用户名: 密码: 验证码:
森林革蜱种群生态及希伯来花蜱卵蜡层抑菌分子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用野外可控及模拟实验调查了河北省自然条件下森林革蜱Dermacentor silvarum生活史各发育阶段的生物学特性。在蜱类分布的自然生境中建立可控样方,自然光照和气候条件下,森林革蜱D. silvarum幼蜱、若蜱和成蜱在兔体吸血,非寄生阶段在可控样方内自由生活,记录其各发育阶段生活史参数并观察找寻宿主行为及季节发生情况。结果表明雌蜱具有行为滞育,且其产卵时间及卵的孵化都具有一致性,从而使自然条件森林革蜱D. silvarum主要活跃在2月下旬至9月上旬。森林革蜱D. silvarum雌蜱可在3月、4月和5月饱血,不同月份饱血的雌蜱其产卵前期和卵的孵化期差异极大,进而使其生活史周期也存在较大差异。自然条件下幼蜱(18天)和若蜱(29天)的发育历期与实验室条件下无明显差异。雌蜱饱血体重与产卵量相关(r = 0.76, p < 0.001),其在3月、4月和5月的生殖效率指数分别为5.7、7.1和6.2。自然条件下,森林革蜱D. silvarum雌蜱产卵方式与实验室条件下有很大不同。
     在此基础上,进一步调查了自然条件下寄生期及非寄生期森林革蜱D. silvarum的季节发生数量及动态。结果表明,森林革蜱D. silvarum主要在灌丛滋生,一年仅能完成一个世代,其生活史各阶段季节发生具有连续性,仅幼蜱和若蜱的活动存在部分交叉。成蜱主要活跃在2月下旬到5月下旬,高峰出现在4月中旬;幼蜱在6月上旬至9月上旬活动,高峰出现在7月中旬;若蜱主要分布在6月下旬至9月下旬,高峰在8月中旬。森林革蜱D. silvarum成蜱和若蜱主要侵袭羊体耳部,幼蜱不能在羊体寄生。10月后,在羊体发现部分越冬雄蜱寄生,但拖旗法未能捕获自由生活成蜱。
     测定了希伯来花蜱Amblyomma hebraeum卵及卵蜡层提取物的抑菌活性及抑菌谱,结果表明,希伯来花蜱A. hebraeum卵能够抑制革兰氏阴性菌生长,卵蜡层有机相和水相提取物抑制革兰氏阳性菌的生长。有机相提取物中主要为胆固醇酯以及碳链长度为13到26的脂肪酸。脂类分馏和气相色谱/质谱结果进一步表明,有机相提取物中,不饱和脂肪酸C16:1和C18:2存在抑菌活性。水相提取物与有机相提取物的组成存在差别,且水相提取物具有极强的热稳定性、pH稳定性及蛋白酶稳定性。核磁共振分析测定了36种代谢物,结果表明,其均不具有抑菌活性,因此,水相提取物中发挥抑菌活性的物质还需进一步分离纯化。
In this study, we investigated the life cycle and biological characteristics of all developmental stages of Dermacentor silvarum under field conditions in Hebei province in North China. Larvae, nymphs and adults were fed on rabbits, and maintained under natural lighting and climate conditions. Ticks were released into a confined plot located in natural tick habitat, and we observed the host questing behavior and seasonal occurrence. Due to a behavioral diapause in females and the synchronization of oviposition and larval hatching, D. silvarum only active from late February to early September under field conditions. The duration of the life cycle of D. silvarum was highly variable due to different preovipositional and egg hatching periods for ticks engorging in March, April or May. The developmental periods of larvae (18 days) and nymphs (29 days) under field conditions were similar to those under laboratory conditions. Moreover, there was a significant correlation between engorged body weight of females and egg masses laid (r = 0.76, p < 0.001). The female reproductive efficiency index (REI) in March, April and May was 5.7, 7.1 and 6.2, respectively. Finally, we also observed different ovipositional patterns between females that engorged in the field and those that engorged under laboratory conditions.
     Studies on seasonal abundance and activity of D. silvarum of larvae, nymphs and adults both on and off the host were carried out in northern China. Results of this study suggested that the ticks mainly reside in shrubs, and can only complete one generation per year with a sequential seasonal distribution, and little overlap between the activity of the larvae and nymphs. Adults were most prevalent from late February to late May with a peak in number in the middle of April; the larvae were found from early June to early September with a peak in the middle of July, while the nymphs were mainly distributed from late June to late September with peak in the middle of August. Adult and nymphal D. silvarum were found primarily on the ears of the sheep, but no larvae were found on sheep. Additionally, an overwintering male adults population was detected on sheep after October, but no free-living adults were found by dragging.
     Antimicrobial activity and spectrum of both eggs of the tick Amblyomma hebraeum and egg wax extract was investigated in the current work, results showed that eggs can inhibit the growth of Gram-negative bacteria, and the egg wax extract including both the organic and aqueous phase can only function against Gram-positive bacteria. Lipid class and fatty acid composition of the organic extract of the egg wax was analysed by High-performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS), cholesterol esters was the most abundant lipid followed by fatty acids with chain lengths between C13 to C26. After lipid fractionation and GC/MS, free fatty acids, especially unsaturated fatty acids C16:1 and C18:2 were found to account for the antimicrobial activity in the organic extract of the egg wax. Antimicrobial substances contained in the aqueous extract of the egg wax were different from that in the organic extract, with extremely heat resistant, pH stability and proteinase stability. Although 36 metabolites were identified in the aqueous extract by Nuclear Magnetic Resonance (NMR) analysis, they were proved to contribute no effect on the antimicrobial activity in the aquoues extract. This suggests that the functional substances in the aqueous extract renains unclear, and the antibacterial activity changes following wax extraction remains unexplainable.
