用户名: 密码: 验证码:
甘蓝型油菜基因组中开花期QTL的检测和分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开花是高等植物由营养生长向生殖生长转变的标志之一,决定着植物的有性生殖。适时开花以避开不利外界环境,是植物得以繁衍的前提,也是决定作物能否获得丰收的优良农艺性状。植物的开花是由多基因所控制的各种生理生化代谢途径所决定的,是复杂的数量性状,同时也受各种外界环境因素的调节,其中温度和光照是关键的环境因子。油菜是重要的油料作物,根据开花是否需要低温春化,分为冬油菜和春油菜两种类型。人们对油菜开花的机制知之甚少,对决定油菜冬、春性分化的机制更不得而知。
     甘蓝型冬油菜品种Tapidor和半冬性油菜品种Ningyou7对低温春化需求不同。本实验室以这两个品种为亲本构建了TN DH群体并在9个冬油菜环境下种植了该群体。实验室还在TN DH群体基础上衍生了RC-F_2群体。本论文报告了用TN DH群体做的两年春油菜开花试验,分析整理了DH群体和RC-F_2群体多年多点共13个冬油菜实验的开花期数据;用100个MS-AFLP分子标记参与构建了含352个标记的初级的TN遗传连锁图,在此基础上整合了230个SSR标记,构建了含621个标记的高密度TN遗传连锁图;利用高密度图谱上229个有DNA序列信息的标记与拟南芥基因组进行了电子比对作图(in silico mapping),在TN遗传图谱上定位了40个共线性区段和84个保守岛;然后采用QTL分析软件WinQTLcart2.5、QTLmapper2.0进行油菜开花期QTL及互作位点的检测和遗传效应分析,目的是在基因组水平上构建甘蓝型油菜开花性状的基因网络图。
     研究结果表明,在所有冬油菜环境中群体植株的开花期均表现超亲分离,证实TN DN群体的开花期为数量性状。为了充分揭示数量性状的多基因特征,本文不仅综合分析了两个群体13个冬、春油菜环境中在显著水平上(P=0.05)检测出的开花期QTL(称为显著水平QTL,significant level QTL,SL-QTL),还将效应较小、显著性程度较低(0.5<P<0.05)但能重复检测到的QTL鉴别为微效真实QTL(micro-realQTL,MR-QTL)。结果共检测到42个开花期QTL,其中包括36个SL-QTL和6个MR-QTL。这42个QTL中,过半的QTL仅能在冬油菜种植环境检测到,其中第16连锁群上的一个QTL簇对冬油菜环境开花早晚有决定性作用。仅有1个QTL能在春油菜环境条件下检测到,为春油菜环境特异QTL。另外还检测到了63个互作对。通过电子比对,将拟南芥120个开花基因的548个同源基因定位到TN遗传图谱上,发现其中27%和9%的同源基因被分别定位到油菜开花期QTL置信区间和互作位点的标记区间,它们在很大程度上代表着油菜相应区间的开花功能基因。由此,一个由上百个QTL、互作位点和区间功能基因构成的甘蓝型油菜开花调控网络图初步形成。它不仅为进一步研究油菜开花性状提供了坚实的基础,同时为其它复杂农艺性状的解析拓宽了研究思路。
     为了进一步检验QTL定位的准确性和电子比对定位功能基因的可靠性,也为了为油菜的遗传改良提供重要的基因资源,本文对TN DH群体中表现春油菜环境特异性的主效应QTL作了较深入的解析。该QTL位于N10连锁群上,命名为qFT10-4。它在缺乏春化的环境条件下解释群体开花期变异(方差)的52%,而在越冬的冬油菜条件下对群体植株开花期表型变化无贡献。前人在拟南芥中已经揭示了开花的春化途径,而本试验开展的比较基因组学分析表明,春化途径中的关键抑制基因FLC在拟南芥基因组中所处的位置,正对应于qFT10-4的置信区间。
     以TN DH群体两亲本之一Tapidor中FLC的同源序列为探针与TN DH群体的总DNA进行Southern杂交,结果将FLC的一个RFLP多态性标记定位到TN遗传图谱上,正位于qFF10-4置信区间的峰值处,于是将该区间的同源FLC基因命名为BnFLC10。从双亲中分离出BnFLC10的长4.5kb的基因组序列,发现等位基因的第一个内含子中存在着三处碱基的差异。根据其中两个差异位点设计等位基因特异性的PCR引物M1和M2,对用半冬性油菜品种Ningyou7为轮回亲本、BnFLC10为目标基因构建的BC_3F_2群体,在春油菜环境下进行开花期表型和基因型的分析。卡方测验表明开花期表型分离符合3:1的分离比(晚花或不开花:早花),同时基因型与表型共分离,表明BnFLC10为春油菜环境中控制TN DH群体开花早晚的主效基因。基因表达实验发现春化确实能使BnFLC10的表达下降,春化前BnFLC10的基因表达量在亲本Ningyou7中居于春油菜品种和冬油菜品种之间,冬油菜亲本Tapidor及其它冬油菜品种的表达量最高。对73个不同来源的油菜品种资源进行BnFLC10与油菜冬春性关联分析,结果M2扩增位点的多态性与开花早晚所表现的冬春性表型相关达到极显著水平(P=0.007)。这些研究均表明qFT10-4的候选基因BnFLC10为控制油菜品种冬、春性分化的关键基因。
     本论文提出了三个进一步研究课题:1.微效真实QTL的证实及QTL检测体系的改进;2.油菜冬、春性分化关键基因BnFLC10决定油菜种性的分子机理;3.冬油菜环境特异开花期QTL簇的解析。
Flowering is the symbol of the transition from vegetative to reproductive stage for plants,and it's a determining factor for sexual reproduction of plant.Flowering in time can make plants avoid bad environments,such as harsh winters or hot summers,to get good harvest.Flowering of plants is not only regulated by multiple endogenous genetic factors,also controlled by complex environmental factors.Temperature and light are the most two important environmental factors.Rapeseed is an important oil plants and flowering time is both an important agronomical and a complex quantitative trait. Rapeseeds can be divided into two types,the winter annuals and the spring annuals, according to the requirement of vernalization or not.Until now it's known a little about the mechanism of controlling flowering time and differentiation of the winter- and spring-typed cultivars in Brassica napus.
     The winter-typed B.napus variety Tapidor and the semi-winter typed variety Ningyou7 have different requirement for vernalization.A DH population named with TN DH population was constructed with these two varieties,and a RC-F2 population was constructed based on TN DH population in our lab.The field trial of one location in two years for spring environments was designed and the flowering time data was investigated. Besides the data,the flowering time data of 9 winter environments of TN DH population and 2 winter environments of RC-F_2 population were collected.About one hundred methylation sensitive AFLP markers were added to the TN basic linkage map which including 352 markers.Besides that,about 230 SSR markers were collected and a high density linkage map including 621 markers was constructed by using the software joinmap3.0.After that,229 markers with known DNA sequence information were used as anchored markers to do comparative mapping between TN linkage map and the genome of Arabidopsis.There were 40 synteny blocks and 84 islands were mapped to TN linkage map by using in silico mapping analysis.Then,QTL mapping analysis and epistatic interaction detection were done by using the softwares WinQTLcart2.5 and QTLmapper2.0.The aim of the study was to construct a genetic network controlling flowering time in B.napus.
     Transgressive segregation of flowering time was found in all the environments and it showed that flowering time of TN DH population was a quantitative trait.In order to fully discover the characters of the flowering time trait,two types of QTL were collected.One type is the QTL attached to the significant level(P=0.05) in each of the 13 different environments for the two populations,the other type is the MR-QTL(Micro-real QTL) with small effect under low significant level(0.5<P<0.05) while could be repeatedly deteced in two or more environments.Totally there were 42 unique flowering time QTL detected,including 6 MR-QTL.Among the QTL,there were 55%of the QTL could only be detected in the winter-cropped environments,and one QTL could only be deteced in the spring-cropped environments,which showed that it was a spring-cropped environment specific QTL.Sixty-three interacting loci pairs were detected.Five hundred and forty-eight homolougous genes representing 120 flowering time genes of Arabidopsis were mapped to TN linkage map by in silico mapping analysis.Among these genes,there were 27%and 9%mapped to the QTL regions and the marker interval of interacting loci pairs.To a large extent,these homologous genes represented the flowering functional genes of the QTL regions in B.napus.Therefore,the genetic network of flowering time composed of hundreds of QTL,interacting loci pairs and the functional genes of the regions in B.napus was constructed.It not only provided the further research basis of the flowering time in B.napus,also provided the research clues for dissecting other complex agronomical traits.
