用户名: 密码: 验证码:
凤眼莲秸秆生物脱胶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凤眼莲(Eichhornia crassipes)在水体中的泛滥严重影响到了水生生态系统的生物多样性,并对人们的生产、生活、健康造成威胁,已被列为危害最严重的十大害草之一。如何对凤眼莲进行防治和资源化利用,已经越来越引起人们的关注。与其它植物秸秆类似,凤眼莲化学成分主要由纤维素、半纤维素和木质素组成。纤维素是自然界最重要的生物质资源之一。利用微生物手段分解掉凤眼莲成分中的非纤维素物质,即生物脱胶,得到较高纯度的纤维素,为纤维素的后续利用奠定基础,这将成为凤眼莲资源化利用新途径的重要内容。本课题从以下几个方面对凤眼莲秸秆生物脱胶进行了研究。
     1.凤眼莲化学成分含量的测定
     采用《苎麻化学成分含量测定方法GB5889-86》测定凤眼莲的化学成分表明,凤眼莲不同部位的各种化学成分含量不同。其中,凤眼莲叶中的腊脂质含量最高,果胶含量最低;茎的腊脂质含量最低,水溶物含量也最低;半纤维素在凤眼莲根中的含量最低,在叶中的含量最高,为52.94%;叶中的木质素含量最低,仅为12.65%;凤眼莲茎中的纤维素含量最高,为17.23%。
     2.凤眼莲脱胶菌的筛选和脱胶实验
     利用刚果红平板染色法从凤眼莲自身茎叶及其生长的池塘、南湖水中筛选出5株透明圈较大的菌株(A1、B1、B11、B3、B13),通过比较菌株分泌的果胶酶、木聚糖酶活性和脱胶率,确定A1菌为理想的凤眼莲脱胶菌。按接种量4%,在35℃,pH7.0,145 r/min振荡速度下发酵72h后,木聚糖酶和果胶酶活分别为72.69μg/mL·min,45.72μg/mL·min,脱胶率为31.89%。
     3.不同处理方法得到的凤眼莲纤维的红外光谱分析
     通过比较凤眼莲原料纤维、A1菌处理得到的纤维、碱化纤维这三种凤眼莲纤维的红外光谱后发现,经过A1菌发酵处理或碱化处理后,样品中的半纤维素和木质素成分与原料样品相比,大部分被降解掉或去除掉。碱化处理对于去除凤眼莲胶质(非纤维素物质)效果最为明显,但同时对凤眼莲纤维素的破坏也最大;A1菌处理凤眼莲茎纤维的结构变化介于原料纤维和碱化纤维之间。
     4.A1菌最佳脱胶条件的选择
     以凤眼莲作为脱胶培养基的碳源,根据不同的理化因子(包括氮源种类以及浓度、无机盐、温度、pH、接种量等),选择最佳发酵工艺。结果表明,凤眼莲脱胶菌A1的最佳脱胶培养基为:NH_4Cl 0.1%,KH_2PO_4 0.1%,MgSO_4·7H_2O 0.05%,pH7.5,接种量0.8%,35℃培养72h后,凤眼莲脱胶菌分泌的木聚糖酶活性达到75.05μg/mL·min,果胶酶活性达到63.51μg/mL·min,一次脱胶率达到33.37%。
The flooding of Eichhornia crassipes (E. crassipes) in water body had broken the biodiversity of aquatic ecosystem and threaten the human production, living and health. E. crassipes had been list as one of the ten kinds of harmful grass. How to control and utilize it as a kind of resource is attracting more and more attention. Similar to other plants, cellulose, hemicellulose and lignin are the main chemical constituents of this plant. Cellulose is the one of the main biomass resources. Microbial method can be used to remove noncellulose (called degumming) of this plant, to obtain high content cellulose, for further utilization of cellulose, it is important components for the new utilization approaches of E. crassipes. This paper on the Eichhornia crassipes's biological degumming included aspects as following.
     1. Determination of chemical composition contents of E. crassipes
     The determination of chemical composition contents of E. crassipes was conducted according to The Determination Method of Chemical Composition of Ramie GB5889-86. The results showed that the contents of different components are different in different parts of this plant. In the leaves, the content of lipid is the highest, pectin and lignin are all the lowest. In the stems, the contents of lipid and water soluble substances are all the lowest; the content of hemicellulose is the lowest in the roots, but highest in the leaves, being 52.94%. The lignin content in leaves, 12.65%, is the lowest. The cellulose content in stems is highest, being 17.23%.
