用户名: 密码: 验证码:
耐水抗氧型有机金属路易斯酸的设计、合成与催化应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机金属路易斯酸在现代有机化工中具有重要作用。在过去二十年里,这一领域得到了深入发展。新型路易斯酸催化研究需要设计合成更高催化活性、更高选择性、更广反应适用性、更稳定、廉价和绿色的有机金属路易斯酸催化剂。目前已有的有机金属路易斯酸催化剂主要存在以下问题:(1)部分有机金属配合物的稳定性差、酸性弱、催化活性低和选择性差;(2)配合物中的强路易斯酸性与高稳定性难以兼得;(3)催化剂本身毒性大或者催化体系对环境不友好;(4)所用金属价格相对昂贵;(5)只对特定的几个反应具有催化活性,不能广泛应用到多种反应类型。在绿色化学和可持续发展的影响下,如何设计合成出高效、廉价、稳定、广谱的绿色路易斯酸是目前有机金属路易斯酸化学中的关键科学问题。
     本文针对有机金属路易斯酸存在的不足以及茂金属配合物和有机铋、锑配合物的特点,提出构建稳定的碳-金属键的同时,引入强拉电子能力的阴离子,设计合成了30余种耐水抗氧型有机金属路易斯酸催化剂,并采用NMR、X射线单晶衍射、TG-DSC等多种表征技术对有机金属路易斯酸配合物的组成、结构和物化性质进行了分析表征,还探讨了其在碳-杂键和碳-碳键形成反应等有机化工中具有重要作用有机反应中的催化应用,主要研究结果和结论如下:
     1)采用具有稳定C-M键的茂金属氯化物Cp2MCl2(M=Zr (1a)、Hf(1b)、Ti(1c)),通过引入强拉电子能力的全氟烷基或芳基磺酸基团,构建了耐水抗氧型路易斯酸双核茂锆、茂铪路易斯酸配合物[(CpZr(OH2)3)2(μ2-OH)2][C6F5SO3]4·6H2(2a·6H2O)、[(CpHf(OH2)3)2(μ2-OH)2][OSO2C8F17]4·4H2O·2THF (2b·4H2O·2THF)]和单核茂锆、茂钛全氟烷基磺酸配合物Cp2M(OSO2C8F17)2·nH2O·THF (M=Zr (3a·3H2O·THF), Ti3b·(2H2O·THF))、 Cp2M(OSO2C4F9)2·nH2O (M=Zr (3c·2H2O), Ti (3d·2H2O))。实验表明,这6种配合物均为耐水抗氧的离子型茂金属配合物,金属与环戊二烯基形成稳定的碳-金属键,阴离子与金属的配位水分子形成氢键团簇在阳离子金属中心周围,从而产生耐水抗氧性能。这些配合物易溶于极性溶剂且具有与Sc(OTf)3相当的强酸性,能够催化如碳-碳键形成等有机合成反应。基于这些茂金属全氟磺酸配合物,开发了一种醇、酚、硫醇和胺的通用酰化方法,并可应用于生物柴油的合成。基于Cp2Zr(OSO2C8F17)2催化糖基化反应开发了葡萄糖骨架的生物活性分子合成法。基于Cp2Ti(OSO2C8F17)2/Zn粉催化体系,开发了硫(硒)代酯、α-硫(硒)代羰基化合物以及单硫(硒)醚化合物的简易绿色合成法。另外,还发现这些配合物为烯丙基化反应,Mukaiyama-aldol反应,Friedel-Crafts酰化反应,Mannich反应和酮自缩合芳构化反应等碳-碳键形成反应的高效催化剂。综上所述,本文成功合成了具有强酸性的耐水抗氧型茂金属全氟磺酸配合物,并可作为一种高效广谱的C-C键和C-Z(O, N, S, Se)键等成键反应的路易斯酸催化剂,在有机合成中具有广阔潜在应用前景。
     2)合成了具有氮原子桥连的pincer配体4a-4c,构建了具有稳定的C-Bi键的氮原子桥连有机铋氯化物RN(C6H4CH2)2BiCl (R=tBu (5a), c-C6H11(5b), Ph (5c)),通过用强拉电子能力的阴离子置换其中的氯原子,构建了耐水抗氧型有机铋配合物路易斯酸催化剂c-C6H11N(C6H4CH2)2BiX (X=BF4(6a), OSO2CgF17(6b)),这些催化剂在烯丙基化反应和Mannich反应中表现出与过渡金属路易斯酸相当的优异催化性能。通过氧原子和硫原子桥连合成了双核的有机铋配合物[RN(C6H4CH2)2Bi]2X (X=O, R=tBu (8a), c-C6H11(8b), Ph (8c); X=S, R=tBu (9a), c-C6H11(9b), Ph (9c))。与单核的tBuN(C6H4CH2)2BiOMe (7a)和5a-5c相比,这类配合物在二氧化碳和环氧化物合成环状碳酸酯的催化反应中表现出明显的双金属协同催化效应。
     3)合成了具有路易斯碱位的硫桥pincer配体4d,构建具有稳定的C-Bi键的硫桥有机铋氯化物S(C6H4CH2)2BiCl (5d),通过用强拉电子能力的阴离子置换其中的氯原子,构建了耐水抗氧型路易斯酸碱双功能催化剂S(C6H4CH2)2Bi(OH2)X (X=ClO4(10a), BF4(10b), OSO2C4F9(10c), OSO2CgF17(10d))。这类催化剂在直接非对映异构选择性Mannich反应和(E)-α,β-不饱和酮的绿色立体专一性合成反应中表现出很高的催化活性和立体选择性。基于这一绿色催化体系,开发了反应控制的自分离催化体系,实现了催化剂和产物的自动分离。另外还阐述了配合物结构与催化活性之间的构-效关系。总之,通过引入硫原子代替氮原子,极大的改善了有机铋配合物的催化活性和立体选择性,构建了对空气稳定的有机铋路易斯酸、碱双功能催化剂。
     4)采用相同的配体4a-4c构建5,6,7,12-四氢二苯并[c,f][1,5]氮锑辛烯骨架,构建了对空气稳定的有机锑氯化物RN(C6H4CH2)2SbCl (R=tBu (11a), c-C6H11(11b), Ph(11c)),通过调变其中的对应阴离子,获得了具有较强路易斯酸性的有机锑配合物(RN(C6H4CH2)2BiX, R=c-C6H11, X=OSO2CF3(12a); R=Ph, BF4(12b), F (12c), Br (12d), I(12e)),并且发现有机锑配合物路易斯酸12a和12c在Mannich反应和环氧化物的胺解反应中表现出了很好的催化活性和立体选择性,这说明通过调变N-Sb键的键强可以调变配位原子的配位能力,使得参与配位的氮原子上的孤对电子可以同时作为路易斯碱中心,可被认为是不自我淬灭的路易斯酸碱对。另外,通过氧原子桥连合成了双核有机锑配合物[(?)N(C6H4CH2)2Sb]2O (R=tBu (14a), c-C6H11(14b),Ph(14c))。与单核的(13a)和11a-11c相比,这类配合物在二氧化碳和环氧化物合成环状碳酸酯的催化反应中表现出明显的双金属协同催化效应。
Organometallic Lewis acid plays an important role in modern organic synthesis. During the past two decades the uninterrupted expansion of this field has continued. New Lewis acid research is targeting more versatile, more selective, more reactive, more stable, cheaper, and greener catalysts. Up to now, the development of organometallic Lewis acid has suffered from several shortcomings:(1) Partial organometallic Lewis acids are air-or moisture-sensitive, lower Lewis acidic, poor catalytic active and selective catalyst;(2) It is hard to achieve both properties of strong Lewis acidity and high stability in a same Lewis catalytic system;(3) The Lewis acid catalyst is high toxic or catalytic system is not environmental-friendly;(4) The metal adopted in some of organometallic complexes are too expansive to use in wide application;(5) most of organometallic Lewis acids are not versatile for many kinds of reactions. With the emphasized on the "green" and "sustainable" chemistry, how to design and synthesis of high catalytic efficient, cheaper, stable and versatile green organometallic Lewis acid is the key issue in modern organometallic Lewis acid catalysis chemistry.
     Based on the shortcomings of the organometallic Lewis acid chemistry and metallocence and organobismuth and organoantimony special features, by construction of stable C-M bond and incorporation of larger electronic-withdrawing group, a serial of air-stable, water-tolerant organometallic Lewis acid catalysts were synthesized and characterized by NMR, X-ray single crystal diffraction and TG-DSC technologies, etc to demonstrate their composition, structure and physical or chemical properties. Moreover, their applications in construction of carbon-heteroatom and carbon-carbon bond formation were also investigated. Some innovative results and conclusions were obtained as follows:
     1) By incorporation of larger electronic-withdrawing long chain perfluoroalkyl group ion to place the chloride in Cp2MCl2(M=Zr (1a)、Hf (1b)、Ti (1c)), air-stable and water-tolerant metallocene complex Lewis acid catalysts ([(CpZr(OH2)3)2(μ2-OH)2][C6F5SO3]4·6H2O (2a·6H2O),[(CpHf(OH2)3)2(μ2-OH)2][OSO2C8F17]4·4H2O·2THF (2b·4H2O·2THF)},Cp2M(OSO2C8F17)2·nH2O·THF (M=Zr (3a·3H2O·THF), Ti3b·(2H2O·THF)) and Cp2M(OSO2C4F9)2·nH2O (M=Zr (3c·2H2O), Ti (3d·2H2O))) were synthesized. These complexes can be stable in the open air for a month or a year and remain as dry crystal or white powders. The anions are packed around the complex cation in such a way that their oxygen atoms point towards the H2O ligands.
     The perfluoroalkyl group sides of the anion, on the other hand, are clustered together to form the hydrophobic domains. These complexes showed heat resistant and high solubility in polar organic solvent. Furthermore, they also showed high Lewis acidity in the same level as that of Sc(OTf)3, which can be used to promote carbon-carbon bond formation. Based on these complexes, we developed a versatile acylation method for alcohol, phenol, thiol and amine, which can be applied in biodiesel synthesis. Cp2Zr(OSO2C8F17)2can be also used in glycosylation to prepare bioactive molecules. Based on the Cp2Ti(OSO2CgF17)2/Zn dust catalytic system, we developed a simple, efficient and green synthetic method to prepare thio(seleno)ester, a-thio(seleno)carbonyl compounds and thio(seleno)ether. These metallocene Lewis acid catalysts also showed high catalytic efficient in allylation, Mukaiyama-aldol reaction, Friedel-Crafts acylation, Mannich reaction, and cyclotrimerization of ketones. In a word, the metallocene complexes can be used as versatile organometallic Lewis acid catalyst in various carbon-carbon bond and carbon-heteroatom formation reactions. On account of its stability, storability, and versatile ability, these complexes should find broad catalytic applications in organic synthesis.
     2) By design and synthesis of nitrogen-bridged ligands (4a-4c), the organobismuth chlorides RN(C6H4CH2)2BiCl (R=tBu (5a), c-C6H11(5b), Ph (5c)) with stable C-Bi bonds were synthesized. By incorporation of larger electronic-withdrawing counter anion to replace the chloride, air-stable and water-tolerant organobismuth complex Lewis acids c-C6H11N(C6H4CH2)2BiX (X=BF4(6a), OSO2C8F17(6b)) were synthesized. They showed high air-stability and Lewis acidity as well as heat resistant and can be applied as catalyst in Mannich reaction and allylation reaction. While the binuclear organobismuth complexes bridged by sulfur or oxygen atoms ([RN(C6H4CH2)2Bi]2X (X=O, R=tBu (8a), c-C6H11(8b), Ph(8c); X=S, R=tBu (9a), c-C6H11(9b), Ph (9c))) showed bimetallic cooperative catalytic activity in cyclic carbonate synthesis from epoxide and CO2compared with tBuN(C6H4CH2)2BiOMe (7a) and5a-5c.