     In order to certify the accuracy of QTL mapping results and the reliability of the mapped functional genes by in silico mapping analysis,meanwhile provide the important genetic resources for genetic improvement for rapeseed,the spring-cropped environment specific QTL was further analyzed.
     This QTL was located on N10 linkage group and named as qFT10-4.It could explain the 52%of phenotypic variation in the spring-cropped environments,while it could not be detected in any of the winter-cropped environment.Former researches have discoved the vernalization pathway controlling the flowering time in Arabidopsis.The comparative mapping analysis in this study showed that the position of the key gene FLC in the vernalization pathway was homologous to the confidence interval of qFT10-4.The probe designed according to the homologous sequence of FLC in one of the parent Tapidor was hybrized with the total genomic DNA of TN DH population.As a result,the RFLP maker of the gene was mapped to the peak of the QTL region.So the gene located in N10 linkage group was named as BnFLC10.
     The genomic sequence of the BnFLC10 alleles of the two parents in TN DH population was isolated and they were about 4.5kb long.There were only three differences existing in the region of intron 1 and the gene specific primers M1 and M2 were designed according to the two differences.The primers were used to analyze the genotype of BC_3F_2 population with the recurrent parent Ningyou7 and harboring the target gene BnFLC10.The flowering time data was also surveyed in spring-cropped environment.The Chi-square analysis showed that the ratio of flowering time was fit to the ratio of 3:1(late flowering or not flowering:early flowering).The genotype of all the early flowering plants was consistent with the early flowering parent Ningyou7.These results showed that BnFLC10 was the major gene controlling the flowering time in TN DH population.Gene expression experiment result showed that vernalization could repress the gene expression of BnFLC10.The gene expression amount was stronger in winter-typed cultivar Tapidor than that in spring-type under the same condition,and the gene expression amount of semi-winter cultivar Ningyou7 was in the middle. Seventy-three different cultivars were used to do association mapping alaysis of the BnFLC10 by using the primers M1 and M2.The polymorphic marker of M2 showed significant relative to the flowering time(P=0.007).All the above results showed that the candidate gene BnFLC10 of the QTL qFT10-4 was the key gene and controlling the differentiation of the winter- and spring-typed rapeseed.
     Three aspects of research work are listed in the last section of the thesis.They are as follows:1.Certification of MR-QTL and the improvement of QTL detecting system;2. Dissecting the mechanism of BnFLC10 regulates the differentiation of winter- and spring-typed rapeseed;3.Dissecting the winter-cropped environment specific QTL cluster.
引文
1.蔡长春,陈宝元,傅廷栋,涂金星.甘蓝型油菜开花期和光周期敏感性的遗传分析.作物学报,2007,33:345-348
    2.陈青,朱军,吴吉祥.陆地棉(Gossypium hirsutum L.)不同铃期单株成铃数和籽棉产量的遗传动态分析.浙江农业大学学报,1999,25:155-160
    3.管荣展,盖钧镒.甘蓝型油菜杂种优势及其与亲本配合力和亲本系数间的关系.中国油料作物学报,1997,20:11-15
    4.孔繁玲.植物数量遗传学.北京:中国农业大学出版社,2006,379-387
    5.李雪华,李新海,郝转芳,田清震,张世煌.干旱条件下玉米耐早相关性状的OTL—致性图谱构建.中国农业科学,2005,38:882-890
    6.刘后利.实用油菜栽培学.上海:上海科学技术出版社,1985,128-145
    7.戚存扣,盖钧镒.不同遗传来源甘蓝型油菜开花期的基因型差异和遗传效应分析.作物学报,2002,28:455-460
    8.邱丹.甘蓝型油菜DH作图群体的构建和重要农艺性状及品质性状的QTL分析.[博士学位论文].武汉:华中农业大学图书馆,2006
    9.萨姆布鲁克,D.W.拉塞尔.分子克隆实验指南(第三版).黄培堂等译.北京:科学出版社,2002,96-99
    10.温永仙,朱军.综合性状及其分量的多元条件分析.遗传学报,2005,32-289-296
    11.吴为人,李维明,卢浩然.基于最小二乘估计的数量性状基因座的复合区间定位法.福建农业大学学报,1996,25:394-399
    12.杨小红,严建兵,郑艳萍,余建明,李建生.植物数量性状关联分析研究进展.作物学报,2007,33:523-530
    13.赵坚义,Becker H C,丁厚栋,张尧锋,张冬青,Ecke W.应用中国和欧洲油菜建立的双二倍体群体对3个重要农艺性状的QTL定位以及与环境的互作分析.遗传学报,2005,32:969-978
    14.Arabidopsis Genome Initiative.Analysis of the genome of the flowering plant Arabidopsis thaliana.Nature,2000,408:796-815
    15.Arondel V,Lemieux B,Hwang I,Gibson S,Goodman H M,Somerville C R.Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis.Science,1992,258:1353-1355
    16.Axelsson T,Shavorskaya O,Lagercrantz U.Multiple flowering time QTLs within several Brassica species could be the result of duplicated copies of one ancestral gene.Genome,2001,44:856-864
    17.Babula D,Kaczmarek M,Barakat A,Delseny M,Quiros C F,Sadowski J.Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana:Complexity of the comparative map.Mol Genet Genomics,2003,268:656-665
    18.Baggett J R,Kean D.Inheritance of annual flowering in Brassica oleracea.HortScience,1989,24:662-664
    19.Bassam B J,Anolles G C,Gresshoff P M.Fast and sensitive silver staining of DNA in polyacrylamide geis.Anal Biochem,1991,196:80-83
    20.Basten C J,Weir B S,Zeng Z B.Zmap—a QTL cartographer.In:Smith C,Gavora J S,Benkel B,Chesnais J,Fairfull W,Gibson J P,Kennedy B W,Burnside E B.eds.,Proceedings of the 5th World Congress on Genetics Applied to Livestock Production:Computing Strategies and Software.Guelph,Ontario,Canada:The Organizing Committee,5th World Congress on Genetics Applied to Livestock Production,1994,22:65-66
    21.Baum D A,Yoon H S,Oldham R L.Molecular evolution of the transcription factor LEAFY in Brassicaceae.Mol Philo Evol,2005,37:1-4
    22.Blazquez M A,Green R,Nilsson O,Sussman M R,Weigel D.Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter.Plant Cell,1998,10:791-800
    23.Bohuon E J R,Ramsay L D,Craft J A,Arthur A E,Marshall D F,Lydiate D J,Kearsey M J.The association of flowering time quantitative trait loci with duplicated regions and candidate loci in Brassica oleracea.Genetics,1998,150:393-401
    24.Butruille D V,Guries R P,Osborn T C.Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L.Genetics,1999,153:949-964
    25.Camargo L E A,Osborn T C.Mapping loci controlling flowering time in Brassica oleracea.Theor Appl Genet,1996,92:610-616
    26.Cardon L R,Bell J I.Association study designs for complex diseases.Nat Rev Genet,2001,2:91-99
    27.Carlborg O,Haley C S.Epistasis:too often neglected in complex trait studies? Nat Rev Genet,2004,5:618-625
    28. Cavell A C, Lydiate D J, Parkin I A, Dean C, Trick M. Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome, 1998,41:62-69
    
