [90]Kullman, L., M. Winterhalter, and S. M. Bezrukov. Transport of maltodextrins through maltoporin:a single-channel study. Biophysical Journal,2002, 82(2):803-812.
    [91]Berkane, E., F. Orlik, A. Charbit, C. Danelon, D. Fournier, R. Benz, and M. Winterhalter. Nanopores:maltoporin channel as a sensor for maltodextrin and lamda-phage. Journal of Nanobiotechnology,2005,3(1):3.
    [92]Gu, L.,0. Braha, S. Conlan, S. Cheley, and H. Bayley. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature, 1999,398(6729):686-690.
    [93]Howorka, S., J. Nam, H. Bayley, and D. Kahne. Stochastic detection of monovalent and bivalent protein-ligand interactions. Angewandte Chemie International Edition, 2004,43(7):842-846.
    [94]Shin, S. H., T. Luchian, S. Cheley,0. Braha, and H. Bayley. Kinetics of a reversible covalent-bond-forming reaction observed at the single-molecule level. Angewandte Chemie International Edition,2002,41(19):3707-3709.
    [95]Luchian, T., S. H. Shin, and H. Bayley. Single-molecule covalent chemistry with spatially separated reactants. Angewandte Chemie International Edition,2003, 42(32):3766-3771.
    [96]Luchian, T., S. H. Shin, and H. Bayley. Kinetics of a three-step reaction observed at the single-molecule level. Angewandte Chemie International Edition,2003, 42(17):1926-1929.
    [97]Shin, S. H., and H. Bayley. Stepwise growth of a single polymer chain. Journal of the American Chemical Society,2005,127(30):10462-10463.
    [98]Oukhaled, G., J. Mathe, A. L. Biance, L. Bacri, J. M. Betton, D. Lairez, J. Pelta, and L. Auvray. Unfolding of proteins and long transient conformations detected by single nanopore recording. Physical Review Letters,2007,98(15):158101.
    [99]Jeffrey Daniel Uram. Detecting and monitoring the formation of biological nanoassemblies with resistive-pulse sensing, [dissertation]. Michigan:University of Michigan,2007.
    [100]Sun, L., and R. M. Crooks. Single carbon nanotube membranes:a well-defined model for studying mass transport through nanoporous materials. Journal of the American Chemical Society,2000,122 (49):12340-12345.
    [101]Ito, T., L. Sun, and R. M. Crooks. Simultaneous determination of the size and surface charge of individual nanoparticles using a carbon nanotube-based coulter counter. Analytical Chemistry,2003,75(10);2399-2406.
    [1O2]Park, S. R., H. Peng, and X. S. Ling. Fabrication of nanopores in silicon chips using feedback chemical etching. Small,2007,3(1):116-119.
    [103]Fan, R., R. Karnik, M. Yue, D. Li, A. Majumdar, and P. Yang. DNA translocation in inorganic nanotubes. Nano Letter,2005,5(9):1633-1637.
    [104]Li, J., D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko. Ion-beam sculpting at nanometre length scales. Nature,2001,412(6843):166-169.
    [105]Cai, Q., B. Ledden, E. Krueger, J. A. Golovchenko, and J. Li. Nanopore Sculpting with noble gas ions. Journal of Applied Physics,2006,100(2):024914.
    [106]Nilsson, J., J. R. I. Lee, T. V. Ratto, and S. E. Letant. Localized functionalization of single nanopores. Advanced Materials,2006,18(4):427-431.
    [107]Chang, H., S. M. Iqbal, E. A. Stach, A. H. King, N. J. Zaluzec, and R. Bashir. Fabrication and characterization of solid-state nanopores using a field emission scanning electron microscope. Applied Physics Letter,2006,88(10):103109.
    [108]Danelon, C., C. Santschi, J. Brugger, and H. Vogel. Fabrication and functionalization of nanochannels by electron-beam-induced silicon oxide deposition. Langmuir,2006,22(25):10711-10715.
    [109]Karhanek, M., J. T. Kemp, N. Pourmand, R. W. Davis, and C. D. Webb. Single DNA molecule detection using nanopipettes and nanoparticles. Nano Letter, 2005,5 (2):403-407.