引文
[1]Chen Z, Yang X, Bu F, et al. Ticks (Acari: Ixodoidea: Argasidae, Ixodidae) of China[J]. Experimental and Applied Acarology, 2010, 1-12.
    [2]邓国藩,姜在阶.中国经济昆虫志,第39册,蜱螨亚纲硬蜱科[M].北京:科学出版社, 1991.
    [3]Jongejan F, Uilenberg G. The global importance of ticks[J]. Parasitology, 2004, 129(Supplement): 3-14.
    [4]Norval R, Andrew H R, Yunker C E, et al. Biological processes in the epidemiology of heartwater[J]. Tick Vector Biology: Medical and Veterinary Aspects. Springer, London. 1992, 71-86.
    [5]于心,叶瑞玉,龚正达.新疆蜱类志[M].新疆科技卫生出版社, 1997.
    [6]Oorebeek M, Kleindorfer S. Climate or host availability: what determines the seasonal abundance of ticks?[J]. Parasitology Research, 2008, 103(4): 871-875.
    [7]Steen N A, Barker S C, Alewood P F. Proteins in the saliva of the Ixodida (ticks): pharmacological features and biological significance[J]. Toxicon, 2006, 47(1): 1-20.
    [8]Stewart R L, Tammariello S P, Fielden L J, et al. Winter-exposed Amblyomma americanum and Dermacentor variabilis adults (Acari: Ixodidae) do not exhibit behavioral diapause[J]. International Journal of Acarology, 1998, 24(1): 81-85.
    [9]Petney T N, Kolonin G V, Robbins R G. Southeast Asian ticks (Acari: Ixodida): a historical perspective[J]. Parasitology Research, 2007, 101: 201-205.
    [10]Rasulov I. Ticks status in Central Asia with a special emphasis on Uzbekistan[J]. Parasitology Research, 2007, 101:183-186.
    [11]Aydin L, Bakirci S. Geographical distribution of ticks in Turkey[J]. Parasitology Research, 2007, 101: 163-166.
    [12]Soneshine D E. Biology of Ticks, Vol. 2[M]. Oxford University Press, New York, 1993.
    [13]Kolonin G V. Mammals as hosts of Ixodid ticks (Acarina, Ixodidae)[J]. Entomological Review, 2007, 87(4): 401-412.
    [14]Randolph S E. Tick ecology: processes and patterns behind the epidemiological risk posed by ixodid ticks as vectors[J]. Parasitology, 2004, 129(Supplement): 37-65.
    [15]Cortinas M R, Guerra M A, Jones C J, et al. Detection, characterization, and prediction of tick-borne disease foci[J]. International Journal of Medical Microbiology, 2002, 291: 11-20.
    [16]Sonenshine D E. Biology of ticks. Vol. 1[M]. Oxford University Press, New York, 1991.
    [17]Vassallo M, Paul R, Perez-Eid C. Temporal distribution of the annual nymphal stock of Ixodes ricinus ticks[J]. Experimental and Applied Acarology, 2000, 24(12): 941-949.
    [18]Guglielmone A A, Mangold A J, Garcia M D. The life cycle of Amblyomma parvum Aragao, 1908 (Acari: Ixodidae) under laboratory conditions[J]. Experimental and Applied Acarology, 1991, 13(2): 129-136.
    [19]Kuhnert F, Diehl P A, Guerin P M. The life-cycle of the bont tick Amblyomma hebraeum in vitro[J]. International journal for parasitology, 1995, 25(8): 887-896.
    [20]Dautel H, Knülle W. Life cycle and seaonal development of postembryonic Argas reflexus (Acari: Argasidae) at two thermally different locations in Central Europe[J]. Experimental and Applied Acarology, 1997, 21(10): 697-712.
    [21]Banks C W, Oliver J H, Phillips J B, et al. Life cycle of Ixodes minor (Acari: Ixodidae) in the laboratory[J].Journal of medical entomology, 1998, 35(4): 496-499.
    [22]Banks C W, Oliver J H, Hopla C E, et al. Laboratory life cycle of Ixodes woodi (Acari: Ixodidae)[J]. Journal of Medical Entomology, 1998, 35 (2): 177-179.
    [23]Aguirre D H, Vinabal A E, Guglielmone A A. The life cycle of Amblyomma neumanni Ribaga, 1902 (Acari: Ixodidae) in the laboratory[J]. Experimental and Applied Acarology, 1999, 23(2): 159-164.
    [24]Van Der Lingen F J, Fourie L J, Kok D J, et al. Biology of Ixodes rubicundus ticks under laboratory conditions: observations on oviposition and egg development[J]. Experimental and Applied Acarology, 1999, 23(6): 513-522.
    [25]Labruna M B, Leite R C, Faccini J L H, et al. Life cycle of the tick Haemaphysalis leporis-palustris (Acari: Ixodidae) under laboratory conditions[J]. Experimental and Applied Acarology, 2000, 24(9): 683-694.
    [26]Schumaker T T S, Labruna M B, Abel I D S, et al. Life cycle of Ixodes (Ixodes) loricatus (Acari: Ixodidae) under laboratory conditions[J]. Journal of Medical Entomology, 2000, 37(5): 714-720.