     3) By adopting sulfur bridged pincer ligand (4d) with suitable Lewis basic site, an organobismuth chloride (5d) bearing stable C-Bi bonds was synthesized. By incorporation of larger electronic-withdrawing counter anion to place the chloride, air-stable and water-tolerant sulfur bridged organobismuth complex Lewis acids S(C6H4CH2)2Bi(OH2)X (X=ClO4(10a), BF4(10b), OSO2C4F9(10c), OSO2C8F17(10d)) were synthesized. With the exposed bismuth center acting as Lewis acid site and the uncoordinated lone pair electrons of sulfur as Lewis base site, the cationic organobismuth complexes work as bifunctional Lewis acid/base catalysts. These complexes showed high catalytic efficient and stereoselectivity in direct Mannich reaction and green synthesis of (E)-a, β-unsaturated ketones. Based on our green catalytic system, we developed a reaction-induced self-separation catalytic system, which showed facile separation of the catalyst and product. After that, the relationship between structure and catalytic activity as well as diastereoselectivity was uncovered. In summary, by adopting the sulfur atom as linking atom, the catalytic efficient and stereoselective of the organobismuth complex was significantly improved and Lewis acidic/basic bifunctional catalysts were obtained.
     4) By adopting nitrogen-bridged ligands (4a-4c) and changing the bismuth metal to antimony, air-stable5,6,7,12-tetrahydrodibenz[c,f)[1,5]azaantimocine framework were constructed, a serial of organoantimony chlorides (RN(C6H4CH2)2SbCl (R=tBu (11a), c-CeH11(11b), Ph (11e))) were successfully synthesized. By modification of counter anions, strong Lewis acidic organoantimony Lewis acid (RN(C6H4CH2)2BiX, R=c-CeH11, X=OSO2CF3(12a); R=Ph, BF4(12b), F (12c), Br (12d), I (12e)) were obtained. In one-pot three component Mannich reaction and ring-opening reaction of epoxide with amine, these complexes showed high catalytic activity and stereoselectivity, illustrating that by weakening of N-Sb atom bond strength, the long pair electrons of nitrogen atom can be also acted as Lewis basic site, implies that these organoantimony complexes may be acted as the self unquenched Lewis pairs. While the binuclear organoantimony complexes bridged by sulfur or oxygen atoms ([RN(C6H4CH2)2Sb]2O (R=tBu (14a), c-C6H11(14b), Ph (14c))) showed bimetallic cooperative catalytic activity in cyclic carbonate synthesis from expoxide and CO2compared with c-C6H11N(C6H4CH2)SbOMe (13a) and11a-11c.
引文
[1]Huyskens P. Acids and bases. Mededelingen van de Vlaamse Chemische Vereniging 1968,30(5):139-171
    [2]Aylward G H, Zyka J. Acid-base reactions in aqueous and non-aqueous media. New Trends in Chemistry Teaching 1969,2:102-119
    [3]Drago R S. Modern approach to acid-base chemistry. Journal of Chemical Education 1974,51(5):300-307
    [4]Okada T. Electron pair concept by Lewis. Kagaku No Ryoiki 1977,31(11): 1007-1015
    [5]Rwakabishya I. Evolution of the acid-base concept. Revue de l'Universite du Burundi 1978,1,116-133
    [6]Jensen W B. Lewis acid-base interactions and adhesion theory. Rubber Chemistry and Technology 1982,55(3):881-901
    [7]R. G. Pearson. Hard and soft acids and bases. Survey of Progress in Chemistry 1969, 5,1-52
    [8]J. Hagen. The HSAB concept in transition metal chemistry and homogeneous catalysis, Chemiker-Zeitung 1985,109(2):63-75
    [9]Fairlamb I J S, Grant S, Whitwood A C, et al. Synthesis of Pd(Ⅱ) and Pt(Ⅱ) complexes possessing bicyclo[3.2.0]heptanyl phosphinite ligands:Identification of a novel Pd(Ⅱ) precatalyst for 1,6-diene cycloisomerisation. Journal of Organometallic Chemistry 2005,690(20):4462-4477
    [10]Kerber W D, Nelsen D L, White P S,et al. Synthesis and ligand exchange reactions of P2Pd(Ⅱ) and P2Pt(Ⅱ) salicylaldimates. Dalton Transactions 2005, 24(11):1948-1951
    [11]de Pater B C, Zijp E J, Fruhauf H W, et al. Oxidative addition reactions of [Rh-I(Br)(Tpy*)] (Tpy*=4'-(4-tert-butylphenyl)-2,2':6',2 "-terpyridine) with alkyl bromides. Organometallics 2004,23(2):269-279
    [12]Albrecht M, Spek A L, van Koten G. C-arenium-C-alkyl bond making and breaking:Key process in the platinum-mediated C-aryl-C-alkyl bond formation. Analogies to organic electrophilic aromatic substitution. Journal of the American Chemical Society 2001,123(30):7233-7246
    [13]Murafuji T, Nagasue M, Tashiro Y, et al. Structural characteristics of aryloxybismuthanes stabilized by hypervalent bond formation. Synthesis, incorporation of 4-methoxyphenol through hydrogen bonding, and crystal supramolecularity. Organometallics 2000,19(6):1003-1007
    [14]Blug M, Doux M, Goff X Le, et al. The Effect of a Fourth Binding Site on the Stabilization of Cationic SPS Pincer Palladium Complexes:Experimental, DFT, and Mass Spectrometric Studies. Organometallics 2009,28(7):2020-2027
    [15]Kumar S, Shaikh M M, Ghosh P. Palladium complexes of amido-functionalized N-heterocyclic carbenes as effective precatalysts for the Suzuki-Miyaura C-C cross-coupling reactions of aryl bromides and iodides. Journal of Organometallic Chemistry 2009,694(26):4162-4169
    [16]Barder T E. Synthesis, structural, and electron topographical analyses of a dialkylbiaryl phosphine/arene-ligated palladium(Ⅰ) dimer:Enhanced reactivity in Suzuki-Miyaura coupling reactions. Journal of the American Chemical Society 2006,128(3):898-904
    [17]Gnanamgari D, Sauer E L O, Schley N D, et al. Iridium and Ruthenium Complexes with Chelating N-Heterocyclic Carbenes:Efficient Catalysts for Transfer Hydrogenation, beta-Alkylation of Alcohols, and N-Alkylation of Amines. Organometallics 2009,28(1):321-325
    [18]Ornelas C, Vertlib V, Rodrigues J, et al. Ruthenium metallodendrimers based on nitrile-functionalized poly(alkylidene imine)s. European Journal of Inorganic Chemistry 2006, (1):47-50
    [19]Darensbourg D J, Joo F, Kannisto M, et al. Water-solube organometallic compounds.2. catalytic-hydrogenation of aldehydes and olefins by new water-soluble 1,3,5-triaza-7-phosphaadamantane complexes of ruthenium and rhodium. Organometallics 1992,11(6):1990-1993
    [20]Larsen A O, Leu W, Oberhuber C N, et al. Bidentate NHC-based chiral ligands for efficient Cu-catalyzed enantioselective allylic alkylations:Structure and activity of an air-stable chiral Cu complex. Journal of the American Chemical Society 2004,126(36):11130-11131
    [21]Mikami K, Kakuno H, Aikawa K. Enantiodiscrimination and Enantiocontrol of Neutral and Cationic PtⅡ Complexes Bearing the Tropos Biphep Ligand: Application to Asymmetric Lewis Acid Catalysis. Angewandte Chemie 2005, 117(44):7423-7426
    [22]Dijkstra H P, Meijer M D, Patel J K, et al. Design and Performance of Rigid Nanosize Multimetallic Cartwheel Pincer Compounds as Lewis-Acid Catalysts. Organometallics 2001,20(14):3159-3168
    [23]Alezra V, Bernardinelli G, Corminboeuf C, et al. [CpRu((R)-Binop-F)(H2O)][SbF6], a new fluxional chiral lewis acid catalyst: Synthesis, dynamic NMR, asymmetric catalysis, and theoretical studies. Journal of the American Chemical Society 2004,126(15):4843-4853
    [24]Arcadi A, Giuseppe S Di. Recent applications of gold catalysis in organic synthesis. Current Organic Chemistry 2004,8(9):795-812
    [25]Yang T, Ferrali A, Sladojevich F, et al. Bronsted base/Lewis acid cooperative catalysis in the enantioselective conia-ene reaction. Journal of the American Chemical Society 2009,131(26):9140-9141
    [26]Abraham L, Korner M, Schwab P, et al. The catalytic diastereo- and enantioselective Claisen rearrangement of 2-alkoxycarbonyl-substituted allyl vinyl ether. Advanced Synthesis & Catalysis 2004,346(11):1281-1294
    [27]Arnold P L, Rodden M, Davis K M, et al. Asymmetric lithium(Ⅰ) and copper(Ⅱ) alkoxy-N-heterocyclic carbene complexes; crystallographic characterisation and Lewis acid catalysis. Chemical Communications 2004, (14):1612-1613
    [28]Johnson J S, Evans D A. Chiral bis(oxazoline) copper(Ⅱ) complexes:Versatile catalysts for enantioselective cycloaddition, aldol, Michael, and carbonyl ene reactions. Accounts of Chemical Research 2000,33(6):325-335
    [29]Evans D A, Barnes D M, Johnson J S, et al. Bis(oxazoline) and bis(oxazolinyl)pyridine copper complexes as enantioselective Diels-Alder catalysts:Reaction scope and synthetic applications. Journal of the American Chemical Society 1999,121(33):7582-7594
    [30]Kundig E P, Saudan C M, Bernardinelli G. A stable and recoverable chiral Ru Lewis acid:Synthesis, asymmetric Diels-Alder catalysis and structure of the Lewis acid methacrolein complex. Angewandte Chemie-International Edition 1999,38(9):1220-1223
    [31]Borner J, Florke U, Huber K, et al, S. Herres-Pawlis. Lactide polymerisation with air-stable and highly active zinc complexes with guanidine-pyridine hybrid ligands. Chemistry-a European Journal 2009,15(10):2362-2376
    [32]An D L, Peng Z H, Orita A, et al. Organotin perfluorooctanesulfonates as air-stable Lewis acid catalysts:Synthesis, characterization, and catalysis. Chemistry-a European Journal 2006,12(6):1642-1647
    [33]Ishihara K, Hanaki N, Funahashi M, et al. Tris(pentafluorophenyl)boron as an efficient, air-stable, and water tolerant Lewis-acid catalyst. Bulletin of the Chemical Society of Japan 1995,68(6):1721-1730
    [34]Li L, Marks T J. New Organo-Lewis Acids. Tris(b-perfluoronaphthyl)borane (PNB) as a Highly Active Cocatalyst for Metallocene-Mediated Ziegler-Natta a-Olefin Polymerization. Organometallics 1998,17(18):3996-4003
    [35]Li L, Stern C L, Marks T J. Bis(Pentafluorophenyl)(2-perfluorobiphenylyl)borane. A New Perfluoroarylborane Cocatalyst for Single-Site Olefin Polymerization. Organometallics 2000,19(17):3332-3337