     2. Screening of degumming strains of E. crassipes and degumming test
     Using congo red-broth agar plate to select five strains from the leaves and stems of plant, the ponds that E. crassipes grow near Lake Nanhu of Wuhan City. Through comparison of the activity of pectin and xylan, the degumming rate among these five strains, Al strain was determined as the ideal degumming strain of the E. crassipes. Under the condition of inoculation amount 4%, 35℃, pH 7.0, agitation speed 145 r/min, cultivating for 72 hours, the activity of pectin and xylan were 72.69μg/mL·min and 45.72μg/mL·min respectively, the degumming rate was 31.89%.
     3. FTIR analysis of the celluloses obtained by different methods
     The FTIR spectrum of raw fiber of E. crassipes, fiber treated by Al strain and alkali treated fiber were compared, the results indicated, the hemicellulose and lignin were mostly decomposed by two ways - treatment by A1 strain and alkalization by NaOH. The degumming efficiency of alkalization was most obvious, but the damage to cellulose was also largest. The structure change of plant treated by Al strain lied between that treated by alkali and raw material.
     4. Single factor screening experiments for optimum fermentation conditions of Al strain
     The screening experiments for optimum fermentation conditions of Al strain were conducted, using the plant as carbon source. The different factors for screening included form and concentration of nitrogen and, inorganic salt, temperature, and inoculation amount. The results indicated that the optimum degumming medium of Al strain was that NH_4Cl 0.1%, KH_2PO_4 0.1%, MgSO_4·7H_2O 0.05% and pH 7.5. After cultivating for 72 hours, the activity of pectin and xylan were75.05μg/mL·min and 63.51μg/mL·min, respectively, the degumming rate was 33.37%.
引文
1.白延坤,刘秉钺,何连芳.韧皮纤维生物脱胶的研究进展,造纸科学与技术.2006,25(2):34-38
    2.常杰,钱渭,康葛澄.水上移动式处理水葫芦的装置,CN1439775A,2003-09-03
    3.陈国符.植物纤维化学.北京:轻工出版社,1980,216-236
    4.陈峰,赵学慧,赵山.果胶分解菌的简便筛选方法.中国酿造,1998,3:32,37
    5.陈灿,孙焕良,彭源德,刘正初,冯湘沅,汤清明.南方亚麻微生物脱胶技术研究—2麻茎特性对亚麻脱胶效果的影响.中国麻作,2000,22(2):37-40
    6.丁义,褚建君.水葫芦的生物防治.杂草科学,2005,(3):1-5
    7.东秀珠,蔡妙英编.常见细菌系统鉴定手册.北京:科学出版社,2001
    8.董政娥,管映亭.一种野生麻纤维脱胶初探.印染助剂,2003,20(3):23-25
    9.傅筱冲,廖延雄,吴小琴,刘兰,宁超美,任婷娘.苎麻天然浸渍液中主要细菌的鉴定.江西科学,1999,17(1):18-22
    10.葛菁萍,凌宏志,赵丹,宋刚,平文祥.沤麻用果胶酶产生菌的选育及脱胶过程中的细菌种群的初步分析.黑龙江大学自然科学学报,2007,24(3):295-300
    11.韩光亭,张元明,冯勋伟,孙永军,刘彩明.罗布麻生物脱胶工艺模型探讨.纺织学报,2007,28(11):81-84
    12.胡开辉,李雪仙.红麻脱胶菌的筛选及其产酶条件.河南科技大学学报:自然科学版,2006,27(5):180-182
    13.黄和,方日明.标准胶加工废水加水葫芦厌氧处理的研究.中国沼气,1999,17(4):7-9,17
    14.黄小龙,孙焕良,李建军,谢达平.南方亚麻微生物脱胶技术及其理论研究Ⅰ亚麻天然水沤法脱胶动态过程的观测.中国麻业,2003a,25(1):38-41
    15.黄小龙,孙焕良,谢达平,彭杰,李建军,李小勇.南方亚麻微生物脱胶技术及其理论研究Ⅱ主要外界因子对果胶酶及其亚麻脱胶效果的影响.中国麻业,2003b,25(4):193-195
    16.黄小龙,孙焕良,谢达平,项伟,李建军.亚麻微生物脱胶菌种的筛选与鉴定.生物学杂志,2004,21(1):20-22
    17.黄小龙,孙焕良,谢达平,孟桂元.南方亚麻微生物脱胶技术及其理论研究Ⅳ酶法脱胶菌种的分离与鉴定.湖南农业大学学报(自然科学版),2004,30(1):14-16
    18.黄小龙,孙焕良,孟桂元,谢达平.南方亚麻微生物脱胶技术及其理论研究Ⅵ酶学特性及脱胶试验.湖南农业大学学报(自然科学版),2006,32(6):599-601
    19.江洁,刘晓兰,郑喜群,夏敬义.亚麻脱胶菌种的选育及脱胶过程的初步研究.微生物学通报,1998,25(3):150-153
    20.江洁,刘晓兰,李彩芹等.果胶酶活性分光光度测定方法的研究.齐齐哈尔大学学报,1998,14(1):62-66.