    [27]Yeruham I, Hadani A, Galker F. The life cycle of Rhipicephalus bursa Canestrini and Fanzago, 1877 (Acarina: Ixodidae) under laboratory conditions[J]. Veterinary Parasitology, 2000, 89(1-2): 109-116.
    [28]Frenot Y, De Oliveira E, Gauthier-Clerc M, et al. Life cycle of the tick Ixodes uriae in penguin colonies: relationships with host breeding activity[J].InternationalJournal for Parasitology, 2001, 31(10): 1040- 1047.
    [29]Liu J, Liu Z, Zhang Y, et al. Biology of Dermacentor silvarum (Acari: Ixodidae) under laboratory conditions[J]. Experimental and Applied Acarology, 2005, 36(1): 131-138.
    [30]刘敬泽,姜在阶.实验室条件下长角血蜱的生物学特性研究[J].昆虫学报, 1998, 41(3): 280-283.
    [31]巴音查汗,岳城.实验条件下森林革蜱生活史观察[J].地方病通报, 2001, 16(2): 74-77.
    [32]冯玉明,张晓雪.实验室条件下全沟硬蜱生活史观察[J].地方病通报, 2002, 17(1): 67-69.
    [33]刘光远,宋建国.麻点璃眼蜱生活史的研究[J].中国兽医科技, 2002, 32(3): 14-15.
    [34]袁改玲,殷宏.青海血蜱生活史的观察[J].中国兽医科技, 2002, 32(4): 10-11.
    [35]Chen Z, Yu Z, Yang X, et al. The life cycle of Hyalomma asiaticum kozlovi Olenev, 1931 (Acari: Ixodidae) under laboratory conditions[J]. Veterinary Parasi- tology, 2009, 160(1-2): 134-137.
    [36]Sieberz J, Gothe R. Modus operandi of oviposition in Dermacentor reticulatus (Acari: Ixodidae)[J]. Experimental and Applied Acarology, 2000, 24(1): 63-76.
    [37]Pfeifer R. On the ecology of Argas (Persicargas) walkerae Kaiser & Hoogstraal, 1969.[D]. Tier rztlichen Fakult t, Ludwig-Maximilians- Universitat, München., 1990.
    [38]Oliver Jr J H. Biology and systematics of ticks (Acari: Ixodida) [J]. Annual Review of Ecology and Systematics, 1989, 20: 397-430.
    [39]Hoogstraal H, Aeschlimann A. Tick-host specificity[J]. Bullrtin Society Entom- ology. Suisse, 1982, 55: 5-32.
    [40]Islam M K, Alim M A, Tsuji N, et al. An investigation into the distribution, host-preference and population density of ixodid ticks affecting domestic animals in Bangladesh[J]. Tropical Animal Health and Production, 2006, 38(6): 485-490.
    [41]周金林.蜱的功能分子研究及其应用前景[J].动物医学进展, 2004, 25(1): 53-56.
    [42]Estrada Pe A A, Martinez J M, Sanchez Acedo C, et al. Phenology of the tick, Ixodes ricinus, in its southern distribution range (central Spain)[J]. Medical and Veterinary Entomology, 2004, 18(4): 387-397.
    [43]Okello-Onen J, Tukahirwa E M, Perry B D, et al. Population dynamics of tickson indigenous cattle in a pastoral dry to semi-arid rangeland zone of Uganda[J]. Experimental and Applied Acarology, 1999, 23(1): 79-88.
    [44]Magano S R, Els D A, Chown S L. Feeding patterns of immature stages of Hyalomma truncatum and Hyalomma marginatum rufipes on different hosts[J]. Experimental and Applied Acarology, 2000, 24(4): 301-313.
    [45]Tatchell R J, Araman S F, Boctor F N. Biochemical and physiological studies of certain ticks (ixodoidea)[J]. Parasitology Research, 1972, 39(4): 345-350.
    [46]Du Toit J S, Fourie L J, Horak I G. Detachment rhythms of immature Ixodes rubicundus from their natural host, the rock elephant shrew (Elephantulus myurus)[J]. The Onderstepoort Journal of Veterinary Research, 1994, 61(2): 149-154.
    [47]Mohammed A S, Elmalik Khitma H, Hassan S M. Drop off rhythm and survival periods of Amblyomma lepidum (Acari: Ixodidae) under field conditions[J]. Experimental and Applied Acarology, 2005, 36(3): 225-232.
    [48]Yeruham I, Hadani A, Galker F, et al. The daily distribution and circadian rhythm of detachment of engorged Rhipicephalus bursa ticks from lambs and rabbits[J]. Medical and Veterinary Entomology, 1995, 9(4): 445- 447.
    [49]丁熙成,殷佩云.湖南省城步县南山牧场长角血蜱的发育史观察[J].中国兽医科技, 1996, 26(4): 7-9.
    [50]Oliveira P R, Borges L, Leite R C, et al. Seasonal dynamics of the Cayenne tick, Amblyomma cajennense on horses in Brazil[J]. Medical and Veterinary Entomology, 2003, 17(4): 412-416.
    [51]Tomassone L, Camicas J L, Pagani P, et al. Monthly dynamics of ticks (Acari: Ixodida) infesting N'Dama cattle in the Republic of Guinea[J]. Experimental and Applied Acarology, 2004, 32(3): 209-218.
    [52]Ros R, Pugliese A.Effects of tick population dynamics and host densities on the persistence of tick-borne infections[J]. Mathematical Biosciences, 2007, 208(1): 216-240.
    [53]Norman R, Bowers R G, Begon M, et al. Persistence of tick-borne virus in the presence of multiple host species: tick reservoirs and parasite mediated competition[J]. Journal of Theoretical Biology, 1999, 200(1): 111-118.