    [36]Mikami K, Terada M, Matsuzawa H. "Asymmetric" catalysis by lanthanide complexes. Angewandte Chemie-International Edition 2002,41(19):3554-3571, 3512
    [37]Ma Y, Wang L, Shao J, et al. Recent developments of Lewis acids catalysis: Lanthanide catalysts with long perfluoro-chain in organic chemistry. Current Organic Chemistry 2007,11(6):559-576
    [38]Yamamoto H, Futatsugi K. "Designer acids":Combined acid catalysis for asymmetric synthesis. Angewandte Chemie-International Edition 2005,44(13): 1924-1942
    [39]Mukherjee S, Corey E J. Enantioselective Synthesis Based on Catalysis by Chiral Oxazaborolidinium Cations. Aldrichimica Acta 2010,43(2):49-59
    [40]Corey E J. Enantioselective Catalysis Based on Cationic Oxazaborolidines. Angewandte Chemie-International Edition 2009,48(12):2100-2117
    [41]Corey E J. Catalytic enantioselective Diels-Alder reactions:Methods, mechanistic fundamentals, pathways, and applications. Angewandte Chemie-International Edition 2002,41:1650-1667
    [42]Yazaki R, Kumagai N, Shibasaki M. Direct Catalytic Asymmetric Conjugate Addition of Terminal Alkynes to alpha,beta-Unsaturated Thioamides. Journal of the American Chemical Society 2010,132(30):10275-10277
    [43]Morimoto H, Yoshino T, Yukawa T, et al. Lewis Base Assisted Bronsted Base Catalysis:Bidentate Phosphine Oxides as Activators and Modulators of Bronsted Basic Lanthanum-Aryloxides. Angewandte Chemie-International Edition 2008, 47(47):9125-9129
    [44]Matsunaga S, Ohshima T, Shibasaki M. Linked-BINOL:An approach towards practical asymmetric multifunctional catalysis. Advanced Synthesis & Catalysis 2002,344(1):3-15
    [45]Shibasaki M, Kanai M, Funabashi K. Recent progress in asymmetric two-center catalysis. Chemical Communications 2002,2010(18):1989-1999
    [46]Bacchini M, Ballarini N, Cavani F, et al. The transformation of light alkanes to chemicals:Mechanistic aspects of the gas-phase oxidation of n-pentane to maleic anhydride and phthalic anhydride. Catalysis of Organic Reactions 2007,115: 109-118
    [47]Wallace M A, Raab C, Dean D, et al. Synthesis of aryl [S-35]sulfones: Friedel-Crafts sulfonylation of aryl ethers with high specific activity [S-35]methanesulfonyl chloridet. Journal of Labelled Compounds & Radiopharmaceuticals 2007,50(5-6):347-349
    [48]Nishiyama Y, Sonoda N. Utilization of phenyl trialkylstannyl selenide as a promising reagent for introduction of the phenylseleno group. Mini-Reviews in Organic Chemistry 2005,2(2):147-155
    [49]Xia G Y, Shibatomi K, Yamamoto H. Novel Lewis acid-assisted chiral Lewis acid (LLA) system:Development of boroxin-Ti-BINOL-catalyzed asymmetric allylation of aldehydes. Synlett 2004, (13):2437-2439
    [50]Gevorgyan V, Radhakrishnan U, Takeda A, et al. Palladium-catalyzed highly chemo- and regioselective formal [2+2+2] sequential cycloaddition of alkynes:A renaissance of the well known trimerization reaction? Journal of Organic Chemistry 2001,66(8):2835-2841
    [51]Hirai A, Nakamura M, Nakamura E. Mechanism of addition of allylmetal to vinylmetal. dichotomy between metallo-ene reaction and metalla-Claisen rearrangement. Journal of the American Chemical Society 2000,122(48): 11791-11798
    [52]Kanai M, Kato N, Ichikawa E, et al. Power of cooperativity:Lewis acid-Lewis base bifunctional asymmetric catalysis. Synlett 2005, (10):1491-1508
    [53]Kanai M, Kato N, Ichikawa E, et al. Recent progress in Lewis acid-Lewis base bifunctional asymmetric catalysis. Pure and Applied Chemistry 2005,77(12): 2047-2052
    [54]Rauniyar V, Zhai H M, Hall D G. Catalytic enantioselective allyl- and crotylboration of aldehydes using chiral diol center dot SnCl4 complexes. Optimization, substrate scope and mechanistic investigations. Journal of the American Chemical Society 2008,130(26):8481-8490
    [55]Liu Y H, Chen L H, Shi M. Asymmetric aza-Morita-Baylis-Hillman reaction of N-sulfonated imines with activated olefins catalyzed by chiral phosphine Lewis bases bearing multiple phenol groups. Advanced Synthesis & Catalysis 2006, 348(7-8):973-979
    [56]Abbas M, Neuhaus C, Krebs B, et al. Catalytic addition of homoenolates to imines-The Homo-Mannich reaction. Synlett 2005, (3):473-476
    [57]Beckwith J D, Tschinkl M, Picot A, et al. Interaction of the bifunctional Lewis acid 1,2-bis(chloromercurio)tetrafluorobenzene with aldehydes, nitriles, and epoxides. Organometallics 2001,20(14):3169-3174
    [58]Back O, Kuchenbeiser G, Donnadieu B, et al. Nonmetal-Mediated Fragmentation of P-4:Isolation of P-1 and P-2 Bis(carbene) Adducts. Angewandte Chemie-International Edition 2009,48(30):5530-5533
    [59]Chase P A, Stephan D W. Hydrogen and amine activation by a frustrated Lewis pair of a bulky n-heterocyclic carbene and B(C6F5)3. Angewandte Chemie-International Edition 2008,47(39):7433-7437
    [60]Eros G, Mehdi H, Papai I, et al. Expanding the Scope of Metal-Free Catalytic Hydrogenation through frustrated Lewis pair design. Angewandte Chemie-International Edition 2010,49(37):6559-6563
    [61]Holschumacher D, Bannenberg T, Hrib C G, et al. Heterolytic dihydrogen activation by a frustrated carbene-borane Lewis pair. Angewandte Chemie-International Edition 2008,47(39):7428-7432
    [62]Ines B, Holle S, Goddard R, et al. Heterolytic S-S bond cleavage by a purely carbogenic frustrated Lewis pair. Angewandte Chemie-International Edition 2010, 49(45):8389-8391
    [63]Neu R C, Otten E, Lough A, et al. The synthesis and exchange chemistry of frustrated Lewis pair-nitrous oxide complexes. Chemical Science 2011,2(1): 170-176
    [64]Berkefeld A, Piers W E, Parvez M. Tandem Frustrated Lewis pair/tris(pentafluorophenyl) borane-catalyzed deoxygenative hydrosilylation of carbon dioxide. Journal of the American Chemical Society 2010,132(31): 10660-10661
    [65]Vries T S De, Prokofjevs A, Harvey J N, et al. Superelectrophilic intermediates in nitrogen-directed aromatic borylation. Journal of the American Chemical Society 2009,131(41):14679-14687
    [66]Geier S J, Stephan D W. Lutidine/B(C6F5)3:At the boundary of classical and frustrated Lewis pair reactivity. Journal of the American Chemical Society 2009, 131(10):3476-3477
    [67]You J, Liu B, Wang Y. Study on Synthesis, Characteristics and catalysis properties of novel chiral metal complexes catalysts for 1,3-dipolar cycloaddition reactions of nitrone with electron-rich alkene. Journal of the Chinese Chemical Society 2009,56(5):1010-1017
    [68]Miller A J M, Labinger J A, Bercaw J E. Homogeneous CO hydrogenation: dihydrogen activation involves a frustrated Lewis pair instead of a platinum complex. Journal of the American Chemical Society 2010,132(10):3301-3302
    [69]Momming C M, Fromel S, Kehr G, et al. Reactions of an intramolecular frustrated Lewis pair with unsaturated substrates:evidence for a concerted olefin addition reaction. Journal of the American Chemical Society 2009,131(34):12280-12289
    [70]Xu B H, Kehr G, Frohlich R, et al. Reaction of aminodihydropentalenes with HB(C6F5)2:The crucial role of dihydrogen elimination. Journal of the American Chemical Society 2011,133(10):3480-3491
    [71]Theuergarten E, Schluns D, Grunenberg J, et al. Intramolecular heterolytic dihydrogen cleavage by a bifunctional frustrated pyrazolylborane Lewis pair. Chemical Communications 2010,46(45):8561-8563
    [72]Ullrich M, Seto K S H, Lough A J, et al.1,4-Addition reactions of frustrated Lewis pairs to 1,3-dienes. Chemical Communications 2009, (17):2335-2337
    [73]Roy L, Zimmerman P M, Paul A. Changing lanes from concerted to stepwise hydrogenation:The reduction mechanism of frustrated Lewis acid-base pair trapped CO2 to methanol by ammonia-borane. Chemistry-a European Journal 2011,17(2):435-439
    [74]Zhao X X, Stephan D W. Bis-boranes in the frustrated Lewis pair activation of carbon dioxide. Chemical Communications 2011,47(6):1833-1835
    [75]Tran S D, Tronic T A, Kaminsky W, et al. Metal-free carbon dioxide reduction and acidic C-H activations using a frustrated Lewis pair. Inorganica Chimica Acta 2010,369(1):126-132
    [76]Dondoni A, Massi A. Asymmetric organocatalysis:From infancy to adolescence. Angewandte Chemie-International Edition 2008,47(25):4638-4660
    [77]Yukawa T, Seelig B, Xu Y J, et al. Catalytic Asymmetric Aza-Morita-Baylis-Hillman reaction of methyl acrylate:Role of a bifunctional La(O-iPr)3/Linked-BINOL complex. Journal of the American Chemical Society, 132(34):11988-11992
    [78]Holthausen M H, Weigand J J. Preparation of the [(DippNP)2(P-4)2]2+-dication by the reaction of [DippNPCl]2 and a Lewis acid with P-4. Journal of the American Chemical Society 2009,131(40):14210-14211
    [79]France S, Shah M H, Weatherwax A, et al. Bifunctional Lewis acid-nucleophile-based asymmetric catalysis:Mechanistic evidence for imine activation working in tandem with chiral enolate formation in the synthesis of beta-lactams. Journal of the American Chemical Society 2005,127(4):1206-1215
    [80]Shi M, Chen L H, Li C Q. Chiral phosphine lewis bases catalyzed asymmetric aza-Baylis-Hiliman reaction of N-sulfonated imines with activated olefins. Journal of the American Chemical Society 2005,127(11):3790-3800
    [81]Erb J, Paull D H, Dudding T, et al. From bifunctional to trifunctional (Tricomponent nucleophile-transition metal-Lewis acid) catalysis:The catalytic, enantioselective alpha-fluorination of acid chlorides. Journal of the American Chemical Society 2011,133(19):7536-7546
    [82]Paull D H, Abraham C J, Scerba M T, et al. Bifunctional asymmetric catalysis: Cooperative lewis acid/base systems. Accounts of Chemical Research 2008,41(5): 655-663