    [110]Chang, H., F. Kosari, G. Andreadakis, M. A. Alam, G. Vasmatzis, and R. Bashir. DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels. Nano Letter,2004,4(8):1551-1556.
    [111]Heng, J. B., C. Ho., T. Kim, R. Timp, A. Aksimentiev, Y. V. Grinkova, S. Sligar, K. Schulten, and G. Timp. Sizing DNA using a nanometer-diameter pore. Biophysical Journal,2004,87(4):2905-2911.
    [112]Chen, P., T. Mitsui, D. B. Farmer, J. Golovchenko, R. G. Gordon, and D. Branton. Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Letter,2004,4(7):1333-1337.
    [113]Saleh,O. A., and L. L. Sohn. An artificial nanopore for molecular sensing. Nano Letter,2003,3(1):37-38.
    [114]Li, J., M. Gershow, D. Stein, E. Brandin, and J. A. Golovchenko. DNA molecules and configurations in a solid state nanopore microscope. Nature Materials, 2003,2(9):611-615.
    [115]Saleh,0. A., and L. L. Sohn. Quantitative sensing of nanoscale colloids using a microchip Coulter counter. Review of Scientific Instruments,2001,72(12): 4449-4451.
    [116]Yongxin Song, Hongpeng Zhang, ChanHee Chon, Xinxiang Pan and Dongqing Li. Nanoparticle Detection by Microfluidic Resistive Pulse Sensor with a submicron sensing gate and dual detecting channels-two stage differential amplifier. Sensors and actuators B-Chemical,2011,155(2):930-936.
    [117]Henriquez, R. R., T. Ito, L. Sun, and R. M. Crooks. The resurgence of Coulter counting for analyzing nanoscale objects. Analyst,2004,129(6):478-482.
    [118]Ito, T., L. Sun, M. A. Bevan, and R. M. Crooks. Comparison of nanoparticle size and electrophoretic mobility measurements using a carbon-nanotube-based Coulter counter, dynamic light scattering, transmission electron microscopy, and phase analysis light scattering. Langmuir,2004,20(16):6940-6945.
    [119]Ito, T., L. Sun, R. R. Henriquez, and R. M. Crooks. A carbon nanotube-based coulter nanoparticle counter. Accounts of Chemical Research,2004,37(12):937-945.
    [120]Heins, E. A., Z. S. Siwy, L. A. Baker, and C. R. Martin. Detecting single porphyrin molecules in a conically shaped synthetic nanopore. Nano Letter,2005, 5 (9):1824-1829.
    [121]Darby Kozak, Will Anderson, Robert Vogel and Matt Trau. Advances in Resistive Pulse Sensors:Devices bridging the void between molecular and microscopic detection. Nano Today,2011,6(5):531-545.
    [122]Y. N. Xia and G. M. Whitesides. Soft lithography. Annual Review Materials Science, 1998,28:153-184.
    [123]Jean-Luc Fraikin, Tambet Teesalu, Christopher M. McKenney, Erkki Ruoslahti & Andrew N. Cleland. A high-throughput label-free nanoparticle analyser. Nature nanotechnology,2011,6(5):308-313.
    [124]Yongxin Song, Hongpeng Zhang, ChanHee Chon, Shu Chen, Xinxiang Pan and Dongqing Li. Counting bacteria on a microfluidic chip. Analytica Chimica Acta,2010, 681(1-2):82-86.
    [125]N. Malmstadt, M. A. Nash, R. F. Purnell and J. J. Schmidt. Automated formation of lipid-bilayer membranes in a microfluidic device. Nano Letter,2006,6(9): 1961-1965.
    [126]Heins EA, Siwy ZS, Baker LA, Martin CR. Detecting single porphyrin molecules in a conically shaped synthetic nanopore. Nano Letter,2005,5(9):1824-1829.
    [127]Harrell CC, Choi Y, Home LP, Baker LA, Siwy ZS, Martin CR. Resistive-pulse DNA detection with a conical nanopore sensor. Langmuir,2006,22(25):10837-10843.