    [54]Ghosh M, Pugliese A. Seasonal population dynamics of ticks, and its influence on infection transmission: a semi-discrete approach[J]. Bulletin of Mathematical Biology, 2004, 66(6): 1659-1684.
    [55]Awerbuch-Friedlander T, Levins R, Predescu M. The role of seasonality in the dynamics of deer tick populations[J]. Bulletin of Mathematical Biology, 2005, 67(3): 467-486.
    [56]RosàR, Pugliese A, Ghosh M, et al. Temporal variation of Ixodes ricinus intensity on the rodent host Apodemus flavicollis in relation to local climate and host dynamics[J]. Vector-borne and Zoonotic Diseases, 2007, 7(3): 285-295.
    [57]Kostal V, Shimada K, Hayakawa Y. Induction and development of winter larval diapause in a drosophilid fly, Chymomyza costata[J]. Journal of Insect Physiology, 2000, 46(4): 417-428.
    [58]Dorr B, Gothe R. Cold-Hardiness of Dermacentor Marginatus (Acari: Ixodidae) [J]. Experimental and Applied Acarology, 2001, 25(2): 151-169.
    [59]Solomon G, Kaaya G P. Development, reproductive capacity and survival of Amblyomma variegatum and Boophilus decoloratus in relation to host resistance and climatic factors under field conditions[J]. Veterinary parasitology, 1998, 75(2-3): 241-253.
    [60]Fujimoto K. Comparison of the cold hardiness of Ixodes nipponensis and I. persulcatus (Acari: Ixodidae) in relation to the distribution patterns of both species in the Chichibu Mountains[J]. Japanese Journal of Sanitary Zoology, 1994, 45: 333-337.
    [61]D Rr B, Gothe R. Cold-hardiness of Dermacentor marginatus (Acari: Ixodidae)[J]. Experimental and Applied Acarology, 2001, 25(2): 151-169.
    [62]Lee Jr R E, Baust J G. Cold-hardiness in the antarctic tick, Ixodes uriae[J]. Physiological Zoology, 1987, 60(4): 499-506.
    [63]Dautel H, Knülle W. Cold hardiness, supercooling ability and causes of low-temperature mortality in the soft tick, Argas reflexus, and the hard tick, Ixodes ricinus (Acari: Ixodoidea) from Central Europe[J]. Journal of Insect Physiology, 1997, 43(9): 843-854.
    [64]Berkvens D L, Young A S, Pegram R G. Collaborative research on behavioral diapause’s in adult Rhipicephalus appendiculatus population[J]. Proceeding of a Joint OAU, FAO, and ILRAD Malawi, 1994, 25-28.
    [65]徐卫华.昆虫滞育的研究进展[J].昆虫学报, 1999, 42(1): 100-107.
    [66]Pegram R G, Banda D S. Ecology and phenology of cattle ticks in Zambia: development and survival of free-living stages[J]. Experimental and Applied Acarology, 1990, 8(4): 291-301.
    [67]Madder M, Speybroeck N, Brandt J, et al. Geographic variation in diapause response of adult Rhipicephalus appendiculatus ticks[J]. Experimental and Applied Acarology, 2002, 27(3): 209-221.
    [68]姜在阶.蜱类的滞育现象[J].昆虫知识, 1987, 24(3): 179-183.
    [69]Gray D R, Logan J A, Ravlin F W, et al. Toward a model of gypsy moth egg phenology: using respiration rates of individual eggs to determine temperaturetime requirements of prediapause development[J]. Environmental Entomology, 1991, 20(6): 1645-1652.
    [70]Madder M, Speybroeck N, Brandt J, et al. Diapause induction in adults of three Rhipicephalus appendiculatus stocks[J]. Experimental and Applied Acarology, 1999, 23(12): 961-968.
    [71]Atwood E L, Sonenshine D E. Activity of the American dog tick, Dermacentor variabilis (Acarina: Ixodidae), in relation to solar energy changes[J]. Annals of the Entomological Society of America, 1967, 60(2): 354-362.
    [72]Mcenroe W D. The regulation of adult American dog tick, Dermacentor variabilis Say, seasonal activity and breeding potential (Ixodidae: Acarina) [J]. Acarologia, 1975, 16(4): 651-657.
    [73]Mcenroe W D. The effect of the temperature regime on Dermacentor variabilis (Say) populations in eastern North America[J]. Acarologia, 1979, 20(1): 58-64.
    [74]Ioffe I D. Structure of the brain of Dermacentor pictus Herm. (Chelicerata, Acarina)[J]. Zoologichesky Zhurnal, 1963, 42: 1472-1484.
    [75]Belozerov V N. Diapause and biological rhythms in ticks[J]. Physiology of Ticks, 1982, 469-487.
    [76]Ioffe I D. Distribution of neurosecretory cells in the central nervous system of Dermacentor pictus Herm.(Acarina, Chelicerata)[J]. Dokl Akad Nauk SSSR S Evoluts Morfol, 1964, 154: 229-232.
    [77]Pound J, George J E. Selective breeding for photoperiodically induced developmental diapause in laboratory strains of Amblyomma americanum (Acari: Ixodidae)[J]. Journal of Medical Entomology, 1991, 28(4): 544-550.
    [78]Yu D, Liang J, Yu H, et al. A tick B-cell inhibitory protein from salivary glands of the hard tick, Hyalomma asiaticum asiaticum[J]. Biochemical and Biophysical Research Communications, 2006, 343(2): 585-590.