    [83]Abraham C J, Paull D H, Bekele T, et al. A surprising mechanistic "Switch" in Lewis acid activation:A bifunctional, asymmetric approach to alpha-hydroxy acid derivatives. Journal of the American Chemical Society 2008,130(50): 17085-17094
    [84]Paull D H, Alden-Danforth E, Wolfer J, et al. An asymmetric, bifunctional catalytic approach to non-natural alpha-amino acid derivatives. Journal of Organic Chemistry 2007,72(14):5380-5382
    [85]Abraham C J, Paull D H,. Scerba M T, et al. Catalytic, enantioselective bifunctional inverse electron demand hetero-Diels-Alder reactions of ketene enolates and o-benzoquinone diimides. Journal of the American Chemical Society 2006,128(41):13370-13371
    [86]Hafez A M, Dudding T, Wagerle T R, et al. A multistage, one-pot procedure mediated by a single catalyst:A new approach to the catalytic asymmetric synthesis of beta-amino acids. Journal of Organic Chemistry 2003,68(15): 5819-5825
    [87]France S, Wack H, Hafez A M, et al. Bifunctional asymmetric catalysis:A tandem nucleophile/Lewis acid promoted synthesis of beta-lactams. Organic Letters 2002, 4(9):1603-1605
    [88]Hatano M, Ishihara K. Catalytic enantioselective organozinc addition toward optically active tertiary alcohol synthesis. Chemical Record 2008,8(3):143-155
    [89]Chen F X, Zhou H, Liu X H, et al. Enantioselective cyanosilylation of ketones by a catalytic double-activation method with an aluminium complex and an N-oxide. Chemistry-a European Journal 2004,10(19):4790-4797
    [90]Wingstrand E, Laurell A, Fransson L, et al. Minor Enantiomer Recycling:Metal Catalyst, Organocatalyst and Biocatalyst Working in Concert. Chemistry-a European Journal 2009,15(44):12107-12113
    [91]DiMauro E F, Kozlowski M C. Development of bifunctional salen catalysts: Rapid, chemoselective alkylations of alpha-ketoesters. Journal of the American Chemical Society 2002,124(43):12668-12669
    [92]Chidara S, Lin Y M. Reaction Rate Acceleration Enabled by Tethered Lewis Acid-Lewis Base Bifunctional Catalysis:A Catalytic, Enantioselective [2+2] Ketene Aldehyde Cycloaddition Reaction. Synlett 2009, (10):1675-1679
    [93]Chen Y, Yekta S, Yudin A K. Modified BINOL ligands in asymmetric catalysis. Chemical Reviews 2003,103(8):3155-3211
    [94]Macchioni A. Ion pairing in transition-metal organometallic chemistry. Chemical Reviews 2005,105(6):2039-2073
    [95]North M, Usanov D L, Young C. Lewis Acid Catalyzed Asymmetric Cyanohydrin Synthesis. Chemical Reviews 2008,108(12):5146-5226
    [96]Ramon D J, Yus M. In the arena of enantioselective synthesis, titanium complexes wear the laurel wreath. Chemical Reviews 2006,106(6):2126-2208
    [97]Palomo C, Oiarbide M, Garcia J M. Current progress in the asymmetric aldol addition reaction. Chemical Society Reviews 2004,33(2):65-75
    [98]Kim S S. Asymmetric cyanohydrin synthesis from aldehydes and ketones using chiral metal (salen) complex as catalyst. Pure and Applied Chemistry 2006,78(5): 977-983
    [99]Lorber C. [ONNO]-type amine bis(phenolate)-based vanadium catalysts for ethylene homo-and copolymerization. Pure and Applied Chemistry 2009,81(7): 1205-1215
    [100]Wingstrand E, Lundgren S, Penhoat M, et al. Dual Lewis acid-Lewis base activation in enantioselective additions to aldehydes. Pure and Applied Chemistry 2006,78(2):409-414
    [101]Hollis T K, Robison N P, Bosnich B. Homogeneous catalysis. Titanium complex [Ti(Cp)2(CF3SO3)2] and zirconium complex [Zr(Cp)2(CF3SO3)2THF], efficient catalysts for the Diels-Alder reaction. Organometallics 1992,11(2745-2748
    [102]Hollis T K, Robinson N P, Bosnich B. Homogeneous catalysis. [Ti(Cp*)2(H2O)2]+:an air-stable, water-tolerant Diels-Alder catalyst. Journal of the American Chemical Society 1993,114(5464-5466
    [103]Hollis T K, Bosnich B. Homogeneous Catalysis. Mechanisms of the catalytic Mukaiyama aldol and Sakurai allylation reactions. Journal of the American Chemical Society 1995,117:4570-4581
    [104]Hollis T K, Robinson N P, Whelan J, et al. Homogeneous catalysis. Use of the [TiCp2(CF3SO3)2] catalyst for the sakurai reaction of allylic silanes with orthoesters, acetals, ketals and carbonyl compounds. Tetrahedron Lett.1993,34: 4309-4312
    [105]Ellis W W, Gacrilova A, Liable-Sands L, et al. Homogeneous catalysis. Metallocene catalysts for [3+2] nitrone-olefin cycloaddition reactions. Organometallics 1999,18:332-338
    [106]Hollis T K, Robison N P, Bosnich B. Homogeneous catalysis. [TiCp2(CF3SO3)2] and [ZrCp2(CF3SO3)2THF], fast and efficient catalysts for the Mukaiyama cross-aldol reaction Tetrahedron Lett.1992,33:6423-6426
    [107]He B, Chen F X, Li Y, et al. Effective activation of the chiral salen/Ti(OiPr)4 catalyst with achiral phenolic N-oxides as additives in the enantioselective cyanosilylation of ketones. European Journal of Organic Chemistry 2004, (22): 4657-4666
    [108]Notestein J M, Andrini L R, Kalchenko V I, et al. Structural assessment and catalytic consequences of the oxygen coordination environment in grafted Ti-calixarenes. Journal of the American Chemical Society 2007,129(5): 1122-1131
    [109]Notestein J M, Solovyov A, Andrini L R, et al. The role of outer-sphere surface acidity in alkene epoxidation catalyzed by calixarene-Ti(Ⅳ) complexes. Journal of the American Chemical Society 2007,129(50):15585-15595
    [110]Tabernero V, Cuenca T, Mosquera M E G, et al. Early transition metal derivatives stabilised by the phenylenediamido 1,2-C6H4(NCH2)tBu)2 ligand: Synthesis, characterisation and reactivity studies:Crystal structures of [Tat{1,2-C6H4(NCH2tBu)2)}2Cl} and [Zr{(1,2-C6H4(NCH2tBu)2)(NMe2)(mu-NMe2)]2. Polyhedron 2009,28(13): 2545-2554
    [111]Patel D, Liddle S T, Mungur S A, et al. Bifunctional yttrium (Ⅲ) and titanium (Ⅳ) NHC catalysts for lactide polymerisation. Chemical Communications 2006, (10):1124-1126
    [112]Anthis J W, Larsen A O, White P S, et al. Ethylene-linked bis(phenol) ligands: efficient synthesis, Ti (Ⅳ) coordination chemistry, and Lewis acid catalysis. Journal of Organometallic Chemistry 2003,688(1-2):121-124
    [113]Zhou X, Liu Y L, Chang L, et al. Highly efficient synthesis of quaternary alpha-hHydroxy phosphonates via Lewis acid-catalyzed Hydrophosphonylation of ketones. Advanced Synthesis & Catalysis 2009,351(16):2567-2572
    [114]Bao H L, Zhou J, Wang Z, et al. Insight into the mechanism of the asymmetric ring-opening aminolysis of 4,4-dimethyl-3,5,8-trioxabicyclo[5.1.0]octane catalyzed by titanium/BINOLate /water system:Evidence for the Ti(BINOLate)2-bearing active catalyst entities and the role of water. Journal of the American Chemical Society 2008,130(31):10116-10127
    [115]Kim J G, Waltz K M, Garcia I F, et al. Catalytic asymmetric allylation of ketones and a tandem asymmetric allylation/diastereoselective epoxidation of cyclic enones. Journal of the American Chemical Society 2004,126(39):12580-12585
    [116]Hashimoto T, Maeda Y, Omote M, Nakatsu H, Maruoka K. Catalytic enantioselective 1,3-dipolar cycloaddition of C,N-cyclic azomethine imines with alpha,beta-unsaturated aldehydes. Journal of the American Chemical Society 2010,132(12):4076-4077
    [117]Hanawa H, Uraguchi D, Konishi S,et al. Catalytic asymmetric allylation of aldehydes and related reactions with bis(((S)-binaphthoxy)(isopropoxy)titanium) oxide as a mu-oxo-type chiral Lewis acid. Chemistry-a European Journal 2003, 9(18):4405-4413
    [118]Yu R M, Yamashita Y, Kobayashi S. Titanium(Ⅳ)/Tridentate BINOL Derivative as Catalyst for meso-Aziridine Ring-Opening Reactions:High Enantioselectivity, Strong Positive Non-Linear Effect and Structural Characterization. Advanced Synthesis & Catalysis 2009,351(1-2):147-152
    [119]Dong H M, Lu H H, Lu L Q, et al. Asymmetric friedel-crafts alkylations of indoles with ethyl glyoxylate catalyzed by (S)-BINOL-titanium(Ⅳ) complex: Direct access to enantiomerically enriched 3-indolyl(hydroxy) acetates. Advanced Synthesis & Catalysis 2007,349(1597-1603
    [120]Blay G, Fernandez I, Monleon A, et al. Synthesis of Functionalized Indoles with an alpha-Stereogenic Ketone Moiety Through an Enantioselective Friedel-Crafts Alkylation with (E)-1,4-Diaryl-2-butene-1,4-diones. Advanced Synthesis & Catalysis 2009,351(14-15):2433-2440
    [121]Yada M, Inoue Y. in Inorganic and Metallic Nanotubular Materials:Recent Technologies and Applications, Vol.117,2010, pp.117-133.
    [122]Yamanaka S, Uno M. in Inorganic and Metallic Nanotubular Materials:Recent Technologies and Applications, Vol.117,2010, pp.59-71.
    [123]Mader J, Xiao L, Schmidt T J, et al. in Fuel Cells Ii, Vol.216,2008, pp.63-124.
    [124]Jones D J, Roziere J. in Fuel Cells I, Vol.215,2008, pp.219-264.
    [125]Broene R D. in Metal Catalyzed Reductive C-C Bond Formation:a Departure from Preformed Organometallic Reagents, Vol.279,2007, pp.209-248.
    [126]Hupp J T. in Non-Covalent Multi-Porphyrin Assemblies Synthesis and Properties, Vol.121,2006, pp.145-165.
    [127]Sadimenko A P. in Advances in Heterocyclic Chemistry, Vol 88, Vol.88,2005, pp.111-174.
    [128]Welch E J, Long J R. in Progress in Inorganic Chemistry, Vol 54, Vol.54,2005, pp.1-45.
    [129]Schneider C, Klapa K, Hansch M. Zr(Ot-Bu)4-catalyzed tishchenko reduction of beta-hydroxy ketones. Synlett 2005, (1):91-94
    [130]Schneider C, Hansch M. Zr(OtBu)4-catalysed synthesis of acetone aldol adducts and domino aldol-Tishchenko reactions with diacetone alcohol as enol equivalent. Chemical Communications 2001, (13):1218-1219
    [131]Stahl L, Ernst R D. in Advances in Organometallic Chemistry Vol 55, Vol.55, 2008, pp.137-199.