    29. Chandler J, Martinez-Zapater J M, Dean C. Mutations causing defects in the biosynthesis and response to gibberellins, abscisic acid and phytochrome B do not inhibit vernalization in Arabidopsis fca-1. Planta, 2000, 210: 677-682
    
    30. Chardon F, Virlon B, Moreau L. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics, 2004,168:2169-2185
    
    31. Cheverud J M, Routman E J. Epistasis and its contribution to genetic variance components. Genetics, 1995,139:1455-1461
    
    32. Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994,138:963-971
    
    33. Clark R M, Wagler T N, Quijada P, Doebley J. A distant upstream enhancer at the maize domestication gene tbl has pleiotropic effects on plant and inflorescent architecture. Nat Genet, 2006,38:594-597
    
    34. Coles J P, Phillips A L, Croker S J, Garcra-Lepe R, Lewis M J, Hedden P. Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J, 1999,17:547-556
    
    35. Collins F S, Brooks L D, Chakravart A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res, 1998,8:1229-1231
    
    36. Coulson A, Sulston J, Brenner S, Karn J. Toward a physical map of the genome of the Nematode Caenorhabditis elegans. Proc NatlAcad Sci, 1986,83: 7821-7825
    
    37. Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu J E, Deschamps M. Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet, 2006,113: 1331-1345
    
    38. Detjen L R. A preliminary report on cabbage breeding. Proc Am Soc Hort Sci, 1926, 23: 325-332
    
    39. Dickson M H. Eight newly described genes in broccoli. Proc Am Soc Hort Sci, 1968, 93: 356
    
    40. Doerge R W, Churchill G A. Permutation tests for multiple loci affecting a quantitative character. Genetics, 1996,142: 285-294
    