    [128]Kasianowicz JJ, Robertson JWF, Chan ER, Reiner JE, Stanford VM. Nanoscopic porous sensors. Annual Review Analytical Chemistry,2008,1 (1):737-766.
    [129]H. A. Pohl. The Motion and Precipitation of Suspensoids in Divergent Electric Fields. Journal of Applied Physics,1951,22(7):869-871.
    [130]H. A. Pohl, Dielectrophoresis:The behavior of neutral matter in nonuniform electric fields. New York:Cambridge University Press,1978.
    [131]S. Masuda, M. Washizu, and I. Kawabata. Movement of blood cells in liquid by nonuniform traveling field. IEEE Transactions on Industry Applications,1988, 24(2):217-222.
    [132]X.-B. Wang, R. Pethig, and T. B. Jones. Relationship of dielectrophoretic and electrorotational behaviour exhibited by polarized particles. Journal of Physics D: Applied Physics,1992,25(6):905-912.
    [133]T. B. Jones. Electromechanics of Particles. Cambridge:Cambridge University Press,1995.
    [134]Fredrik Aldaeus, Yuan Lin, Johan Roeraade, Gustav Amberg. Superpositioned dielectrophoresis for enhanced trapping efficiency. Electrophoresis,2005,26(22): 4252-4259.
    [135]Morgan, H., Green, N. G., Dielectrophoretic manipulation of rod-shaped viral particles. Journal of Electrostatics,1997,42(3):279-293.
    [136]H. A. Pohl. The motion and precipitation of suspensoids in divergent electric fields. Journal of Applied Physics,1951,22(7):869-871.
    [137]Ronald Pethig. Review Article—Dielectrophoresis:Status of the theory, technology, and applications. Biomicrofluidics,2010,4(3):022811.
    [138]Betts, W. B., Hawkes, J. J., Dielectrophoretic characterization of micro-organisms and other particles. United States Patent 5344535,1994.
    [139]A. P. Brown, W. B. Betts, A. B. Harrison, J. G. O'Neill. Evaluation of a dielectrophoretic bacterial counting technique. Biosensors and Bioelectronics,1999, 14(3):341-351.
    [140]Markx, G. H., Dyda, P. A., Pethig, R., Separation of submicron bioparticles by dielectrophoresis. Journal of Biotechnology,1996,51(2):175-180.
    [141]Milner, K. R., Brown, A. P., Betts, W. B., Goodall, D. M., Allsopp, D. W. E. Dielectrophoretic monitoring of microorganisms in environmental applications. Biomedical Sciences Instrumentation,1997,34(3):157-162.
    [142]Milner, K. R., Brown, A. P., Allsopp, D. W. E., Betts, W. B., Dielectrophoretic classification of bacteria using differential impedance measurements. Electronic Letter,1998,34(1):66-68.
    [143]Allsopp, D. W. E., Milner, K. R., Brown, A. P., Betts, W. B. Impedance technique for measuring dielectrophoretic collection of microbiological particles. Journal of Physics D:Applied Physics,1999,32(9):1066-1074.
    [144]Suehiro, J., Hamada, R., Noutomi, D., Shutou, M., Hara, M. Dielectrophoretic Concentration and Separation of Live and Dead Bacteria in an Array of Insulators. Journal of Electrostatics,2003,57(2):157-168.
    [145]Suehiro, J., Noutomi, D., Shutou, M., Hara, M. Selective detection of specific bacteria using dielectrophoretic impedance measurement method combined with an antigen-antibody reaction. Journal of Electrostatics,2003,58(3):229-246.
    [146]Suehiro, J., Yatsunami, R., Hamada, R., Hara, M. Quantitative estimation of biological cell concentration suspended in aqueous medium by using dielectrophoretic impedance measurement method. Journal of Physics D:Applied Physics,1999, 32(21):2814-2820.
    [147]Lapizco-Encinas, B. H., Simmons, B. A., Cummings, E. B., Fintschenko, Y. Dielectrophoretic Concentration and Separation of Live and Dead Bacteria in an Array of Insulators. Analytical Chemistry,2004,76(6):1571-1579.