    [132]Kobayashi S, Yazaki R, Seki K, et al. An air-stable chiral Hf-based catalyst for asymmetric Mannich-type reactions. Tetrahedron 2007,63(35):8425-8429
    [133]Kobayashi S, Ueno M, Saito S, et al. Air-stable, storable, and highly efficient chiral zirconium catalysts for enantioselective Mannich-type, aza Diels-Alder, aldol, and hetero Diels-Alder reactions. Proceedings of the National Academy of Sciences of the United States of America 2004,101(15):5476-5481
    [134]Kobayashi S, Matsubara R, Nakamura Y, et al. Catalytic, asymmetric Mannich-type reactions of N-acylimino esters:Reactivity, diastereo-and enantioselectivity, and application to synthesis of N-acylated amino acid derivatives. Journal of the American Chemical Society 2003,125(9):2507-2515
    [135]Kobayashi S, Hamada T, Manabe K. The catalytic asymmetric Mannich-type reactions in aqueous media. Journal of the American Chemical Society 2002, 124(20):5640-5641
    [136]Song Y S, Kong S D, Khan S A, et al. One-step synthesis of fluorenyl-substituted chlorosilanes:Friedel-Crafts type cycloalkylation of biphenyl with (dichloroalkyl)silane. Organometallics 2001,20(26):5586-5590
    [137]Amin M N, Ishiwata A, Ito Y. Synthesis of N-linked glycan derived from Gram-negative bacterium, Campylobacter jejuni. Tetrahedron 2007,63(34): 8181-8198
    [138]Ohtsuka I, Ako T, Kato R, et al. Synthesis of a library of fucopyranosyl-galactopyrano sides consisting of a complete set of anomeric configurations and linkage positions. Carbohydrate Research 2006,341(10): 1476-1487
    [139]Ishiwata A, Ohta S, Ito Y. A stereoselective 1,2-cis glycosylation toward the synthesis of a novel N-linked glycan from the gram-negative bacterium, Campylobacter jejuni. Carbohydrate Research 2006,341(10):1557-1573
    [140]Kanie O, Ohtsuka I, Ako T, et al. Orthogonal glycosylation reactions on solid phase and synthesis of a library consisting of a complete set of fucosyl galactose isomers. Angewandte Chemie-International Edition 2006,45(23):3851-3854
    [141]Ohmori K, Hatakeyama K, Ohrui H, et al. Cationic zirconocene-or hafnocene-based Lewis acids in organic synthesis:glycoside-flavonoid analogy. Tetrahedron 2004,60(6):1365-1373
    [142]Kato H, Ohmori K, Suzuki K. Glycosylation study on pradimicin-benanomicin antibiotics. Tetrahedron Letters 2000,41(35):6827-6832
    [143]Wu Y C, Li H J, Liu L, et al. Hafnium triflate as an efficient catalyst for direct Friedel-Crafts reactions of chromene hemiacetals. Advanced Synthesis & Catalysis,353(6):907-912
    [144]Noji M, Konno Y, Ishii K. Metal triflate-catalyzed cationic benzylation and allylation of 1,3-dicarbonyl compounds. Journal of Organic Chemistry 2007, 72(14):5161-5167
    [145]Mehring M, Nolde C, Schurmann M. A sterically congested aryltrimethylstannane-Synthesis, reactivity, transmetalation and CH-pi interaction. Inorganica Chimica Acta 2009,362(3):745-752
    [146]Wang Z Z, Fang S Y. Bismuth(Ⅲ) chloride catalyzed cycloisomerization of enynes. European Journal of Organic Chemistry 200932):5505-5508
    [147]Wei H, Qian G M, Xia Y Z, et al. BiCl3-catalyzed hydroamination of norbornene with aromatic amines. European Journal of Organic Chemistry 2007:4471-4474
    [148]Beck J, Hengstmann M, Schluter S. The Lewis acid-base adducts of bismuth and aluminium trihalides-crystal structures of [Bi2X4][AIX4]2 (X=Cl, Br). Zeitschrift Fur Kristallographie 2005,220(2-3):147-151
    [149]McCluskey A, Leitch S K, Garner J, et al. BiCl3-mediated opening of epoxides, a facile route to chlorohydrins or amino alcohols:one reagent, two paths. Tetrahedron Letters 2005,46(47):8229-8232
    [150]Peyronneau M, Roques N, Mazieres S, Roux C Le. Catalytic Lewis acid activation of thionyl chloride:application to the synthesis of aryl sulfinyl chlorides catalyzed by bismuth(Ⅲ) salts. Synlett 2003, (5):631-634
    [151]Repichet S, Roux C Le, Roques N, et al. BiCl3-catalyzed Friedel-Crafts acylation reactions:bismuth(Ⅲ) oxychloride as a water insensitive and recyclable procatalyst. Tetrahedron Letters 2003,44(10):2037-2040
    [152]Roux C Le, Dubac J. Bismuth(Ⅲ) chloride and triflate:Novel catalysts for acylation and sulfonylation reactions. Survey and mechanistic aspects. Synlett 2002, (2):181-200
    [153]Qussaid A, Garrigues B, Qussaid B, et al. Bismuth (Ⅲ) salts as catalysts in epoxide opening by amines. Phosphorus Sulfur and Silicon and the Related Elements 2002,177(10):2315-2320
    [154]Simeon F, Jaffres P A, Villemin D. A direct and new convenient oxidation: Synthesis of substituted arylphosphonates from aromatics. Tetrahedron 1998, 54(34):10111-10118
    [155]Wada M, Takahashi T, Domae T, et al. Asymmetric trimethylsilylcyanation of aldehydes utilizing chiral bismuth compounds. A frontier in bismuth mediated synthetic reactions. Tetrahedron-Asymmetry 1997,8(23):3939-3946
    [156]Hayashi R, Cook G R. Bi(OTf)3-catalyzed 5-exo-trig cyclization via halide activation. Tetrahedron Letters 2008,49(24):3888-3890
    [157]Rubenbauer P, Herdtweck E, Strassner T, et al. Bi(OTf)3-Catalyzed Diastereoselective S(N)1-Type Reactions of Chiral Propargylic Acetates. Angewandte Chemie-International Edition 2008,47(52):10106-10109
    [158]Kobayashi S, Ogino T, Shimizu H, et al. Bismuth triflate-chiral bipyridine complexes as water-compatible chiral Lewis acids. Organic Letters 2005,7(21): 4729-4731
    [159]Orita A, Tanahashi C. Kakuda A, et al. Highly efficient and versatile acylation of alcohols with Bi(OTf)3 as catalyst. Angewandte Chemie-International Edition 2000,39(16):2877-2879
    [160]Krabbe S W, Angeles V V, Mohan R S. Bismuth(Ⅲ) bromide in organic synthesis. A catalytic method for the allylation of tetrahydrofuranyl and tetrahydropyranyl ethers. Tetrahedron Letters 2010,51(43):5643-5645
    [161]Ollevier T, Nadeau E. An efficient and mild bismuth triflate-catalysed three-component Mannich-type reaction. Organic & Biomolecular Chemistry 2007,5(19):3126-3134
    [162]Naik T R R, Naik H S B. An efficient Bi(NO3)3·5H2O catalyzed multi component one-pot synthesis of novel naphthyridines. Molecular Diversity 2008, 12(2):139-142
    [163]Khosropour A R, Khodaei M M, Beygzadeh M. Highly convenient one-pot conversion of aryl acylals or aryl aldehyde bisulfites into dihydropyrimidones using Bi(NO3)3·5H2O. Heteroatom Chemistry 2007,18(6):684-687
    [164]Khodaei M M, Khosropour A R, Jowkar M. Bi(NO3)3·5H2O-TBAF as an efficient reagent for in situ oxidation:Dihydropyrimidinone formation from benzyl halides. Synthesis-Stuttgart 2005, (8):1301-1304
    [165]Khosropour A R, Khodaei M M, Beygzadeh M, et al. A one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones from primary alcohols promoted by Bi(NO3)3·5H2O in two different media:Organic solvent and ionic liquid. Heterocycles 2005,65(4):767-773
    [166]Khodaei M M, Khosropour A R, Beygzadeh M. An efficient and environmentally friendly method for synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by Bi(NO3)3·5H2O. Synthetic Communications 2004,34(9):1551-1557
    [167]Kadam S T, Thirupathi P, Kim S S. Synthetic application of in situ generation of N-acyliminium ions from alpha-amido p-tolylsulfones for the synthesis of alpha-amino nitriles. Tetrahedron 2010,66(9):1684-1688
    [168]Ishikawa T, Kumamoto T. Guanidines in organic synthesis. Synthesis-Stuttgart 2006, (5):737-752
    [169]Huang A P, Liu X Y, Li L H, et al. Antimony(V) chloride-benzyltriethylammonium chloride complex as an efficient catalyst for Friedel-crafts acylation reactions. Advanced Synthesis & Catalysis 2004,346(6): 599-602
    [170]Alt H G, Koppl A. Effect of the nature of metallocene complexes of group Ⅳ metals on their performance in catalytic ethylene and propylene polymerization. Chemical Reviews 2000,100(4):1205-1221
    [171]Chen E Y X, Marks T J. Cocatalysts for metal-catalyzed olefin polymerization: Activators, activation processes, and structure-activity relationships. Chemical Reviews 2000,100(4):1391-1434
    [172]Bochmann M. Highly electrophilic main group compounds:Ether and arene thallium and zinc complexes. Coordination Chemistry Reviews 2009,253(15-16): 2000-2014
    [173]Ferreira M J, Martins A M. Group 4 ketimide complexes:Synthesis, reactivity and catalytic applications. Coordination Chemistry Reviews 2006,250(1-2): 118-132
    [174]Lage M L, Curiel D, Fernandez I, et al. General route to olefins and polyenes having metal termini through the palladium-catalyzed self-dimerization of bimetallic Fischer carbenes. Organometallics 2011,30(7):1794-1803
    [175]Kourti M E, Vougioukalakis G C, Hadjichristidis N, et al. Metallocene-mediated cationic ring-opening polymerization of 2-methyl- and 2-phenyl-oxazoline. Journal of Polymer Science Part a-Polymer Chemistry 2010,49(11):2520-2527
    [176]Novarino E, Rios I G, van der Veer S, et al. Bouwkamp. Catalyst deactivation reactions:The role of tertiary amines revisited. Organometallics 2011,30(1): 92-99
    [177]Zhang Y T, Ning Y L, Caporaso L, et al. Catalyst-site-controlled Coordination polymerization of polar vinyl monomers to highly syndiotactic polymers. Journal of the American Chemical Society 2010,132(8):2695-2709
    [178]Sheng H T, Zhou H, Guo H D, et al. Synthesis and molecular structure of the cationic samarium phenoxide complex [(ArO)2Sm(DME)2][BPh4]center dot THF and its catalytic activity for the polymerization of epsilon-caprolactone. Journal of Organometallic Chemistry 2007,692(5):1118-1124
    [179]Qiu R H, Zhu Y Y, Xu X H, et al. Zirconocene bis(perfluorooctanesulfonate)s-catalyzed acylation of alcohols, phenols, thiols, and amines under solvent-free conditions. Catalysis Communications 2009, 10(14):1889-1892
    [180]Kantam M L, Aziz K, Likhar P R. Bis(cyclopentadienyl) zirconium dichloride catalyzed acetylation of phenols, alcohols and amines. Catalysis Communications 2006,7(7):484-487
    [181]Chakraborti A K, Gulhane R. Zirconium(IV) chloride as a new, highly efficient, and reusable catalyst for acetylation of phenols, thiols, amines, and alcohols under solvent-free conditions. Synlett 2004, (4):627-630
    [182]Knobloch D J, Benito-Garagorri D, Bernskoetter W H, et al. Addition of Methyl Triflate to a Hafnocene Dinitrogen Complex:Stepwise N2 Methylation and Conversion to a Hafnocene Hydrazonato Compound. Journal of the American Chemical Society 2009,131(41):14903-14912
    [183]Knobloch D J, Toomey H E, Chirik P J. Carboxylation of an ansa-zirconocene dinitrogen complex:Regiospecific hydrazine synthesis from N2 and CO2. Journal of the American Chemical Society 2008,130(13):4248-4249
    [184]Vagedes D, Erker G, Frohlich R. Synthesis and structural characterization of [H(OEt2)2]+[(C3H3N2){B(C6F5)3}2]--a Bronsted acid with an imidazole-derived 'non-coordinating' anion. Journal of Organometallic Chemistry 2002,641(1-2): 148-155
    [185]Qiu R H, Zhang G P, Xu X H, et al. Metallocene bis(perfluoroalkanesulfonate)s as air-stable cationic Lewis acids. Journal of Organometallic Chemistry 2009, 694(9-10):1524-1528
    [186]Schmidtchen F P. in Anion Sensing, Vol.255,2005, pp.1-29.
    [187]DiPasquale A G, Hrovat D A, Mayer J M. Non-redox-assisted oxygen-oxygen bond homolysis in titanocene alkylperoxide complexes: [Cp2TiⅣ(η1)-(OOBu)-Bu-t)L]+/0, L= Cl-, OTf, Br-, OEt2, Et3P. Organometallics 2006,25(4):915-924
    [188]Taw F L, Scott B L, Kiplinger J L. Early transition-metal perfluoroalkyl complexes. Journal of the American Chemical Society 2003,125(48): 14712-14713
    [189]Dunsizer R T, Marsico V M, Plantevin V, et al. Addition reactions of η3-allenyl/propargyl and η3 trimethylenemethane complexes of platinum and palladium. Inorganica Chimica Acta 2003,342:279-290
    [190]Della Sala G, Lattanzi A, Severino T, et al. The first application of titanocenes in the asymmetric oxidation of sulfides. Journal of Molecular Catalysis a-Chemical 2001,170(1-2):219-224
    [191]Hernandez-Gruel M A F, Perez-Torrente J J, Ciriano M A, et al. New early zirconium-sulfido metallaligands for late transition metals; Synthesis and reactivity of [(Cp2Zr)-Zr-tt(SH)2] and [(Cp2Zr)-Zr-tt(SH)(OTf)]. European Journal of Inorganic Chemistry 199911):2047-2050
    [192]Ellis W W, Gavrilova A, Liable-Sands L, et al. Homogeneous catalysis. Metallocene catalysts for [3+2] nitrone-olefin cycloaddition reactions. Organometallics 1999,18(3):332-338
    [193]Lin S Q, Bondar G V, Levy C J, et al. Mukaiyama aldol reactions catalyzed by zirconocene bis(triflate) complexes:Stereochemistry and mechanisms for C-C bond formation. Journal of Organic Chemistry 1998,63(6):1885-1892
    [194]Holland P L, Andersen R A, Bergman R G. Cyclopentadienyl and imide ligand transfer from zirconium to iridium:Can early transition metal imido compounds be used as imide transfer reagents? Organometallics 1998,17(3):433-437
    [195]Mashima K, Oshiki T, Matsuo Y, et al. Oxidative reaction of 1,5-dithioniabicyclo[3.3.0]octane bis(trifluoromethanesulfonate) with diene complexes of zirconium and tantalum:Synthesis of Cp2Zr(OTf)2(thf) and Cp(η4)-1,3-butadiene)Ta(OTf)2. Chemistry Letters 1997, (8):793-794
    [196]Luinstra G A, Rief U, Prosenc M H. Synthesis and Reactivity of Cp2ZrRH(OSO2CF3) A soluble alternative for schwartzs reagents, and the solid-state structure of its dimer, [Cp2Zr(OSO2CF3)(MU-H)]2-0.5THF. Organometallics 1995,14(4):1551-1552
    [197]J. A-D S Transition Metal Chemistry 2006,31:268-275
    [198]Otera J. Esterification:Methods, Reactions, and Applications, John Wiley & Sons,2003.