    41. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehdl, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1.Genes and Development,2004,18:926-936
    42.Doyle J J,Doyle J L.Isolation of plant DHA from fresh tissue.Focus,1990,12:13-15
    43.Eshed Y,Zamir D.Less-than-additive epistatic interactions of quantitative trait loci in tomato.Genetics,1996,143:1807-1817
    44.Ferreira M E,Satagopan J,Yandell B S,Williams P H,Osborn T C.Mapping loci controlling vernalization requirement and flowering time in Brassica napus.Theor Appl Genet,1995,90:727-732
    45.Flint J,Valdar W,Shifman S,Mott R.Strategies for mapping and cloning quantitative trait genes in rodents.Nat Rev Genet,2005,7:271-286
    46.Frary A,Nesbitt T C,Frary A,Grandillo S,Knaap E,Cong B,Liu J,Meller J,Elber R,Alpert K B,Tanksley S D.fw2.2:a quantitative trait locus key to the evolution of tomato fruit size.Science,2000,289:85-88
    47.Fujimoto D,Shi Y,Christian D,Mantanguihan J B,Lcung H.Tagging quantitative loci controlling pathogenicity in Magnaporthe grisea by insertional mutagenesis.Physiological and Molecular Plant Pathology,2002,61:77-88
    48.Gendall A R,Levy Y Y,Wilson A,Dean C.The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis.Cell,2001,107:525-535
    49.Gilliand L U,Magallanes-Lundback M,Hemming C,Supplee A,Koorneef M,Bentsink L,DellaPenna D.Genetic basis for natural variation in seed vitamin E levels in Arabidopsis thaliana.Proc Natl Acad Sci USA,2006,103:18834-18841
    50.Giraudat J,Hauge B M,Valon C,Smalle J,Parcy S F,Goodman H M.Isolation of the Arabidopsis ABI3 gene by positional cloning.Plant cell,1992,4:1251-1261
    51.Gocal G F,Sheldon C C,Gubler F,Moritz T,Bagnall D J,MacMillan C P,Li S F,Parish R W,Dennis E S,Weigel D,King R W.GAMYB-like genes,flowering,and gibberellin signaling in Arabidopsis.Plant Physiol,2001,127:1682-1693
    52.Grant I,Beversdorf W D.Heterosis and combining ability estimates in spring rape(Brasica napus).Can J Genet Cytol,1985,27:472-478
    53.Guo B,Sleper D A,Lu P,Shannon J G,Nguyen H T,Arelli P R.QTLs Associated with Resistance to Soybean Cyst Nematode in Soybean:Meta-Analysis of QTL Locations.Crop Sci,2006,46:595-602
    54.Hallauer A R,Miranda J B.1988 Quantitative genetics in maize breeding.2nd edn.Iowa Stale University Press,Ames
    55.Hayama R,Coupland G.Shedding light on the circadian clock and the photoperiodic control of flowering.Curr Opin Plant Biol,2003,6:13-19
    56.He Y,Michaels S,Amasino R M.Regulation of flowering time by histone acetylation in Arabidopsis.Science,2003,302:1751-1754
    57.Holland J B.Genetic architecture of complex traits in plants.Curr Opin Plant Biol,2007,10:156-161
    58.Howell E C,Armstrong S J,Barker G C,Jones G H,King G J.Physical organization of the major duplication on Brassica oleracea chromosome O6 revealed through fluorescence in situ hybridization with Arabidopsis and Brassica BAC probes.Genome,2005,48:1093-1103
    59.Huang S,Raman A S,Ream J E,Fujiwara H,Cerny R E,Brown S M.Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis.Plant Physiol,1998,118:773-781
    60.Imaizumi T,Tran H G,Swartz T E,Briggs W R,Kay S A.FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis.Nature,2003,426:302-306
    61.International Rice Genome Sequencing Project.The map-based sequence of the rice genome.Nature,2005,436:793-800
    62.Ishimaru K,Ono K,Kashiwagi T.Identification of a new gene controlling plant height in rice using the candidate-gene strategy.Planta,2004,218:388-395
    63.Izawa T,Oikawa T,Tokutomi S,Okuno K,Shimamoto K.Phytochromes confer the photoperiodic control of flowering in rice(a short-day plant).Plant J,2000,22:391-399
    64.Izawa T,Takahashiy Y,Yano M.Comparative biology comes into bloom:genomic and genetic comparison of flowering pathways in rice and Arabidopsis.Curr Opin Plant Biol,2003,6:113-120
    65.Jansen R C.Interval mapping of multiple quantitative trait loci.Genetics,1993,135:205-211
    66.Johanson U,West J,Lister C,Michaels S,Amasino R,Dean C.Molecular analysis of FRIGIDA,a major determinant of natural variation in Arabidopsis flowering time.Science,2000,290:344-347
    67.Kao C H,Zeng Z B,Teasdale R D.Multiple interval mapping for quantitative trait loci.Genetics,1999,152:1203-1216
    68.Kardailsky I,Shukla V K,Ahn J H,Dagenais N,Christensen S K,Nguyen J T,Chory J,Harrison M J,Weigel D.Activation tagging of the floral inducer FT.Science,1999,286:1962-1965
    69.Kennard W C,Slocum M K,Figdore S S,Osborn T C.Genetic analysis of morphological variation in Brassica oleracea using molecular markers.Theor Appl Genet,1994,87:721-732
    70.Kim J Y,Song H R,Taylor B L,Carre I A.Light-regulated translation mediates gated induction of the Arabidopsis clock protein LHY.EMBO J,2003,22:935-944
    71.Kim S Y,Park B S,Kwon S J,Kim J,Lira M H,Park Y D,Kim DY,Suh S C,Jin Y M,Ahn J H,Lee Y H.Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C(FLC) homologs isolated from Chinese cabbage(Brassica rapa L.ssp pekinensis).Plant Cell Rep,2007,26:327-336