    21.蒋少军,李志忠.大麻纤维性能及生物酶脱胶工艺的研究.兰州理工大学学报,2005,31(2):70
    22.蒋少军,李志忠,张新璞.大麻纤维生物酶脱胶工艺分析.纺织科技进展,2007,(2):73
    23.蒋少军,张军成.果胶酶在大麻纤维脱胶中的应用.印染助剂,2007,24(8),41-42
    24.良梓.治理水葫芦专业机械河道割草机.农业装备技术,2004,30(1):44
    25.罗远莉,苎麻生物脱胶的研究.[硕士论文].重庆:重庆大学图书馆,2007
    26.马文静,张美云,房桂干.木聚糖酶的应用研究进展.江苏造纸,2008(1):20-24
    27.彭源德,刘正初,孙焕良,冯湘沅,冷鹃,胡镇修.南方亚麻微生物脱胶技术研究1外界因子对亚麻天然水浸沤麻的影响.中国麻作,1997,19(2)37-40
    28.彭源德,刘正初,冯湘沅,邓硕萍,胡镇修,段盛文,郑科.亚麻快速生物脱胶技术研究Ⅰ亚麻快速脱胶菌株的选育,中国麻业,2003,25(3):135-138
    29.彭源德.亚麻、大麻脱胶技术现状与发展趋势.中国麻业科学,2007,(29):89
    30.彭源德,刘正初,金关荣.亚蔴快速生物脱胶技术工厂化生产研究.中国农业科学,2005,38(4):849-853
    31.彭青林.水葫芦的开发利用.资源开发与利用,2003,19(1):32-33
    32.钱微君,陈海敏,陈建勇,冯新星,应飞祥.大麻韧皮果胶分解菌株的分离与鉴定.纺织学报,2006,27(11):52-54
    33.邱晔平,杨晓瑞,朱建良,陈晓晔.凤眼莲纤维素分解菌的筛选.纤维素科学与技术,2008,16(2):53-58
    34.沈明卫,都飞麟.水葫芦制作温室栽培苗钵的可行性研究.农业环境科学学报,2006,25(1):258-260
    35.谭支良,王久荣,潘亚飞.洞庭湖退田还湖区畜牧业资源与环境评估.长江流域资源与环境,2005,14(3):27-332
    36.王德骥.苎麻纤维素化学与工艺学-脱胶和改性.北京:科学出版社,1984
    37.王万贤,毕光扬,张光明.洞庭湖区药用植物资源及开发利用.长江流域资源与环境,1995,4(4):315-321
    38.王伟.产低温果胶酶菌株的筛选、发酵条件及酶学性质的研究.[硕士论文].新疆:新疆农业大学图书馆,2006
    39.温桂清,孙小寅.大麻生物酶-化学联合脱胶工艺研究.北京纺织,2001,22(6):19-21
    40.吴红玲,蒋少军,李志忠.罗布麻脱胶工艺的研究.兰州理工大学学报,2004,30(5):76-78
    41.吴丽艳,段继强,范志祥,杜威,梁雪妮,刘飞虎.亚麻脱胶菌的分离、筛选和鉴定.云南大学学报(自然科学版)2007,29(4):419-423
    42.徐祖信,高月霞,王晟.水葫芦资源化处置与综合利用研究述评.长江流域资源与环境,2008,17(2):102,202,302,402,502
    43.于莉莉,姜凤琴,季英超.汉麻温水沤法脱胶动态过程的观测.中国麻业科学,2007,29(1):35-37
    44.曾莹,向新柱.苎麻微生物脱胶菌株的筛选.纺织学报,2007,28(11):73-75
    45.张宁,童步章.酶在纺织工业中应用有利于环保.国外纺织技术,2003(5):40-42
    46.张树政.酶制剂工业.北京:科学出版社,1984,625-654
    47.赵友春,刘自熔.芽孢杆菌聚半乳糖醛酸酶的研究.山东大学学报(自然科学版),1992,27(4):474
    48.赵斌,何绍江.微生物学实验.北京:科学出版社,2002,141-159
    49.赵丹.甘露聚糖酶产生菌的分离、鉴定及产酶条件的研究.[硕士论文].黑龙江:黑龙江大学图书馆,2006
    50.郑喜群,刘晓兰,江洁.亚麻生物脱胶新方法及其比较.纺织学报,2001,22(4):31-33
    51.周文兵,谭良峰,刘大会,阎华,赵敏,朱端卫.凤眼莲及其资源化利用研究进展.华中农业大学学报,2005,24(4):423-428
    52.周岳溪,孔欣,郝丽芳.水葫芦加动物排泄物两相厌氧生物处置工艺.环境科学研究,1996,9(6):6-10.