    [199]Liu Z C, Meng X H, Zhang R, et al. Friedel-Crafts acylation of aromatic compounds in ionic liquids. Petroleum Science and Technology 2009,27(2): 226-237
    [200]Mahato S B. Advances in the chemistry of Friedel-Crafts acylation. Journal of the Indian Chemical Society 2000,77(4):175-191
    [201]Zhang Z, Ma Y, Zhao Y. Microwave-assisted Friedel-Crafts reactions. Progress in Chemistry 2008,20(2-3):312-317
    [202]Jankowska J, Paradowska J, Rakiel B, et al. Iron(Ⅱ) and zinc(Ⅱ) complexes with designed pybox ligand for asymmetric aqueous Mukaiyama-aldol reactions. Journal of Organic Chemistry 2007,72(6):2228-2231
    [203]Jankowska J, Mlynarski J. Zn(pybox)-complex-catalyzed asymmetric aqueous Mukaiyama-aldol reactions. Journal of Organic Chemistry 2006,71(4): 1317-1321
    [204]Langner M, Remy P, Bolm C. Highly modular synthesis of C-l-symmetric aminosulfoximines and their use as ligands in copper-catalyzed asymmetric Mukaiyama-aldol reactions. Chemistry-a European Journal 2005,11(21): 6254-6265
    [205]Mlynarski J, Jankowska J. Asymmetric Mukaiyama-aldol reaction in aqueous media promoted by zinc-based chiral Lewis acids. Advanced Synthesis & Catalysis 2005,347(4):521-525
    [206]Benaglia M, Cinquini M, Cozzi F, et al. Enantioselective catalysis in water: Mukaiyama-aldol condensation promoted by copper complexes of bisoxazolines supported on poly(ethylene glycol). Organic & Biomolecular Chemistry 2004, 2(22):3401-3407
    [207]Leroux C, Gaspardiloughmane H, Dubac J, et al. New effective catalysis for Mukaiyama-aldol and Mukaiyama-Michael reactions-BiCl3-metallic iodide systems. Journal of Organic Chemistry 1993,58(7):1835-1839
    [208]Ramadhar T R, Batey R A. Allylation of Imines and Their Derivatives with Organoboron Reagents:Stereocontrolled Synthesis of Homoallylic Amines. Synthesis-Stuttgart 2011, (9):1321-1346
    [209]Zhao F, Zhang S, Xi Z. Silyl-substituted 1,3-butadienes for Diels-Alder reaction, ene reaction and allylation reaction. Chemical Communications 2011,47(15): 4348-4357
    [210]Kargbo R B, Cook G R. Stereoselective indium-mediated allylation reactions. Current Organic Chemistry 2007,11(15):1287-1309
    [211]Merino P, Tejero T, Delso J I, et al. Stereoselective allylation reactions of imines and related compounds. Current Organic Synthesis 2005,2(4):479-498
    [212]Denmark S E, Fu J P. Catalytic enantioselective allylation with chiral Lewis bases. Chemical Communications 2003, (2):167-170
    [213]Zhang P, Morken J P. Catalytic Enantioselective Allylation of Dienals through the Intermediacy of Unsaturated pi-Allyl Complexes. Journal of the American Chemical Society 2009,131(35):12550-12551
    [214]Jaquith J B, Levy C J, Bondar G V, et al. Diels-Alder Reactions of Oxazolidinone Dienophiles Catalyzed by Zirconocene Bis(triflate) Catalysts: Mechanism for Asymmetric Induction. Organometallics 1998,17,914-925
    [215]Jaquith J B, Guan J, Wang S, et al. Asymmetric Induction in the Diels-Alder Reaction Catalyzed by Chiral Metallocene Triflate Complexes:Dramatic Effect of Solvent Polarity. Organometallics 1995,14,1079-1081
    [216]Hong Y, Kuntz B A, Collins S. Asymmetric induction in the Diels-Alder reaction using chiral metallocene catalysts. Organometallics 1993,12,964-969
    [217]Bonnesen P V, Puckett C L, Honeychuck R V, et al. Catalysis of Diels-Alder reactions by low oxidation state transition-metal Lewis acids:fact and fiction. Journal of the American Chemical Society 1989,111,6070-6081
    [218]Lin S, Bondar G, Levy C J, et al. Mukaiyama Aldol Reactions Catalyzed by Zirconocene Bis(triflate) Complexes:Stereochemistry and Mechanisms for C-C Bond Formation. The Journal of Organic Chemistry 1998,63,1885-1892
    [219]Matheu M I, Ecgarri R E, Castillon S. Stereoselective synthesis of nucleosides by metallocene-promoted activation of glycosyl fluorides Tetrahedron Lett.1992, 33,1093-1096
    [220]Tanaka H, Adachi M, Tsukamoto H, et al. Synthesis of Di-Branched Heptasaccharide by One-Pot Glycosylation Using Seven Independent Building Blocks. Organic Letters 2002,4,4213-4216
    [221]Beletskaya I P, Ananikov V P. Transition-Metal-Catalyzed C-S, C-Se, and C-Te Bond Formation via Cross-Coupling and Atom-Economic Addition Reactions. Chemical Reviews 2011,111(3):1596-1636
    [222]Fujiwara S-i, Toyofuku M, Kuniyasu H, et al. Transition-metal-catalyzed cleavage of carbon-selenium bond and addition to alkynes and allenes. Pure and Applied Chemistry 2010,82(3):565-575
    [223]Bower J F, Kim I S, Patman R L, et al. Catalytic Carbonyl Addition through Transfer Hydrogenation:A Departure from Preformed Organometallic Reagents. Angewandte Chemie-International Edition 2009,48(1):34-46
    [224]Han B, Xiao Y-C, Yao Y, et al. Lewis Acid Catalyzed Intramolecular Direct Ene Reaction of Indoles. Angewandte Chemie-International Edition 2010,49(52): 10189-10191
    [225]Hrdina R, Mueller C E, Wende R C, et al. Silicon-(Thio)urea Lewis Acid Catalysis. Journal of the American Chemical Society 2011,133(20):7624-7627
    [226]Iwata M, Yazaki R, Chen I H, et al. Direct Catalytic Enantio- and Diastereoselective Aldol Reaction of Thioamides. Journal of the American Chemical Society 2011,133(14):5554-5560
    [227]Nakajima K, Baba Y, Noma R, et al. Nb2O5·nH2O as a Heterogeneous Catalyst with Water-Tolerant Lewis Acid Sites. Journal of the American Chemical Society 2011,133(12):4224-4227
    [228]Ratjen L, Garcia-Garcia P, Lay F, et al. Disulfonimide-Catalyzed Asymmetric Vinylogous and Bisvinylogous Mukaiyama Aldol Reactions. Angewandte Chemie-International Edition 2011,50(3):754-758
    [229]Zhao J-F, Tan B-H, Loh T-P. In(Ⅲ)-pybox complex catalyzed enantioselective Mukaiyama aldol reactions between polymeric or hydrated glyoxylates and enolsilanes derived from aryl ketones. Chemical Science 2011,2(2):349-352
    [230]Frings M, Atodiresei I, Runsink J, et al. Catalyzed Vinylogous Mukaiyama Aldol Reactions with Controlled Enantio- and Diastereoselectivities. Chemistry-a European Journal 2009,15(7):1566-1569
    [231]Frings M, Atodiresei I, Wang Y, et al. C(1)-Symmetric Aminosulfoximines in Copper-Catalyzed Asymmetric Vinylogous Mukaiyama Aldol Reactions. Chemistry-a European Journal 2010,16(15):4577-4587
    [232]Olmos A, Alix A, Sommer J, Pale P. Sc(Ⅲ)-Doped Zeolites as New Heterogeneous Catalysts:Mukaiyama Aldol Reaction. Chemistry-a European Journal 2009,15(42):11229-11234
    [233]Evans D A, Dart M J, Duffy J L, et al. A stereochemical model for merged 1,2-and 1,3-asymmetric induction in diastereoselective Mukaiyama aldol addition reactions and related processes. Journal of the American Chemical Society 1996, 118(18):4322-4343
    [234]Hollis T K, Bosnich B. Homogeneous catalysis-mechanisms of the catalytic Mukaiyama aldol reactions. Journal of the American Chemical Society 1995, 117(16):4570-4581
    [235]Braunschweig H, Cogswell P, Schwab K. Synthesis, structure and reactivity of complexes containing a transition metal-bismuth bond. Coordination Chemistry Reviews 2011,255(1-2):101-117
    [236]Cai C, Yi W-B, Zhang W, et al. Fluorous Lewis acids and phase transfer catalysts. Molecular Diversity 2009,13(2):209-239
    [237]Nagase R, Osada J, Tamagaki H, et al. Pentafluorophenylammonium Trifluoromethanesulfonimide:Mild, Powerful, and Robust Catalyst for Mukaiyama Aldol and Mannich Reactions between Ketene Silyl Acetals and Ketones or Oxime Ethers. Advanced Synthesis & Catalysis 2010,352(7): 1128-1134
    [238]Hatano M, Horibe T, Ishihara K. Chiral lithium(Ⅰ) Binaphtholate salts for the enantioselective direct Mannich-type reaction with a change of Syn/Anti and absolute stereochemistry. Journal of the American Chemical Society 2010,132(1): 56-57
    [239]Chen S, Hou Z, Zhu Y, et al. Highly enantioselective one-pot, three-Component Mannich-type reaction catalyzed by an N,N'-dioxide-Scandium(Ⅲ) complex. Chemistry-a European Journal 2009,15(24):5884-5887
    [240]Hernandez-Toribio J, Gomez Arrayas R, Carretero J C. Direct mannich reaction of glycinate schiff bases with N-(8-Quinolyl)sulfonyl imines:A catalytic asymmetric approach to anti-alpha,beta-Diamino Esters. Journal of the American Chemical Society 2008,130(48):16150-16151
    [241]Tanaka S-y, Tagashira N, Chiba K, et al. Germanium(II)-mediated reductive Mannich-type reaction of alpha-bromoketones to N-alkylimines. Angewandte Chemie-International Edition 2008,47(35):6620-6623
    [242]Hashimoto T, Maruoka K. Design of axially chiral dicarboxylic acid for asymmetric Mannich reaction of arylaldehyde N-Boc imines and diazo compounds. Journal of the American Chemical Society 2007,129(33): 10054-10055
    [243]Lou S, Taoka B M, Ting A, et al. Asymmetric Mannich reactions of beta-keto esters with acyl imines catalyzed by cinchona alkaloids. Journal of the American Chemical Society 2005,127(32):11256-11257
    [244]Qiu R H, Zhang G P, Zhu Y Y, et al. Synthesis and Structure of an Extremely Air-Stable Binuclear Hafnocene Perfluorooctanesulfonate Complex and Its Use in Lewis Acid-Catalyzed Reactions. Chemistry-a European Journal 2009,15(26): 6488-6494
    [245]Leroux C, Gaspardiloughmane H, Dubac J. Synthesis of functional furan-derivatives via enoxysilane intermediates-crossed aldolization and Michael addition catalyzed by BiCl3-metal idoide systems. Bulletin De La Societe Chimique De France 1993,130(6):832-842
    [246]Keramane E M, Boyer B, Roque J P. BiBr3-catalyzed benzylation of alcohols. Stereochemistry and mechanistic investigations. Tetrahedron 2001,57(10): 1917-1921
    [247]Ley S V, Thomas A W. Modern synthetic methods for copper-mediated Caryl-O, Caryl-N, and Caryl-S bond formation. Angewandte Chemie-International Edition 2003,42(44):5400-5449
    [248]Ozanne-Beaudenon A, S. Quideau. Regioselective hypervalent-iodine (Ⅲ)-mediated dearomatizing phenylation of phenols through direct ligand coupling. Angewandte Chemie-International Edition 2005,44(43):7065-7069