    72.Kobayashi Y,Kaya H,Goto K,Iwabuchi M,Araki T.A pair of related genes with antagonistic roles in mediating flowering signals.Science,1999,286:1960-1962
    73.Kojima S,Takahashi Y,Kobayasbi Y,Monna L,Sasaki T,Araki T,Yano M.Hd3a,a rice ortholog of the Arabidopsis FT Gene,promotes transition to flowering downstream of Hd1 under short-day conditions.Plant Cell Physiol,2002,43:1096-1105
    74.Kole C,Quijada P,Michaels S D,Amasino R M,Osborn T C.Evidence for homology of flowering-time genes VFR2 from Brassica rapa and FLC from Arabidopsis thaliana.Theor Appl Genet,2001,102:425-430
    75.Konishi S,Izawa T,Lin S Y,Ebana K,Fukuta Y,Sasaki T,Yano M.An SNP caused loss of seed shattering during rice domestication.Science,2006,312:1392-1396
    76.Koornneef M,Alonso-Blanco C,Blankestijn-de Vries H,Hanhart C J,Peeters A J.Genetic interactions among late-flowering mutants of Arabidopsis.Genetics,1998,148:885-892
    77.Kowalski S P,Lan T H,Feldmann K A,Paterson A H.Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization.Genetics,1994,138:499-510
    78.Kroymann J,Mithell-olds T.Epistasis and balanced polymorphism influencing complex trait variation.Nature,2005,435:95-98
    79.Lagercrantz U,Putterill J,Coupland G,Lydiate D J.Comparative mapping in Arabidopsis and Brassica,fine scale genome collinearity and congruence of genes controlling flowering time.Plant J,1996,9:13-20
    80.Lagercrantz U.Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements.Genetics,1998,50:1217-1228
    81.Lagercrantz U,Axelsson T.Rapid evolution of the family of CONSTANS LIKE genes in plants. Mol Biol Evol,2000,17:1499-1507
    82.Lagercrantz U,Lydiate D.RFLP mapping in Brassica nigra indicates differing recombination rates in male and female meiosis.Genome,2000,38:255-264
    83.Lan T H,Paterson A H.Comparative mapping of quantitative trait loci sculpting the curd of Brassica oleracea.Genetics,2000,155:1927-1954
    84.Lander E S,Botstein D.Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps.Genetics,1989,121:185-199
    85.Lander E S,Green P,Abrahamson J,Barlow A,Daly M J,Lincoln S E,Newburg L.MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations.Genomics,1987,1:174-181
    86.Lander E S,Kruglyak L.Genetic dissection of complex traits guidelines for interpreting and reporting linkage results.Nat Genet,1995,11:241-247
    87.Langridge J.Effect of day-length and gibberellic acid on flowering of Arabidopsis.Nature,1957,180:36-37
    88.Lee I,Aukerman M J,Gore S L,Lohman K N,Michaels S D,Weaver L M,John M C,Feldmann K A,Amasino R M.Isolation of LUMINIDEPENDENS:A gene involved in the control of flowering time in Arabidopsis.Plant Cell,1994,6:75-83
    89.Lee I,Michaels S D,Masshardt A S,Amasino R M.The late-flowering phenotype of FRIGIDA and LUMINIDEPENDENS is suppressed in the Landsberg erecta strain of Arabidopsis.Plant J,1994,6:903-909
    90.Lee J H,Park S H,Lee J S,Ahn J H.A conserved role of SHORT VEGETATIVE PHASE(SVP)in controlling flowering time of Brassica plants.Biochimica et Biophysica Acta,2007,1769:455-461
    91.Levy Y Y,Mesnage S,Mylne J S,Gendall A R,Dean C.Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control.Science,2002,297:243-246
    92.Li Z K,Yu S B,Lafitte H R,Huang N,Courtois B,Hittalmani S,Vijayakumar C H M,Liu G F,Wang G C,Shashidhar H E,Zhuang J Y,Zheng K L,Singh V P,Sidhu J S,Srivantaneeyakul S,Khush G S.QTL × environment interactions in rice.I.Heading date and plant height.Theor Appl Genet,2003,108:141-153
    93.Li Z,Pinson S R,Park W D,Paterson A H,Stansel J W.Epistasis for three grain yield components in rice(Oryza sativa L.).Genetics,1997,145:453-465
    94.Lin S I,Wang J G,Poon S Y,Su C I,Wang S S,Chiou T J.Differential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and Arabidopdsis.Plant Physiol,2005,137:1037-1048
    95.Lincoln S,Daly M,Lander E.Mapping genes controlling quantitative traits with MAPMAKER/QTL 1.1.Whitehead Institute Technical Report.2~(nd) edition,1992
    96.Louder O,Saliba-Colombani V,Camilleri C,Calenge F,Gaudon V,Koprivova A,North K A,Kopriva S,Daniel-Vedele F.Natural variation for sulfate content in Arabidopsis thaliana is highly controlled by APR2.Nat Genet,2007,39:896-900
    97.Lukens L,Zou F,Lydiate D,Parkin I A,Osborn T C.Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana.Genetics,2003,164:359-372
    98.Lysak M A,Berr A,Pecinka A,Schmidt R,McBreen K,Schubert I.Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species.Proc Natl Acad Sci,2006,103:5224-5229
    99.Macknight R,Duroux M,Laurie R,Dijkwel P,Simpson G,Dean C.Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA.Plant Cell,2002,14:877-888
    100.Martynov V V,Khavkin E E.Polymorphism of the CONSTANS gene in Brassica plants.Russian Journal of Plant Physiology,2005,52:242-248
    101.Mather K.Variation and selection of polygenic characters.J Genet,1941,41:159-193