    [79]Shahein Y E. Molecular cloning and expression of a larval immunogenic proteinfrom the cattle tick Boophilus annulatus[J]. Veterinary Immunology and Immunopathology, 2008, 121(3-4): 281-289.
    [80]万修红,周金林.蜱免疫球蛋白结合蛋白研究进展[J].中国兽医寄生虫病, 2006, 14(4): 42-45.
    [81]Lima C A, Sasaki S D, Tanaka A S. Bmcystatin, a cysteine proteinase inhibitor characterized from the tick Boophilus microplus[J]. Biochemical and Biophysical Research Communications, 2006, 347(1): 44-50.
    [82]Umemiya R, Matsuo T, Hatta T, et al. Cloning and characterization of an autophagy-related gene, ATG12, from the three-host tick Haemaphysalis longicornis[J]. Insect biochemistry and molecular biology, 2007, 37 (9): 975-984.
    [83]Oleaga A, Escudero-Población A, Camafeita E, et al. A proteomic approach to the identification of salivary proteins from the argasid ticks Ornithodoros moubata and Ornithodoros erraticus[J]. Insect Biochemistry and Molecular Biology, 2007, 37(11): 1149-1159.
    [84]Ribeiro J, Alarcon-Chaidez F. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks[J]. Insect Biochemistry and Molecular Biology, 2006, 36(2): 111-129.
    [85]Lai R, Takeuchi H, Lomas L O, et al. A new type of antimicrobial protein with multiple histidines from the hard tick, Amblyomma hebraeum[J]. The FASEB Journal, 2004, 3-12.
    [86]Narasimhan S, Montgomery R R, Deponte K, et al. Disruption of Ixodes scapularis anticoagulation by using RNA interference[J]. Proceedings of the National Academy of Sciences of the United states of America, 2004, 101(5): 1141-1145.
    [87]Miyoshi T, Tsuji N, Islam M K, et al. A set of serine proteinase paralogs are required for blood-digestion in the ixodid tick Haemaphysalis longicornis[J]. Parasitology International, 2008, 57(4): 499 -505.
    [88]程天印,周金林,周勇志等.亚洲璃眼蜱唾液腺一新基因(GP29)的原核表达及产物鉴定[J].畜牧兽医学报, 2006, 37(11): 8-12.
    [89]Foga A A C, Lorenzini D M, Kaku L M, et al. Cysteine-rich antimicrobial peptides of the cattle tick Boophilus microplus: isolation, structural characterization and tissue expression profile[J]. Developmental & Comparative Immunology, 2004, 28(3): 191-200.
    [90]Foga A A C, Almeida I C, Eberlin M N, et al. Ixodidin, a novel antimicrobialpeptide from the hemocytes of the cattle tick Boophilus microplus with inhibitory activity against serine proteinases[J]. Peptides, 2006, 27(4): 667-674.
    [91]Lai R, Lomas L O, Jonczy J, et al. Two novel non-cationic defensin-like antimicrobial peptides from haemolymph of the female tick, Amblyomma hebraeum[J]. Biochemical Journal, 2004, 379(3): 681-690.
    [92]Yu D, Sheng Z, Xu X, et al. A novel antimicrobial peptide from salivary glands of the hard tick, Ixodes sinensis[J]. Peptides, 2006, 27(1): 31-35.
    [93]王振宝,王志强,巴音查汗.嗜驼璃眼蜱抗菌肽的电泳分析及抗菌活性研究[J].动物医学进展, 2008, 29(11): 12-15.
    [94]Ment D, Gindin G, Glazer I, et al. The effect of temperature and relative humidity on the formation of Metarhizium anisopliae chlamydospores in tick eggs[J]. Fungal Biology, 2010, 114(1): 49-56.
    [95]Lees A D, Beament J W. An egg-waxing organ in ticks.[J]. The Quarterly Journal of Microscopical Science, 1948, 89(3): 291-297.
    [96]Booth T F. Observation on the composition and biosynthesis of egg wax lipids in the cattle tick, Boophilus microplus[J]. Experimental and Applied Acarology, 1992, 14(2): 137-149.
    [97]Tkachev A V, Dobrotvorsky A K, Vjalkov A I, et al. Chemical composition of lipophylic compounds from the body surface of unfed adult Ixodes persulcatus ticks (Acari: Ixodidae)[J]. Experimental and Applied Acarology, 2000, 24(2): 145-158.
    [98]Nelson D R, Sukkestad D R. Normal and branched aliphatic hydrocarbons from the eggs of the tobacco hornworm[J]. Biochemistry, 1970, 9(23): 4601- 4611.
    [99]Booth T F, Beadle D J, Hart R J. The effects of precocene treatment on egg wax production in Gené's organ and egg viability in the cattle tick Boophilus microplus (Acarina ixodidae): An ultrastructural study[J]. Experimental and Applied Acarology, 1986, 2(2): 187-198.
    [100]Booth T F. Observation on the composition and biosynthesis of egg wax lipids in the cattle tick, Boophilus microplus[J]. Experimental and Applied Acarology, 1992,14(2): 137-149.
    [101]Potterat O, Hostettmann K, H Ltzel A, et al. Boophiline, an antimicrobial sterol amide from the cattle tick Boophilus microplus [J]. Helvetica Chimica Acta, 1997, 80(7): 2066-2072.
    [102]Nakajima Y. Antibacterial peptide defensin is involved in midgut immunity ofthe soft tick, Ornithodoros moubata[J]. Insect Molecular Biology, 2002, 11(6): 611-618.