    [249]Shimada S, Yamazaki O, Tanaka T, et al. 5,6,7,12-tetrahydrodibenz[c,f][1,5]azabismocines:Highly reactive and recoverable organobismuth reagents for cross-coupling reactions with aryl bromides. Angewandte Chemie-International Edition 2003,42(16):1845-1848
    [250]Shimada S, Yamazaki O, Tanaka T, et al. Tanaka. 5,6,7,12-tetrahydrodibenz[c,f][1,5] azabismocines:Highly reactive and recoverable organobismuth reagents for cross-coupling reactions with aryl bromides. Angewandte Chemie-International Edition 2003,42(24):2702-2705
    [251]Simon P, Pro ft F de, Jambor R, et al. Monomeric Organoantimony(Ⅰ) and Organobismuth(Ⅰ) Compounds Stabilized by an NCN Chelating Ligand:Syntheses and Structures. Angewandte Chemie-International Edition 2010,49(32): 5468-5471
    [252]Yin S F, Maruyama J, Yamashita T, et al. Efficient fixation of carbon dioxide by hypervalent organobismuth oxide, hydroxide, and alkoxide. Angewandte Chemie-International Edition 2008,47(35):6590-6593
    [253]Inagaki A, Akita M. Visible-light promoted bimetallic catalysis. Coordination Chemistry Reviews 2010,254(11-12):1220-1239
    [254]Man M L, Zhou Z Y, Ng S M, et al. Synthesis, characterization and reactivity of heterobimetallic complexes (η5-C5R5)Ru(CO)(μ-dppm)M(CO)2(η5-C5H5) (R=H, CH3; M=Mo, W). Interconversion of hydrogen/carbon dioxide and formic acid by these complexes. Dalton Transactions 2003 (19):3727-3735
    [255]Nakano K, Hashimoto S, Nozaki K. Bimetallic mechanism operating in the copolymerization of propylene oxide with carbon dioxide catalyzed by cobalt-salen complexes. Chemical Science 2011,1(3):369-373
    [256]Raebiger J W, Turner J W, Noll B C, et al. Electrochemical reduction of CO2 to CO catalyzed by a bimetallic palladium complex. Organometallics 2006,25(14): 3345-3351
    [257]Sehested J, Larsen K E, Kustov A L, et al. Discovery of technical methanation catalysts based on computational screening. Topics in Catalysis 2007,45(1-4): 9-13
    [258]Bao M, Hayashi T, Shimada S. Cationic organobismuth complex with 5,6,7,12-tetrahydro-dibenz[c,f][1,5]azabismocine framework and its coordination complexes with neutral molecules. Organometallics 2007,26(7):1816-1822
    [259]Yang N, Sun H. Biocoordination chemistry of bismuth:Recent advances. Coordination Chemistry Reviews 2007,251(17-20):2354-2366
    [260]Shimada S. Recent Advances in the Synthesis and Application of Bismuth-Containing Heterocyclic Compounds. Current Organic Chemistry 2011, 15(5):601-620
    [261]Luan J F, Zhang L Y, Hu Z T. Synthesis, Properties Characterization and Applications of Various Organobismuth Compounds. Molecules 2011,16(5): 4191-4230
    [262]Clegg W, Harrington R W, North M, et al. Cyclic Carbonate Synthesis Catalyzed by Bimetallic Aluminium-Salen Complexes. Chemistry a European Journal 2010, 16(23):6828-6843
    [263]Clegg W, Harrington R W, North M, et al. A Bimetallic Aluminum(salen) Complex for the Synthesis of 1,3-Oxathiolane-2-thiones and 1,3-Dithiolane-2-thiones. The Journal of Organic Chemistry 2010,75(18): 6201-6207
    [264]Melendez J, North M, Villuendas P, et al. One-component bimetallic aluminium(salen)-based catalysts for cyclic carbonate synthesis and their immobilization. Dalton Transactions.2011,40(15):3885-3902
    [265]North M, Pasquale R. Mechanism of cyclic carbonate synthesis from epoxides and CO2. Angewandte Chemie-International Edition 2009,48(16):2946-2948
    [266]Williams C K, Kember M R, White A J P. Bimetallic catalysts for CO2-cyclohexene oxide copolymerizations. Polymer Preprint 2010,51(2): 396-398
    [267]Hoashi Y, Okino T, Takemoto Y. Enantioselective Michael addition to alpha,beta-unsaturated imides catalyzed by a bifunctional organocatalyst. Angewandte Chemie-International Edition 2005,44(26):4032-4035
    [268]Kull T, Peters R. Contact ion pair directed Lewis acid catalysis:Asymmetric synthesis of trans-configured beta-lactones. Angewandte Chemie-International Edition 2008,47(29):5461-5464
    [269]McCooey S H, Connon S J. Urea- and thiourea-substituted cinchona alkaloid derivatives as highly efficient bifunctional organocatalysts for the asymmetric addition of malonate to nitroalkenes:Inversion of configuration at C9 dramatically improves catalyst performance. Angewandte Chemie-International Edition 2005,44(39):6367-6370
    [270]Shitama H, Katsuki T. Asymmetric Simmons-Smith reaction of allylic alcohols with al Lewis acid/N Lewis base bifunctional Al(Salalen) catalyst. Angewandte Chemie-International Edition 2008,47(13):2450-2453
    [271]Takizawa S, Matsui K, Sasai H. Bifunctional organocatalysts for enantioselective aza-Morita-Baylis-Hillman (aza-MBH) reactions. Journal of Synthetic Organic Chemistry Japan 2007,65:1089-1098
    [272]Rueping M, Vila C, Koenigs R M, et al. Dual catalysis:combining photoredox and Lewis base catalysis for direct Mannich reactions. Chemical Communications 2011,47(8):2360-2362
    [273]Suzuki Y, Yazaki R, Kumagai N, et al. Direct Catalytic Asymmetric Mannich-Type Reaction of Thioamides. Angewandte Chemie-International Edition 2009,48(27):5026-5029
    [274]Notte G T, Leighton J L. A new silicon lewis acid for highly enantioselective Mannich reactions of aliphatic ketone-derived hydrazones. Journal of the American Chemical Society 2008,130(21):6676-6677
    [275]Selander N, Kipke A, Sebelius S, et al. Petasis borono-mannich reaction and allylation of carbonyl compounds via transient allyl boronates generated by palladium-catalyzed substitution of allyl alcohols. An efficient one-pot route to stereodefined alpha-amino acids and homoallyl alcohols. Journal of the American Chemical Society 2007,129(44):13723-13731
    [276]Wei Y, Shi M. Multifunctional Chiral Phosphine Organocatalysts in Catalytic Asymmetric Morita-Baylis-Hillman and Related Reactions. Accounts of Chemical Research 2010,43(7):1005-1018
    [277]Zhang W X, Zhang S G, Xi Z F. Zirconocene and Si-Tethered Diynes:A Happy Match Directed toward Organometallic Chemistry and Organic Synthesis. Accounts of Chemical Research 2011,44(7):541-551
    [278]Huang H C, Jin Z C, Zhu K L, et al. Highly Diastereo- and Enantioselective Synthesis of 5-Substituted 3-Pyrrolidin-2-ones:Vinylogous Michael Addition under Multifunctional Catalysis. Angewandte Chemie-International Edition 2011, 50(14):3232-3235
    [279]Piovesana S, Schietroma D M S, Bella M. Multiple Catalysis with Two Chiral Units:An Additional Dimension for Asymmetric Synthesis. Angewandte Chemie-International Edition 2011,50(28):6216-6232
    [280]Roman B I, Kimpe N De, Stevens C V. Synthesis of beta-, gamma-, delta-omega-Halogenated Ketones and Aldehydes. Chemical Reviews 2011,110(10): 5914-5988
    [281]Chai G B, Wu S Z, Fu C L, et al. A straightforward synthesis of cyclobutenones via a tandem Michael addition/cyclization reaction of 2,3-allenoates with organozincs. Journal of the American Chemical Society 2011,133(11): 3740-3743
    [282]Hartog T den, Rudolph A, Macia B, et al. Copper-catalyzed enantioselective synthesis of trans-1-alkyl-2-substituted cyclopropanes via tandem conjugate addition-intramolecular enolate trapping. Journal of the American Chemical Society 2010,132(41):14349-14351
    [283]Fananas-Mastral M, Feringa B L. Copper-catalyzed regio- and enantioselective synthesis of chiral enol acetates and beta-substituted aldehydes. Journal of the American Chemical Society 2010,132(38):13152-13153
    [284]Kang Y K, Kim S M, Kim D Y. Enantioselective organocatalytic C-H bond functionalization via tandem 1,5-hydride transfer/ring closure:asymmetric synthesis of tetrahydroquinolines. Journal of the American Chemical Society 2010,132(34):11847-11849
    [285]Liu W P, Li Y M, Liu K S, et al. Iron-catalyzed carbonylation-peroxidation of alkenes with aldehydes and hydroperoxides. Journal of the American Chemical Society 2011,133(28):10756-10759
    [286]Nishimura T, Unni A K, Yokoshima S, et al. Concise total synthesis of (+)-lyconadin A. Journal of the American Chemical Society 2011,133(3): 418-419
    [287]O'Brien J M, Lee K S, Hoveyda A H. Enantioselective synthesis of boron-substituted quaternary carbons by NHC-Cu-Catalyzed boronate conjugate additions to unsaturated carboxylic esters, ketones, or thioesters. Journal of the American Chemical Society 2010,132(31):10630-10633
    [288]Shen Z L, Goh K K K, Cheong H L, et al. Synthesis of water-tolerant indium homoenolate in aqueous dedia and its application in the synthesis of 1,4-dicarbonyl compounds via palladium-catalyzed coupling with acid chloride. Journal of the American Chemical Society 2010,132(45):15852-15855
    [289]Ureshino T, Yoshida T, Kuninobu Y, et al. Rhodium-catalyzed synthesis of silafluorene derivatives via cleavage of silicon-hydrogen and carbon-hydrogen bonds. Journal of the American Chemical Society 2010,132(41):14324-14326
    [290]van der Westhuyzen R, Strauss E. Michael acceptor-containing coenzyme a analogues as inhibitors of the atypical coenzyme a disulfide reductase from staphylococcus aureus. Journal of the American Chemical Society 2010,132(37): 12853-12855
    [291]Wu X F, Neumann H, Spannenberg A, Schulz T, et al. Development of a general Palladium-catalyzed carbonylative Heck reaction of aryl halides. Journal of the American Chemical Society 2010,132(41):14596-14602
    [292]Werner T. Phosphonium salt organocatalysis. Advanced Synthesis & Catalysis 2009,351(10):1469-1481
    [293]Nishimoto Y, Onishi Y, Yasuda M, et al. alpha-Alkylation of carbonyl compounds by direct addition of alcohols to enol acetates. Angewandte Chemie-International Edition 2009,48(48):9131-9134
    [294]Kubiak R, Prochnow I, Doye S. Titanium-catalyzed hydroaminoalkylation of alkenes by C-H bond activation at sp centers in the alpha-Position to a nitrogen atom. Angewandte Chemie-International Edition 2009,48(6):1153-1156
    [295]Garcia-Garcia P, Lay F, C. Rabalakos, et al. A powerful chiral counteranion motif for asymmetric catalysis. Angewandte Chemie-International Edition 2009, 48(24):4363-4366
    [296]Zintl M, Molnar F, Urban T, et al. Variably isotactic poly(hydroxybutyrate) from racemic beta-butyrolactone:Microstructure control by achiral chromium(Ⅲ) salophen complexes. Angewandte Chemie-International Edition 2008,47(18): 3458-3460