    102.Mauricio R.Mapping quantitative trait loci in plants:uses and caveats for evolutionary biology.Nat Rev Genet,2001,2:370-381
    103.Michaels S,Amasino R M.FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering.Plant Cell,1999,11:949-956
    104.Millar A J.A suite of photoreceptors entrains the plant circadian clock.J Biol Rhythms,2003,18:217-226
    105.Monna L,Lin H X,Kojima S,Sasaki T,Yano M.Genetic dissection of a genomic region for a quantitative trait locus,Hd3,into two loci,Hd3a and Hd3b,controlling heading date in rice.Theor Appl Genet,2002,104:772-778
    106.Monna L,Miyao A,lnoue T,Fukuoka S,Yamazaki M,Zhong H S,Sasaki T,Minobe Y.Determination of RAPD markers in rice and their conversion into sequence tagged sites(STS)and STS-specific primers.DNA Research,1994,1:139-148
    107.Montooth K L,Marden J H,Clark A G.Mapping determinants of variation in energy metabolism,respiration and flight in Drosophila.Genetics,2003,165:623-635
    108.Moon J,Suh S S,Lee H,Choi K R,Hong C B,Paek N C,Kim S G,Lee I.The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis.Plant J,2003,35:613-623
    109.Nilsson O,Lee I,Blazquez M A,Weigel D.Flowering time genes modulate the response to LEAFY activity.Genetics,1998,150:403-410
    110.Okazaki K,Sakamoto K,Kikuchi R,Saito A,Togashi E,Kuginuki Y,Matsumoto S,Hirai M.Mapping and characterization of FLC homologs and QTL analysis of flowering time in Brassica oleracea.Theor Appl Genet,2007,114:595-608
    111.Osborn T C,Kole C,Pakin I A P,Sharpe A G,Kuiper M,Lydiate D J,Trick M.Comparison of flowering time genes in Brassica rapa,B.napus and Arabidopsis thaliana.Genetics,1997,146:1123-1129
    112.Osborn T C,Lukens L.The molecular genetic basis of flowering time variation in Brassica species.In:Nagata T,Lorz H,Widholm J M eds.,Biotechnology in Agriculture and Forestry.In:Nagata T,Tabata S eds.,Brassicas and Legumes:from Gene Structure to Breeding,edited by Springer-Verlag,Berlin.2003,52:69-86
    113.Osterberg K M,Shavorskaya O,Lascoux M,Lagercrantz U.Naturally occurring indel variation in the B.nigra COL1 gene is associated with variation in flowering time.Genetics,2002,161:299-306
    114.Parkin I A P,Gulden S M,Sharpe A G,Lukens L,Trick M,Osborn T C,Lydiate D J.Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana.Genetics,2005,171:765-781
    115.Parkin I A P,Lydiate D J,Trick M.Assessing the level of collinearity between Arabidopsis thaliana and Brassica napus for A.thaliana chromosome 5.Genome,2002,45:356-366
    116.Paterson A H,Lander E S,Hewitt J D,Peterson S,Lincoln S E,Tanksley S D.Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms.Nature,1988,335:721-726
    117.Pennisi E.The greening of plant genomics.Science,2007,317:317
    118.Poethig R S.Phase change and the regulation of developmental timing in plants.Science,2003,301:334-336
    119.Putterill J,Laurie R,Macknight R.It's time to flower:the genetic control of flowering time.BioEssays,2004,26:363-373
    120.Putterill J,Robson F,Lee K,Simon R,Coupland G.The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors.Cell,1995,80:847-857
    121.Qnesada V,Macknight R,Dean C,Simpson G G.Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time.EMBO J,2003,22:3142-3152
    122.Rae A M,Howell E C,Kearsey M J.More QTL for flowering time revealed by substitution lines in Brassica oleracea.Heredity,1999,83:586-596
    123.Rafalski J A,Tingey S V.Genetic diagnostics in plant breeding:RAPDs,microsatellite and machines.Trends Genet,1993,9:275-280
    124.Raman R,Raman H,Johnstone K,Lisle C,Smith A,Matin P,Allen H.Genetic and in silico comparative mapping of the polyphenol oxidase gene in bread wheat(Triticum aestivum L.)Functional and Integrative Genomics,2005,4:185-200
    125.Razi H,Howell E C,Newbury H J,Kearsey M J.Does sequence polymorphism of FLC paralogues underlie flowering time QTL in Brassica oleracea? Theor Appl Genet,2007,10.1007/s00122-007-0657-3
    126.Reeves P H,Coupland G.Analysis of flowering time control in Arabidopsis by comparison of double and triple mutants.Plant Physiol,2001,126:1085-1091
    127.Reyna-LoA pez GE,Simpson J,Ruiz-Herrera J.Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms.Mol Gen Genet,1997,253:703-710
    128.Robert L S,Robson F,Sharpe A,Lydiate D,Coupland G.Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus.Plant Molecular Biology,1998,37:763-772
    129.Rong J k,Feltus F A,Waghmare V N,Pierce G J,Chee P W,Draye X,Saranga Y,Wright R J,Wilkins T A,May O L,Smith C W,Gannaway J R,Wendel J F,Paterson A H.Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development.Genetics,176:2577-2588
    130.Ryder C D,Smith L B,Teakle G R,King G J.Contrasting genome organization:two regions of the Brassica oleracea genome compared with collinear regions of the Arabidopsis thaliana genome.Genome,2001,44:808-817
    131. Salvi S, Tuberosa R. To clone or not to clone plant QTLs: present and future challenges. Trends in Plant Science, 2005,10: 297-304.
    