    [148]Lapizco-Encinas, B. H., Simmons, B. A., Cummings, E. B., Fintschenko, Y. Insulator-Based Dielectrophoresis for the Selective Concentration and Separation of Live Bacteria in Water. Electrophoresis,2004,25 (10-11):1695-1704.
    [149]Lapizco-Encinas, B. H., Davalos, R., Simmons, B. A., Cummings, E. B., Fintschenko, Y. An insulator-based (electrodeless) dielectrophoreticconcentrator for microbes in water. Journal of Microbiological Methods,2005,62(3):317-326.
    [150]Pysher, M. D. and M. A. Hayes. Electrophoretic and dielectrophoretic field gradient technique for separating bioparticles. Analytical Chemistry,2007,79(12): 4552-4557.
    [151]A. K. Balasubramanian, K. A. Soni, A. Beskok, and S. D. Pillai. A microfluidic device for continuous capture and concentration of microorganisms from potable water. Lab on Chip,2007,7(10):1315-1321.
    [152]Cheng, I.-F., Chang, H.-C., Hou, D., Chang, H.-C. A dielectrophoretic chip with a roughened metal surface for on-chip surface-enhanced Raman scattering analysis of bacteria. Biomicrofluidics,2007,4(3):034104.
    [153]Nadia M. Jesu s-Pe rez Blanca H. Lapizco-Encinas. Dielectrophoretic monitoring of microorganisms in environmental applications. Electrophoresis,2011,32(17): 2331-2357.
    [154]M. V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, and R. M.0'Regan. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol,2006, 7(8):657-667.
    [155]C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek. Nanoshell-enabled photonics-based imaging and therapy of cancer. Breast Cancer Research and Treatment,2004,3(1):33-40.
    [156]P. Alivisatos. The use of nanocrystals in biological detection. Nature Biotechnology,2004,22(1):47-52.
    [157]V. L. Colvin. The potential environmental impact of engineered nanomaterials. Nature Biotechnology,2003,21(10):1166-1170.
    [158]S. Menon, J. Hansen, L. Nazarenko and Y. Luo. Climate effects of black carbon aerosols in China and India. Science,2002,297(5597):2250-2253.
    [159]Y. J. Kaufman and I. Koren. Smoke and Pollution Aerosol Effect on Cloud Cover. Science,2006,313(5787):655-658.
    [160]V. Ramanathan and G. Carmichael. Global and regional climate changes due to black carbon. Nature Geoscience,2008,1(4):221-227.
    [161]G. A. M. Neale, E. Coustan-Smith, P. Stow, Q. Pan, X. Chen, OH. Pui and D. Campana. Comparative analysis of flow cytometry and polymerase chain reaction for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia,2004, 18:934-938.
    [162]D. K. Wood, S.-H. Oh, S.-H. Lee, H. T. Soh and A. N. Cleland. High bandwidth radio frequency Coulter counter. Appl. Phys. Lett.,2005,87(18):184106.
    [163]S. M. Bezrukov, I. Vodyanoy and V. A. Parsegian. Counting polymers moving through a single ion channel. Nature,1994,370:279-281.
    [164]S. M. Bezrukov and I. Vodyanoy. Noise-induced enhancement of signal transduction across voltage-dependent ion channels. Nature,1995,378:362-364.
    [165]J. J. Kasianowicz, E. Brandin, D. Branton and D. W. Deamer. Characterization of individual polynucleotide molecules using a membrane channel. Proceedings of the National Academy of Sciences,1996,93(24):13770-13773.
    [166]Jeffrey D. Uram, Kevin Ke, Alan J. Hunt, et.al. Submicrometer Pore-Based Characterization and Quantification of Antibody-Virus Interactions. Small,2006, 2(8-9):967-972.
    [167]Jeffrey D. Uram, Kevin Ke, Alan J. Hunt, et. al. Label-free affinity assays by rapid detection of immune complexes in submicrometer pores. Angewandte Chemie International Edition,2006,45(14):2281-2285.
    [168]J. Li, M. Gershow, D. Stein, E. Brandin, and J. A. Golovchenko. DNA molecules and configurations in a solid-state nanopore. Nature Materials,2003,2:611-615.