    [103]Arrieta M C, Leskiw B K, Kaufman W R. Antimicrobial activity in the egg wax of the African cattle tick Amblyomma hebraeum (Acari: Ixodidae) [J]. Experimental and Applied Acarology, 2006, 39(3): 297-313.
    [104]Esteves E, Foga A A C, Maldonado R, et al. Antimicrobial activity in the tick Rhipicephalus (Boophilus) microplus eggs: Cellular localization and temporal expression of microplusin during oogenesis and embryogenesis[J]. Developmental & Comparative Immunology, 2009, 33(8): 913 -919.
    [105]邓国藩,黄重安.我国异扇蜱属一新种(蜱螨目:硬蜱科)[J].昆虫学报, 1981, 24(1): 99-102.
    [106]Kulik I L, Vinokurova N S. Distribution range of the meadow tick Dermacentor pictus (Ixodidae) in the USSR[J]. Parazitologiia, 17(3): 207- 211.
    [107]Das M B B. Ixodid tick fauna in Mongolia[M]. Mongolia, 1989, 44: 471-474.
    [108]Luo Z X, Chen W, Gao W, et al. Fauna Sinica: Mammalia, Vol. 6, Rodentia, part III, Cricetidae[M]. Beijing: Science Press. (in Chinese), 2000.
    [109]姜在阶.草原革蜱和森林革蜱幼虫的形态学研究[J].昆虫学报, 1985, 28(1): 60-69.
    [110]刘敬泽,李健.蜱类唾液腺结构与功能的研究进展[J].寄生虫与医学昆虫学报, 2002, 9(4): 249-254.
    [111]高志华,杨小龙,刘敬泽等.长角血蜱雌蜱感染嗜菌异小杆线虫后血淋巴的变化[J].昆虫学报, 2006, 49(1): 34-37.
    [112]Drummond R O, Whetstone T M. Oviposition of the Gulf Coast tick[J]. Journal of Economic Entomology, 1970, 63(5): 1547-1551.
    [113]Borges L, Oliveira P R, Ribeiro M. Seasonal dynamics of the free-living phase of Anocentor nitens at Pedro Leopoldo, Minas Gerais, Brazil[J]. Veterinary Parasitology, 1999, 87(1): 73-81.
    [114]Padgett K A, Lane R S. Life cycle of Ixodes pacificus (Acari: Ixodidae): timing of developmental processes under field and laboratory conditions[J]. Journal of Medical Entomology, 2001, 38(5): 684-693.
    [115]Troughton D R, Levin M L. Life cycles of seven ixodid tick species (Acari: Ixodidae) under standardized laboratory conditions[J]. Journal of Medical Entomology, 2007, 44(5): 732-740.
    [116]Despins J L. Effects of temperature and humidity on ovipositional biology and egg development of the tropical horse tick, Dermacentor (Anocentor) nitens[J]. Journal of Medical Entomology, 1992, 29(2): 332-337.
    [117]Samuel W M, Welch D A, Drew M L. Shedding of the juvenile and winter hair coats of moose (Alces alces) with emphasis on the influence of the winter tick, Dermacentor albipictus[J]. Alces, 1986, 22: 345-360.
    [118]Balashov Y S. Blood-sucking ticks (Ixodoidea)-vectors of diseases of man and animals[M]. Krovososushchie kleshchi (Ixodoidea)-perenos chiki boleznei chel-oveka i zhivotnykh., 1967.
    [119]Belozerov V N. Regeneration of limbs and sensory organs in Ixodid ticks (Acari, Ixodoidea, Ixodidae, and Argasidae)[J]. Russian Journal of Developmental Biology. 2001, 32(3): 129-142.
    [120]Oliver Jr J H. Biology and systematics of ticks (Acari: Ixodida)[J]. Annual Review of Ecology and Systematics, 1989, 20: 397-430.
    [121]Dautel H, Dippel C, K Mmer D, et al. Winter activity of Ixodes ricinus in a Berlin forest[J].International Journal of Medical Microbiology,2008,298:50-54.
    [122]Pegram R G, Mwase E T, Zivkovic D, et al.Morphogenetic diapause in Amblyomma variegatum (Acari: Ixodidae)[J]. Medical and Veterinary Entomology, 1988, 2(4): 301-307.
    [123]Hand S C, Hardewig I. Downregulation of cellular metabolism during environmental stress: mechanisms and implications[J]. Annual Review of Physiology, 1996, 58(1): 539-563.
    [124]Lighton J R B, Fielden L J. Mass scaling of standard metabolism in ticks: a valid case of low metabolic rates in sit-and-wait strategists [J]. Physiological Zoology, 1995, 68(1): 43-62.
    [125]Razumova I V. Duration of life of a natural population of hungry adult ticks Dermacentor pictus Herm[J]. Meditsinskaia Parazitologiia i Parazitarnye Bolezni,1966, 35(3): 293-297.
    [126]Randolph S E. Abiotic and biotic determinants of the seasonal dynamics of the tick Rhipicephalus appendiculatus in South Africa[J]. Medical and Veterinary Entomology, 1997, 11(1): 25-37.
    [127]Berkvens D L, Pegram R G, Brandt J. A study of the diapausing behaviour of Rhipicephalus appendiculatus and R. zambeziensis under quasi-natural conditions inZambia[J]. Medical and Veterinary Entomology, 1995, 9(3): 307-315.