    132. SAS Institute, 1999: SAS Online Doc (R), version 8.0, Cary, IVC, USA
    
    133. Schranz M E, Lysak M A, Mitchell-Olds T. The ABC's of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends in Plant Science, 2006, 11: 535-542
    
    134. Schuler T J, Hutcheson D S, Downey R K. Heterosis in intervarietal hybrids of summer turnip rape in western Canada. Can J Plant Sci, 1991,72:127-136
    
    135. Sernyk J L, Stefanssion B R. Heterosis in summer rape (Brassica napus). Can J Plant Sci, 1983, 63: 407-413
    
    136. Sheldon C C, Burn J E, Perez P P, Metzger J, Edwards J A, Peacock W J, Dennis E S. The FLF MADS box gene: A repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell, 1999,11:445-458
    
    137. Shimomura K, Low-Zeddies S S, King D P,Steeves T D L, Whiteley A, Kushla J, ZemenidesPD, Lin A, Vitaterna M H, Churchill G A, Takahashi J S. Genome-wide epistatic interaction analysis reveals complex genetic determinants of circadian behavior in mice. Genome Res, 2001, 11: 959-980
    
    138. Simko I, Costanzo S, Haynes K G, Christ B J, Jones R W. Linkage disequilibrium mapping of a Verticillium dahliae resistance quantitative trait locus in tetraploid potato (Solanum tuberosum) through a candidate gene approach. TheorAppl Genet, 2004,108: 217-224
    
    139. Sjodin P, Hedman H, Shavorskaya O, Finet C, Lascoux M, Lagercrantz U. Recent degeneration of an old duplicated flowering time gene in Brassica nigra. Heredity, 2007,98: 375-384
    
    140. Smith L B, King G J. The distribution of BoCAL-a alleles in Brassica oleracea is consistent with a genetic model for curd development and domestication of the cauliflower. Mol Breed, 2000,6: 603-613
    
    141. Song K,Slocum M K,Osborn TC. Molecular marker analysis of genes controlling morphological variation in Brassica rapa (syn. campestris). Theor Appl Genet, 1995, 90: 1-10
    
    142. Sung S, Amasino R M. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature, 2004, 427: 159-164
    
    143. Suwabe K, Iketani H, Nunome T, Kage T, Hirai M. Isolation and characterization of microsatellites in Brassica rapa L. TheorAppl Genet, 2002, 104: 1092-1098
    