    53.钟安华.苎麻生物脱胶研究.[硕士论文].武汉:华中师范大学图书馆,2004
    54.Bolenz S,Omran H,Gierschner K.Treatment of water hyacinth tissue to obtain useful products.Biological Wastes,1990,33(4):263-274
    55.Bruhlmann F,Leupin M,Erismann K H,Fiechter A.Enzymatic degumming of ramie bast fibers.Biotechnology,2000,76:43-50
    56.Casabianca M L,Laugier T,Posada F.Petroliferous wastewaters treatment with water hyacinths(Raffinerie de Provence,France):Experimental statement.Waste Management.1995,15(8):651-655
    57.Dobelmann J K.Method for purifying waste water and generating methane.Ger DE.1998,Appl.19:648,860
    58.Goswami T,Saikia C N.Water hyacinth-a potential source o f raw material for greaseproof paper.Bioresource Technology,1994,50(3):235-238
    59.Gutierrez A,del Rio J C,Jesinez M.The biotechnological control of pitch in paper pulp manufacturing.Trends in Biotechnology,2001,19(9):340-348
    60.Li W P,Wang J,Li W.Application of water hyacinth to the removal of heavy metals from electroplate waste water.Chin JEcol,1995,14(4):30-35
    61.Tan L F,Zhu D W,Zhou W B,Mi W J,Ma L X,He W T.Preferring cellulose of Eichhornia crassipes to prepare xanthogenate to other plant materials and its adsorption properties on copper.Bioresource Technology,2008,99(10):4460-4466
    62.Marie D C.Large-scare production of Eichhornia crassipes on paper industry effluent.Bioresource Technology,1995,54:35-38
    63.Ouazzani N,Bouhoum K,Mandi L,Bouarab,K,Habbari F,Rafiq B,Picot J,Schwartzbrod.Wasterwater treatment by stabilization pond:marrakesh experiment.Water Science and Technology,1995,31(12):75-80
    64.Parveen S,Feroza B,Hossain M.Production of biogas from cow dung by adding water hyacinth and mud.Bangladesh Journal of Scientific and Industrial Research,1998,33(3):369-372
    65.Peng P S,Chawakitchareon P,Krasinsri P.Removal of heavy metal ions by lignocellulosic-formaldehyde ion exchange resin produced from water hyacinth.Chula's Scientific Research Journals.1997,22(1):35-42
    66.Reeta D,Sooknah,Ann C Wilkie.Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater.Ecological Engineering,2004,22:27-42
    67.Sarwar M,Masood M K,Ali M.Determination of K,Na,and calcium in various wild plants and agricultural wasts.Forensic Scien International,1989,1(3):182-184
    68.Thomas T H,Eden R D.Water hyacinth -a major neglected resource.Material Science,Wind Energy,Biomass Technology,1990,(3):2092-2096
    69.Wang G,Fuerstenau M C,Smith R W.Sorption of heavy metals onto noliving water hyacinth root.Miner.Process.Mxtr Metal Rev,1998,19(1-4):309-322
    70.Yu H,Kawshima A M,Konoshima H.Water purification function and use as fertilizer of water hyacinth(Eichhornia crassipes).Shizen Kagaku,2000,50:55-60
    71.Zhu J,Zhu X.Treatment and utilization of wastewater in the Beijing Zoo by an aquatic macrophyte system.Ecological Engineering,1998,11:101-110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700