    [128]Yeruham I, Hadani A, Galker F. The life cycle of Rhipicephalus bursa Canestrini and Fanzago, 1877 (Acarina: Ixodidae) under laboratory conditions[J]. Veterinary Parasitology, 2000, 89(1-2): 109-116.
    [129] Mazlumi Z. Hyalomma asiaticum asiaticum Schulze and Schlottke, its distribution, hosts, seasonal activity, life cycle, and role in transmission of bovine theileriosis in Iran [J]. Acarologia, 1968, 160(1): 134-137.
    [130]Friesen K J, Reuben Kaufman W. Quantification of vitellogenesis and its control by 20-hydroxyecdysone in the ixodid tick, Amblyomma hebraeum[J]. Journal of insect physiology, 2002, 48(8): 773-782.
    [131]Campbell A, Harris D L. Reproduction of the American dog tick, Dermacentor variabilis, under laboratory and field conditions[J]. Environmental Entomology, 1979, 8(4): 734-739.
    [132]Nava S, Mangold A J, Guglielmone A A. Aspects of the life cycle of Amblyomma parvum (Acari: Ixodidae) under natural conditions[J]. Veterinary Parasitology, 2008, 156(3-4): 270-276.
    [133]SzabóM P J, Castro M B, Ramos H G C, et al. Species diversity and seasonality of free-living ticks (Acari: Ixodidae) in the natural habitat of wild marsh deer (Blastocerus dichotomus) in Southeastern Brazil[J]. Veterinary Parasitology, 2007, 143(2): 147-154.
    [134]孙儒泳.动物生态学原理[M].北京:北京师范大学出版社. 2001.
    [135]Kerr G D, Bull C M. Interactions between climate, host refuge use, and tick population dynamics[J]. Parasitology Research, 2006, 99(3): 214- 222.
    [136]Solomon G, Kaaya G P. Development, reproductive capacity and survival of Amblyomma variegatum and Boophilus decoloratus in relation to host resistance and climatic factors under field conditions[J]. Veterinary Parasitology, 1998, 75(2-3): 241-253.
    [137]Okello-Onen J, Tukahirwa E M, Perry B D, et al. Population dynamics of ticks on indigenous cattle in a pastoral dry to semi-arid rangeland zone of Uganda[J]. Experimental and Applied Acarology, 1999, 23(1):79-88.
    [138]Tomassone L, Nunez P, Gurtler R E, et al. Molecular detection of Ehrlichia chaffeensis in Amblyomma parvum ticks, Argentina[J]. Emerging Infectious Diseases, 2008, 14(12): 1953-1955.
    [139]Estrada Pe A A, Martinez J M, Sanchez Acedo C, et al. Phenology of the tick, Ixodes ricinus, in its southern distribution range (central Spain)[J]. Medical and Veterinary Entomology, 2004, 18(4): 387-397.
    [140]Yin H, Luo J.Ticks of small ruminants in China[J]. Parasitology Research, 2007, 101: 187-189.
    [141]Yu Z, Zheng H, Chen Z, et al. The life cycle and biological characteristics of Dermacentor silvarum Olenev (Acari: Ixodidae) under field conditions[J]. Veterinary Parasitology, 2010, 168(3-4): 323-328.
    [142]陈卫,高武,傅必谦.北京兽类志[M].北京出版社, 2002.
    [143]Kollars Jr T M, Oliver Jr J H, Durden L A, et al. Host associations and seasonal activity of Amblyomma americanum (Acari: Ixodidae) in Missouri[J]. The Journal of Parasitology, 2000, 86(5): 1156-1159.
    [144]Venzal J M, Estrada-Pe A A, Castro O, et al.Amblyomma triste Koch, 1844 (Acari: Ixodidae): Hosts and seasonality of the vector of Rickettsia parkeri in Uruguay[J]. Veterinary Parasitology, 2008, 155(1-2): 104-109.
    [145]Belozerov V N. Diapause and quiescence as two main kinds of dormancy and their significance in life cycles of mites and ticks (Chelicerata: Arachnida: Acari). Part 2. Parasitiformes[J]. Acarina, 2009, 17(1): 3-32.
    [146]Troughton D R, Levin M L. Life Cycles of seven ixodid tick species (Acari: Ixodidae) under standardized laboratory conditions[J]. Journal of Medical Entomology, 2007, 44(5): 732-740.
    [147]Oorebeek M, Kleindorfer S. Climate or host availability: what determines the seasonal abundance of ticks?[J]. Parasitology Research, 2008, 103(4): 871-875.
    [148]Jongejan F, Uilenberg G.The global importance of ticks[J]. Parasitology, 2004, 129(S1): 3-14.
    [149]Booth T F. Observation on the composition and biosynthesis of egg wax lipids in the cattle tick, Boophilus microplus[J]. Experimental and Applied Acarology, 1992, 14(2): 137-149.
    [150]Nelson D R, Sukkestad D R. Normal and branched aliphatic hydrocarbons from the eggs of the tobacco hornworm[J]. Biochemistry, 1970, 9(23): 4601-4611.
    [151]Booth T F, Beadle D J, Hart R J. Ultrastructure of the accessory glands of Gene's organ in the cattle tick, Boophilus microplus[J]. Tissue and Cell, 1984, 16(4): 589-599.
    [152]Kaufman W R, Phillips J E. Ion and water balance in the ixodid tick Dermacentor andersoni: I. Routes of ion and water excretion[J]. Journal of Experimental Biology, 1973, 58: 523-536.
    [153]Christie W W. Lipid analysis [M]. Bridgewater, UK: Oily Press. 2003.