    144. Tadege M, Sheldon C C, Helliwell C A, Stoutjesdijk P, Dennis E S, Peacock W J. Control of flowering time by FLC orthologues in Brassica napus.The Plant J,2001,28:545-553
    145.Takahashi Y,Shomura A,Sasaki T,Yano M.Hd6,a rice quantitative trait locus involved in photoperiod sensitivity,encodes the a subunit of protein kinase CK2.Proc Nat Acad Sci,2001,98:7922-7927
    146.Teutonico R A,Osborn T C.Mapping loci controlling vernalization requirement in Brassica rapa.Theor Appl Genet,1995,91:1279-1283
    147.Teutonico R A,Osborn T C.Mapping of RFLP and qualitative trait loci in Brassica rapa and comparison to the linkage maps of Brassica napus,Brassica oleracea,and Arabidopsis thaliana.Theor Appl Genet,1994,89:885-894
    148.Thomson M J,Edwards J D,Septiningsih E M,Harrington S E,S R.McCouch.Substitution mapping of dth1.1,a flowering-time quantitative trait locus(QTL) associated with transgressive variation in rice,reveals multiple sub-QTL.Genetics,2006,172:2501-2514
    149.Town C D,Cheung F,Maiti R,Crabtree J,Haas B J,Wortman J R,Hine E E,Althoff R,Arbogast T S,Tallon L J,Vigouroux M,Trick M,Bancroft I.Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss,fragmentation,and dispersal after polyploidy.Plant Cell,2006,18,1348-1359
    150.Tuskan G A,DiFazio S,Jansen S,Bohlmann J,Grigoriev I,Hellsten U,Putnam N,Ralph S,Rombauts S,Salamov A,Schein J,Sterck L,Aerts A,Bhalerao R R,Bhalerao R P,Blaudez D,Boerjan W,Brun A,Brunner A,Busov V et al.The genome of black cottonwood,Populus trichocarpa(Torr.& Gray).Science,2006,313:1596-1604
    151.Udall J A,Ouijada P A,lambert B,Osborn T C.Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed(Brassica napus L.):2.Identification of alleles from unadapted germplasm.Theor Appl Genet,2006,113:597-609
    152.Utz H F,Melchinger A E.PLABQTL:A program for composite interval mapping of QTL.Journal of Agricultural Genomics,1996,2:1-5
    153.Valdar W,Solberg L C,Gauguier D,Burnett S,Klenerman P,Cookson W O,Taylor M S,Rawlins J N P,Mott R,Flint J.Genome-wide genetic association of complex traits in heterogeneous stock mice.Nat Genet,2006,38:879-887
    154.Van Ooijen J W,Maliepaard C,2004.MapOT~R 5,Software for the mapping of quantitative trait loci in experimental populations.Kyazma B V,Wageningen,Netherlands
    155.Vuylsteke M,Mank R,Antonise R,Bastiaans E,Senior M L,Stuber C W,Melchinger A E, Lubberstedt T,Xia X C,Stam P,Zabeau M,Kuiper M.Two high-density AFLP~(?) linkage maps of Zea mays L:analysis of distribution of AFLP markers.Theor Appl Genet,1999:921-935
    156.Wang D L,Zhu J,Li Z K,Paterson A H.Mapping QTLs with epistatic effects and QTL ×environment interactions by mixed linear model approaches.Theor Appl Genet,1999,99:1255-1264
    157.Wang H,Nussbaum-Wagler T,Li B,Zhao Q,Vigouroux Y,Failer M,Bomblies-Yant K,Lukens L,Doebley J.The origin of the naked grains of maize.Nature,2005,436:714-719
    158.Wang S C,Bastern J,Zeng Z B.2006 Windows QTL Cartographer 2.5.Department of Statistics,North Carolina State University,Raleigh,NC.(http://statgen.ncsu.edu/qtlcart/WQTLCart.htm).
    159.Williams J G,Kubelik A R,Livak K J,Rafalski J A,Tingey S V.DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.Nuc Acids Res,1990,18:6531-6535
    160.Wilson L M,Whitt S R,Ibanez A M,Rocheford T R,Goodman M M,Buckler E S IV.Dissection of maize kernel composition and starch production by candidate gene association.The Plant Cell,2004,16:2719-2733
    161.Wilson R N,Heckman J W,Somerville C R.Gibberellin is required for flowering in Arabidopsis thaliana under short days.Plant Physiol,1992,100:403-408
    162.Xu F S,Wang Y H,Meng J L Mapping boron efficiency gene(s) in Brassica napus using RFLP a nd AFLP markers.Plant Breeding,2001,120:319-324
    163.Yan J Q,Zhu J,He C X,Benmoussa M,Wu P.Molecular dissection of developmental behavior of plant height in rice(Oryza sativa L.).Genetics,1998a,150:1257-1265
    164.Yah J O,Zhu J,He C X,Benmoussa M,Wu P.Quantitative trait loci analysis for developmental behavior of tiller number in rice(Oryza sativa L.).Theor Appl Genet,1998b,97:267-274
    165.Yan L,Fu D,Li C,Blechl A,Tranquilli G,Bonafede M,Sanchez A,Valarik M,Yasuda S,Dubcovsky J.The wheat and barley vernalization gene VRN3 is an orthologue of FT.Proc Nat Acad Sci,2006,103:51:19581-19586
    166.Yan L,Loukoianov A,Blechl A,Tranquilli G,Ram akrishna W,SanM iguel P,Bennetzen J L,Echenique V,Dubcovsky J.The wheat VRN2 gene is a flowering repressor downregulated by vernalization.Science,2004,303:1640-1644
    167.Yan L,Loukoianov A,Tranquilli G,Helguera M,Fahima T,Dubcovsky J.Positional cloning of the wheat vernalization gene VRN1.Proc Nat Acad Sci,2003,100:6263-6268
    168.Yang T J,Kim J S,Kwon S J,Lim K B,Choi B S,Kim J A,Jin M,Park J Y,Lim M H,Kim H I, Lim Y P,Kang J J,Hong J H,Kim C B,Bhak J,Bancroft I,Parka B S.Sequence-Level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa.The Plant Cell,2006,18:1339-1347
    169.Yano M,Katayose Y,Ashikari M,Yamanouchi U,Monna L,Fuse T,Baba T,Yamamoto K,Umehara Y,Nagamura Y,Sasaki T.Hd1,a major photoperiod sensitivity quantitative trait locus in rice,is closely related to the Arabidopsis flowering time gene CONSTANS.Plant Cell,2000,12:2473-2483
    170.Yu S B,Li J X,Xu C G,Tan Y F,Gao Y J,Li X H,Zhang Q F,Maroof M A S.Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid.Proc Nat Acad Sci,1997,94:9226-9231
    171.Zaman M W.Introgression in Brassica napus for adaptation to the growing condition in Bangladesh.Theor Appl Genet,1989,77:721-728
    172.Zeng Z B.Precision mapping of quantitative trait loci.Genetics,1994,136:1457-1468
    173.Zeng Z B.Theoretical basis for separation of multiple linked gene effects in mapping of quantitative trait loci.Proc Natl Acad Sci,1993,90:10972-10976
    174.Zhao J Y,Becker H C,Zhang D Q,Zhang Y F,Ecke W.Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield.Theor Appl Genet,2006,113:33-38
    175.Zhao J,Becker H C,Zhang D,Zhang Y,Wolfgang E.Oil Content in a European-Chinese Rapeseed Population:QTL with additive and epistatic effects and their genotype-environment interactions.Crop Sci,2005,45:51-59
    176.Zhu J,Weirs B S.Mixed model approaches for genetic analysis of quantitative traits,in:Chen L S,Ruan S G,Zhu J eds.,Advanced topics in biomathematics proceedings of international conference on mathematical biology.Singapore:World Scientific Publishing Co,1998,321-330
    177.Zhu J.Analysis of conditional genetic effects and variance components in developmental genetics.Genetics,1995,141:1633-1639
    178.Zhuang J Y,Fan Y Y,Ran Z M,Wu J L,Xia Y W,Zheng K L.Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice.Theor Appl Genet,2002,105:1137-1145
    179.Ziolkowski P A,Kaczmarek M,Babula D,Sadowski J.Genome evolution in Arabidopsis/Brassica:conservation and divergence of ancient rearranged segments and their breakpoints.Plant J,2006,47:63-74
    180.Van Berloo R.GGT:software for the display of graphical genotypes.J Hered,1999,90:328-329

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700