    [169]J. E. Wharton, P. Jin, L. T. Sexton, L. P. Home, S. A. Sherrill, W. K. Mino and C. R. Martin. Template Synthesis of Carbon Nanotubes with Diamond-Shaped Cross Sections. Small,2007,3(10):1424-1430.
    [170]0. A. Saleh and L. L. Sohn. An artificial nanopore for molecular sensing. Nano Letter,2003,3(1):37-38.
    [171]N. Malmstadt, M. A. Nash, R. F. Purnell and J. J. Schmidt. Automated Formation of Lipid-Bilayer Membranes in a Microfluidic Device. Nano Letter,2006,6(9): 1961-1965.
    [172]W. L. Hwang, M. A. Holden, S. White and H. Bayley. Electrical Behavior of Droplet Interface Bilayer Networks:Experimental Analysis and Modeling. Journal of the American Chemistry Society,2007,129(51):11854-11864.
    [173]E. A. Heins, Z. S. Siwy, L. A. Baker and C. R. Martin. Detecting Single Porphyrin Molecules in a Conically Shaped Synthetic Nanopore. Nano Letter,2005,5(9): 1824-1829.
    [174]Li Sun, Richard M. Crooks. Studying Mass Transport through Nanoporous Materials. Journal of the American Chemistry Society,2000,122 (49):12340-12345.
    [175]Takashi Ito, Li Sun, and Richard M. Crooks. Simultaneous Determination of the Size and Surface Charge of Individual Nanoparticles Using a Carbon Nanotube-Based Coulter Counter. Analytical Chemistry,2003,75(10):2399-2406.
    [176]V. Linder, H. Wu, X. Jiang, and G. M. Whitesides. Rapid Prototyping of 2D Structures with Feature Sizes Larger than 8μm. Anal. Chem.2003,75(10):2522-2527.
    [177]Fig J, Zia T. A method for estimating viability of aquatic bacteria by slide culture. Journal of Applied Bacteriology,1982,53 (2):189-198.
    [178]杨国武,叶晓莲,张海煊.微菌落定量测定技术方法探讨.中国卫生检验杂志,1999,9(1):55-56.
    [179]许欣,裴晓方,赵亮.微菌落技术快速定量测定矿泉水中细菌总数的初步研究.预防医学情报杂志,2001,17(3):137-138.
    [180]赵国俊,范放.电阻抗法检测食品中的细菌总数与平板计数法的比较.食品工业科技,1998,14(2):63-65.
    [181]Haldane D J M, Damn M A S, Anderson J D. Improved biochemical screening procedure for small clinical laboratories for Vero (Shiga-like)-toxin-procducing strains of Escherichia Coli 0157:H7. Journal of General Microbiology,1986,24(4):652-654.
    [182]王新为.水和食品中卫生细菌的快速检测研究进展.中国公共卫生,2000,16(8):747-748.
    [183]方加灼,黄秀美,林丽卿.水质细菌检测两种方法的比较.海峡预防医学杂志,2002,8(3):60-61.
    [184]R. Irawan, C. M. Tay, S. C.Tjin and C. Y. Fu. Compact fluorescence detection using in-fiber microchannels-its potential for lab-on-a-chip applications. Lab on Chip,2006,6 (8):1095-1098.
    [185]L. Novak, P. Neuzil, J. Pipper, Y. Zhang and S. Lee. An integrated fluorescence detection system for lab-on-a-chip applications. Lab on Chip,2007,7(1):27-29.
    [186]I. Grabowska, M. Sajnoga, M. Juchniewicz, M. Chudy, A. Dybko and Z. Brzozka. Microfluidic system with electrochemical and optical detection. Microelectronic Engineering,2007,84(5-8):1741-1743.
    [187]X. Wu, C. Chon, Y. Kang, Y. Wang and D. Li. Simultaneous particle counting and detecting on a chip. Lab on Chip,2008,8(11):1943-1949.