    [154]Lynch D V, Steponkus P L. Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv Puma)[J]. Plant Physiology, 1987, 83(4): 761-767.
    [155]Cherry L M. The production of cuticle wax by engorged females of the cattle tick, Boophilus microplus (Canestrini)[J]. The Journal of Experimental Biology, 1969, 50(3): 705-715.
    [156]Gilby A R. Studies of cuticular lipides of arthropods. III. The chemical composition of the wax from Boophilus microplus[J]. Archives of Biochemistry and Biophysics, 1957, 67(2): 320-324.
    [157]Mccamish M, Cannell G R, Cherry L M. The nonpolar egg wax lipids of the cattle tick, Boophilus microplus (Canestrini)[J]. Lipids, 1977, 12(2): 182-187.
    [158]Hajjar N P. Biochemical and physiological studies of certain ticks (Ixodoidea). Phospholipid and sterol patterns in biological fluids of nymphal and adult Hyalomma (H.) dromedarii Koch and H.(H.) anatolicum excavatum Koch (Ixodidae)[J]. Journal of Medical Entomology, 1972, 9(4): 281-285.
    [159]Kabara J J. Fatty acids and derivatives of antimicrobial agents[M]. Google Patents, 1977.
    [160]Hemsworth G R, Kochan I. Secretion of antimycobacterial fatty acids by normal and activated macrophages[J]. Infection and Immunity, 1978, 19(1):170-177.
    [161]Mcgaw L J, J Ger A K, Van Staden J. Isolation of antibacterial fatty acids from Schotia brachypetala[J]. Fitoterapia, 2002, 73(5): 431-433.
    [162]Desbois A P, Mearns-Spragg A, Smith V J. A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA)[J]. Marine Biotechnology, 2009, 11(1): 45-52.
    [163]Benkendorff K, Davis A R, Rogers C N, et al. Free fatty acids and sterols in the benthic spawn of aquatic molluscs, and their associated antimicrobial properties[J]. Journal of Experimental Marine Biology and Ecology, 2005, 316(1): 29-44.
    [164]Desbois A P, Smith V J. Antibacterial free fatty acids: activities, mechanisms ofaction and biotechnological potential[J]. Applied Microbiology and Biotechnology,2010, 85(6): 1629-1642.
    [165]Galbraith H, Miller T B, Paton A M, et al. Antibacterial activity of long chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol[J]. Journal of Applied Microbiology, 1971, 34(4): 803-813.
    [166]Norval R. Ecology of the tick Amblyomma hebraeum Koch in the Eastern Cape Province of South Africa. I. Distribution and seasonal activity[J]. The Journal of Parasitology, 1977, 63(4): 734-739.
    [167]Bryson N R, Horak I G, Venter E H, et al. Collection of free-living nymphs and adults of Amblyomma hebraeum (Acari: Ixodidae) with pheromone/carbon dioxide traps at 5 different ecological sites in heartwater endemic regions of South Africa[J]. Experimental and Applied Acarology, 2000, 24(12): 971-982.
    [168]Kaufman W R, Ungarian S G, Noga A E. The effect of avermectins on feeding, salivary fluid secretion, and fecundity in some ixodid ticks[J]. Experimental and Applied Acarology, 1986, 2(1): 1-18.
    [169]Otvos L, Cudic M. Broth Microdilution Antibacterial Assay of Peptides[J]. Methods in Molecular Biology-Clifton Then Totowa-, 2007, 386: 309-311.
    [170]Nakajima Y, Ogihara K, Taylor D, et al. Antibacterial hemoglobin fragments from the midgut of the soft tick, Ornithodoros moubata (Acari: Argasidae)[J]. Journal of Medical Entomology, 2003, 40(1): 78-81.
    [171]Hetru C, Bulet P. Strategies for the isolation and characterization of antimicrobial peptides of invertebrates[J]. Methods in Molecular Biology-Clifton Then Totowa-, 1997, 78: 35-50.
    [172]Iwanaga S, Kawabata S, Muta T. New types of clotting factors and defense molecules found in horseshoe crab hemolymph: their structures and functions[J]. Journal of Biochemistry, 1998, 123(1): 1-12.
    [173]Cociancich S, Ghazi A, Hetru C, et al. Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus[J]. Journal of Biological Chemistry, 1993, 268(26): 19239-19245.
    [174]Johns R, Sonenshine D E, Hynes W L. Control of bacterial infections in the hard tick Dermacentor variabilis (Acari: Ixodidae): evidence for the existence of antimicrobial proteins in tick hemolymph[J]. Journal of Medical Entomology, 1998, 35(4): 458-464.
    [175]Foga A A C, Da Silva P I, Miranda M T M, et al. Antimicrobial activity of a bovine hemoglobin fragment in the tick Boophilus microplus[J]. Journal of Biological Chemistry, 1999, 274(36): 25330-25334.
    [176]Foga A A C, Lorenzini D M, Kaku L M, et al. Cysteine-rich antimicrobial peptides of the cattle tick Boophilus microplus: isolation, structural characterization and tissue expression profile[J]. Developmental & Comparative Immunology, 2004, 28(3): 191-200.
    [177]Yu D, Sheng Z, Xu X, et al. A novel antimicrobial peptide from salivary glands of the hard tick, Ixodes sinensis[J]. Peptides, 2006, 27(1): 31-35.
    [178]Marchini D, Marri L, Rosetto M, et al. Presence of Antibacterial Peptides on the Laid Egg Chorion of the Medfly Ceratitis capitata[J]. Biochemical and Biophysical Research Communications, 1997, 240 (3): 657-663.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700