    [188]D. P. Schrum, C. T. Culbertson, S. C. Jacobson, and J.M. Ramsey. Microchip Flow Cytometry Using Electrokinetic Focusing. Analytical Chemistry,1999, 71(19):4173-4177.
    [189]B. H. Lapizco-Encinas, B. A. Simmons, E. B. Cummings, Y. Fintschenko. Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Analytical Chemistry,2004,76(6):1571-1579.
    [190]Safonova TA., Aslamov IA, Basharina TN., Chenski AG., Vereschagin AL, Glyzina OY., Grachev MA. Cultivation and automatic counting of diatom algae cells in multi-well plastic plates. Diatom Research.2007,22(1):189-195.
    [191]Joachimsthal E. L., Ivanov V., Tay S. T. L and J.-H. Tay. Bacteriological examination of ballast water in Singapore Harbour by flow cytometry with FISH. Marine Pollution Bulletin.2004,49 (4):334-343.
    [192]Lloyd's Register. Ballast water treatment technology-Current status,2010.
    [193]Organization for Economic Cooperation and Development. Freshwater alga and cyanobacteria, growth inhibition test. Guideline 201,2006.
    [194]Chang, H., Kosari, F., Andreadakis, G., Alam, M. A., Vasmatzis, G., Bashir, R. 2004. DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels. Nano Letter,2004,4(8):1551-1556.
    [195]Fan, R., Karnik, R., Yue, M., Li, D., Majumdar, A., Yang, P. DNA translocation in inorganic nanotubes. Nano Letter,2005,5 (9):1633-1637.
    [196]Smeets, R. M. M., Keyser, U. F., Krapf, D., Wu, M.-Y., Dekker, N. H., Dekker C. Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Letter,2006,6(1):89-95.
    [197]Jagtiani, A. V., Zhe, J., Hu, J., Carletta, J. Detection and counting of micro-scale particles and pollen using a multi-aperture Coulter counter. Measurement Science and Technology,2006,17(7):1706-1714.
    [198]Zhe, J., Jagtiani, A., Dutta, P., Hu, J., Carletta, J. A micromachined high throughput Coulter counter for bioparticle detection and counting. Journal of Micromechanics and Microengineering,2007,17(2):304-313.
    [199]Dongyan Xu. Development of ultra-sensitive fluidic sensors and molecular dynamics studies of ion and water distribution in nanochannels:[Phd dissertation]. Vanderbilt University,2008.
    [200]Nadia M. Jesus-Perez, Blanca H. Lapizco-Encinas. Dielectrophoretic monitoring of microorganisms in environmental applications. Electrophoresis,2011,32(17): 2331-2357.
    [201]Klodzinska E and Buszewski B. Electrokinetic detection and characterization of intact microorganisms. Analytical Chemistry,2009,81(1):8-15.
    [202]Bi-Feng Liu, Bo Xu, Guisen Zhang, Wei Du, Qingming Luo. Micro-separation toward systems biology. Journal of Chromatography A,2006,1106(1-2):19-28.
    [203]Koubova V, Brynda E, Karasova L, Skvor J, Homola J, Dostalek J, Tobiska P, Rosicky J. Detection of foodborne pathogens using surface plasmon resonance biosensors. Sensors Actuator B-Chemical,2001,74(1-3):100-105.
    [204]Naravaneni R, Kaiser J. Rapid detection of food-borne pathogens by using molecular techniques. Journal of Medical Microbiology,2005,54(1):51-54.
    [205]Gascoyne, P. R. C. and Vykoukal, J. Particle separation by dielectrophoresis. Electrophoresis,2002,23(13):1973-1983.
    [206]Hughes, M. P. Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophoresis,23 (16):2569-2582.
    [207]Pohl, H. A., Hawk, I. Separation of living and dead cells by dielectrophoresis. Science,1966,152(3722):647-649.
    [208]Morgan H, Hughes MP, Green NG. Separation of submicron bioparticles by dielectrophoresis. Biophysical Journal,1999,77(1):516-525.
    [209]Hughes MP, Morgan H, Rixon FJ. Dielectrophoretic manipulation and characterization of herpes simplex virus-1 capsids. European Biophysics Journal With Biophysics Letters,2001,30(4):268-272.
    [210]Gadish, N., Voldman, J. Emergent behavior in particle-laden microfluidic systems informs strategies for improving cell and particle separations. Lab on chip,2011, 11(12):2071-2081.
    [211]Li H, Bashir R. Dielectrophoretic separation and manipulation of live and heat-treat cells of Listeria on microfabricated devices with interdigitated electrodes. Sensors Actuator B-Chemical,2002,86(2):215-221.
    [212]Markx GH, Dyda PA, Pethig R. Dielectrophoretic separation of bacteria using a conductivity gradient. Journal of Biotechnology,1996,51(2):175-180.
    [213]Lapizco Encinas, B.H., Simmons, B. A., Cummings, E. B., Fintschenko, Y. Insulator-Based Dielectrophoresis for the Selective Concentration and Separation of Live Bacteria in water. Analytical Chemistry,2004,76(6):1571-1579.
    [214]Yuejun Kang & Dongqing Li & Spyros A. Kalams & Josiane E. Eid. DC-Dielectrophoretic separation of biological cells by size. Biomedical Microdevices, 2008,10(2):243-249.
    [215]J. Suehiro, G. B. Zhou, M. Imamura, and M. Hara. Dielectrophoretic filter for separation and recovery of biological cells in water. IEEE Transactions on Industry Applications,2003,39(5):1514-1521.
    [216]Kang Y, Cetin B, Wu Z, Li D. Continuous Particle Separation With Localized AC-Dielectrophoresis Using Embedded Electrodes and an Insulating Hurdle. Electrochimica Acta,2009,54(6):1715-1720.
    [217]Gallo-Villanueva, RC; Jesus-Perez, NM; Martinez-Lopez, JI; et al. Assessment of microalgae viability employing insulator-based dielectrophoresis. Microfluidics and Nanofluidics,2011,10(6):1305-1315.
    [218]Soumya K. Srivastava & Aytug Gencoglu & Adrienne R. Minerick. DC insulator dielectrophoretic applications in microdevice technology:a review. Analytical and Bioanalytical Chemistry,2011,399(1):301-321.
    [219]Ermolina, I., Morgan, H. The electrokinetic properties of latex particles:comparison of electrophoresis and dielectrophoresis. Journal of Colloid and Interface Science,2005,285(1):419-428.
    [220]Sandra Ozuna-Chacon, Blanca H. Lapizco-Encinas, Marco Rito-Palomares, Sergio 0. Martinez-Chapa, Claudia Reyes-Betanzo. Performance characterization of an insulator-based dielectrophoretic microdevice. Electrophoresis,2008, 29(15):3115-3122.
    [221]Minerick AR. DC dielectrophoresis in lab-on-a-chip devices. In:Li D (ed) Encyclopedia of micro-and nanofluidics. Springer, Berlin,2008.
    [222]Keshavamurthy SS, Leonard KM, Burgess SC, Minerick AR. Direct current dielectrophoretic characterization of erythrocytes:positive ABO blood types. In: NSTI-Nanotech, Boston, MA,2008:401-404.
    [223]Xuan, X., Xu, Bo, Sinton, D., Li, D. Electroosmosis flow with joule heating effects. Lab on Chip,2004,4(3):230-236.
    [224]Erickson, D., Sinton, D., Li, D. Joule Heating and Heat Transfer in Poly(dimethylsiloxane) Microfluidic Systems. Lab on Chip,2003,3(3):141-149.
    [225]E. L. Carstensen, H. A. Cox, JR., W. B. Mercer, and L. A. Natale. Passive electrical properties of microorganisms I. conductivity of Escherichia coli and Micrococcus lysodeikticus. Biophysical Journal,1965,5 (3):289-300.
    [226]J. Yang, Y. Huang, X.-B. Wang, F. F. Becker, P. R. Gascoyne. Cell separation on microfabricated electrodes using dielectrophoretic/gravitational field-flow fractionation. Analytical Chemistry,1999,71 (5):911-91.
    [227]Ginzbuy M. Dunaliella:a green alga adapted to salt. Advances in Botanical Research,1987,14:93-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700