    [297]Teichert A, Pfaltz A. Mass spectrometric screening of enantioselective Diels-Alder reactions. Angewandte Chemie-International Edition 2008,47(18): 3360-3362
    [298]Jensen M P, Dzielawa J A, Rickert P, et al. EXAFS Investigations of the Mechanism of Facilitated Ion Transfer into a Room-Temperature Ionic Liquid. Journal of the American Chemical Society 2002,124:10664-10665
    [299]Lee S-g. Functionalized imidazolium salts for task-specific ionic liquids and their applications. Chemical Communications 2006:1049-1063
    [300]Palomar J, Torrecilla J S, Ferro V R, et al. Development of an a Priori Ionic Liquid Design Tool.1. Integration of a Novel COSMO-RS Molecular Descriptor on Neural Network. Industrial & Engineering Chemistry Research 2008,47: 4523-4532
    [301]Panchgalle S P, Kalkote U R, Niphadkar P S, et al. Chaphekar. Sn-b molecular sieve catalysed Baeyer-Villiger oxidation in ionic liquid at room temperature. Green Chemistry 2004,6:308-309
    [302]Sarca V D, Laali K K. Triflic acid-promoted transacylation and deacylation reactions in ionic liquid solvents. Green Chemistry 2004,6:245-248
    [303]Yadav J S, Reddy B V S, Basak A K, et al. [Bmim]BF4 ionic liquid:a novel reaction medium for the synthesis of -amino alcohols. Tetrahedron Lett.2003,44: 1047-1050
    [304]Yadav J S, Reddy B V S, Eeshwaraiah B, et al. Bi(OTf)3/[bmim]BF4 as novel and reusable catalytic system for the synthesis of furan, pyrrole and thiophene derivatives. Tetrahedron Lett.2004,45:5873-5876
    [305]Zerth H M, Leonard N M, Mohan R S. Synthesis of homoallyl ethers via allylation of acetals in ionic liquids catalyzed by trimethylsilyl trifluoromethanesulfonate. Organic Letters 2003,5(1):55-57
    [306]Zhao H, Malhotra S V. Applications of ionic liquids in organic synthesis. Aldrichimica Acta 2002,35(3):75-83
    [307]Zhang X W, Xia J, Yan H W, et al. Synthesis, structure, and in vitro antiproliferative activity of cyclic hypervalent organobismuth(Ⅲ) chlorides and their triphenylgermylpropionate derivatives. Journal of Organometallic Chemistry 2009,694(18):3019-3026
    [308]Benesi H A. Acidity of catalyst surfaces. Ⅰ. acid strength from colors of adsorbed indicators. Journal of the American Chemical Society 1956,78:5490-5494
    [309]Benesi H A. Acidity of catalyst surfaces. Ⅱ. amine titration using Hammett indicators The Journal of Physical Chemistry 1957,61:970-973
    [310]Trost B M, Sharma S, Schmidt T. Coordinative Cocatalysis via In3+. A Chemoselectivity Switch for Pd-Catalyzed Cycloadditions. Journal of the American Chemical Society 1992,114:7904-7906
    [311]Chu F, Flatt L S, Anslyn E V. Complexation of phosphoric acid diesters with polyaza-clefts in chloroform:effects of phosphodiester dimerization, changing cavity size, and preorganizing amine recognition units. Journal of the American Chemical Society 1994,116:4194-4204
    [312]Jeon S-J, Walsh P J. Asymmetric addition of alkylzinc reagents to cyclic r,a-unsaturated ketones and a tandem enantioselective addition/diastereoselective epoxidation with dioxygen. Journal of the American Chemical Society 2003,125: 9544-9545
    [313]Kim J G, Waltz K M, Garcia I F, et al. Catalytic asymmetric allylation of ketones and a tandem asymmetric allylation/diastereoselective epoxidation of cyclic enones. Journal of the American Chemical Society 2004,126:12580-12585
    [314]Jeon S-J, Li H, Garci'a C, et al. Catalytic asymmetric addition of alkylzinc and functionalized alkylzinc reagents to ketones. The Journal of Organic Chemistry 2005,70:448-455
    [315]Jeon S-J, Li H, Walsh P J. A Green chemistry approach to a more efficient asymmetric catalyst:solvent-free and highly concentrated alkyl additions to ketones. Journal of the American Chemical Society 2005,127:16416-16425
    [316]Wadamoto M, Yamamoto H. Silver-Catalyzed Asymmetric Sakurai-Hosomi allylation of ketones. Journal of the American Chemical Society 2005,127: 14556-14557
    [317]Kim J G, Camp E H, Walsh P J. Catalytic Asymmetric methallylation of ketones with an (H8-BINOLate)Ti-based catalyst. Organic Letters 2006,8(20):4413-4416
    [318]Pryde D C, Maw G N, Planken S, et al. Novel selective inhibitors of neutral endopeptidase for the treatment of female sexual arousal disorder. Synthesis and activity of functionalized glutaramides. Journal of the Medicine Chemistry 2006, 49:4409-4424
    [319]Wang S, Zhang L. A Gold-Catalyzed Unique Cycloisomerization of 1,5-Enynes: Efficient formation of 1-carboxycyclohexa-1,4-dienes and carboxyarenes. Journal of the American Chemical Society 2006,128:14274-14275
    [320]Austin M, Egan O J, Tully R, et al. Quinoline synthesis:scope and regiochemistry of photocyclisation of substituted benzylidenecyclopentanone O-alkyl and O-acetyloximes. Organic & Biomolecular Chemistry 2007,5: 3778-3786
    [321]Caruana P A, Frontier A J. Palladium(Ⅱ)-and mercury(Ⅱ)-catalyzed rearrangements of propargyl acetates. Tetrahedron 2007,63:10646-10656
    [322]Huang X, Zhang L. Two-step formal [3+2] cycloaddition of enones/enals and allenyl MOM ether:gold-catalyzed highly diastereoselective synthesis of cyclopentanone enol ether containing an all-carbon quaternary center. Journal of the American Chemical Society 2007,129:6398-6399
    [323]Wooten A J, Kim J G, Walsh P J. Highly concentrated catalytic asymmetric allylation of ketones. Organic Letters 2007,9(3):381-384
    [324]Ebner D C, Trend R M, Genet C, et al. Palladium-catalyzed enantioselective oxidation of chiral secondary alcohols:access to both enantiomeric series. Angewandte Chemie-International Edition 2008,47:6367-6370
    [325]El-Gazzar A-R B A, El-Enany M M, Mahmoud M N. Synthesis, analgesic, anti-inflammatory, and antimicrobial activity of some novel pyrimido[4,5-b]quinolin-4-ones. Bioorganic Medicine Chemistry 2008,16: 3261-3273
    [326]Lu W-J, Chen Y-W, Hou X-L. Iridium-Catalyzed Highly Enantioselective Hydrogenation of the C=C Bond of a, b-Unsaturated Ketones. Angewandte Chemie-International Edition 2008,47:10133-10136
    [327]Sugiura M, Sato N, Kotani S, et al. Lewis base-catalyzed conjugate reduction and reductive aldol reaction of a,b-unsaturated ketones using trichlorosilanew. Chemical Communications 2008:4309-4311
    [328]Wen S-G, Liu W-M, Liang Y-M. Electrophile-Induced Cyclization/Migration Reaction for the Synthesis of 2,3-Dihydro-5-iodopyran-4-one.The Journal of the Organic Chemistry 2008,73:4342-4344
    [329]Nakhai A, Bergman J. Synthesis of hydrogenated indazole derivatives starting with a,b-unsaturated ketones and hydrazine derivatives. Tetrahedron 2009,65: 2298-2306
    [330]Breunig H J, Ghesner I. Coordination compounds with organoantimony and Sb-n ligands. Advances in Organometallic Chemistry 2003,49:95-131
    [331]Waterman R, Tilley T D. Catalytic antimony-Antimony bond formation through stibinidene elimination from zirconocene and hafnocene complexes. Angewandte Chemie-International Edition 2006,45(18):2926-2929
    [332]Matsukawa S, Yamamichi H, Yamamoto Y, et al. Pentacoordinate organoantimony compounds that isomerize by turnstile rotation. Journal of the American Chemical Society 2009,131(10):3418-3419
    [333]Darabi H R, Aghapoor K, Mohsenzadeh F, et al. Silica-supported antimony(Ⅲ) chloride as highly effective and reusable heterogeneous catalyst for the synthesis of quinoxalines. Catalysis Letters 2009,133(1-2):84-89
    [334]Bhattacharya A K, Diallo M A, Ganesh K N. SbCl3 as a highly efficient catalyst for the acetylation of alcohols, phenols, and amines under solvent-free conditions. Synthetic Communications 2008,38(10):1518-1526
    [335]Kildahl-Andersen G, Naess S N, Aslaksen P B, et al. Studies on the mechanism of the Carr-Price blue colour reaction. Organic & Biomolecular Chemistry 2007, 5:3027-3033
    [336]Wu Q P, Chen W, Yang Y, et al. Mild, efficient and highly selective hydrolysis of acetonides with antimony trichloride. Letters in Organic Chemistry 2006,3(4): 271-274
    [337]Ohe T, Uemura S. Palladium(Ⅱ)-catalyzed Michael-type hydroarylation of nitroalkenes using aryltins and sodium tetraarylborates. Bulletin of the Chemical Society of Japan 2003,76(7):1423-1431
    [338]Toledo E A, Gushikem Y, de Castro S C. Antimony(Ⅲ) oxide film on a cellulose fiber surface:Preparation and characterization of the composite. Journal of Colloid and Interface Science 2000,225(2):455-459
    [339]Cunningham D, Landers E M, McArdle P, et al. Triphenylphosphine oxide adducts of diphenylantimony(V) and diorganotin(IV) Lewis acids:structures of SnPh2Cl2 center dot OPPh3, SnPb2Cl2·2OPPh3, SnPh2Br2·OPPh3 and SbPh2Cl3·OPPh3. Journal of Organometallic Chemistry 2000,612(1-2):53-60
    [340]Barucki H, Coles S J, Costello J F, et al. Characterising secondary bonding interactions within triaryl organoantimony(V) and organobismuth(V) complexes. Journal of the Chemical Society-Dalton Transactions 2000, (14):2319-2325
    [341]Akiyama R, Kobayashi S. "Microencapsulated" and related catalysts for organic chemistry and organic synthesis. Chemical Reviews 2009,109(2):594-642
    [342]Pan C, Wang Z. Catalytic asymmetric formation of carbon-carbon bond in the presence of water. Coordination Chemistry Reviews 2008,252(5-7):736-750
    [343]Akiyama T. Stronger bronsted acids. Chemical Reviews 2007,107(12): 5744-5758
    [344]Andrade C K Z, Rocha R O. Recent applications of niobium catalysts in organic synthesis. Mini-Reviews in Organic Chemistry 2006,3(4):271-280
    [345]Li C J. Organic reactions in aqueous media with a focus on carbon-carbon bond formations:A decade update. Chemical Reviews 2005,105(8):3095-3165
    [346]Frost C G, Hartley J P. New applications of indium catalysts in organic synthesis. Mini-Reviews in Organic Chemistry 2004,1(1):1-7
    [347]Lindstrom U M. Stereoselective organic reactions in water. Chemical Reviews 2002,102(8):2751-2771
    [348]Kobayashi S, Sugiura M, Kitagawa H, et al. Rare-earth metal triflates in organic synthesis. Chemical Reviews 2002,102(6):2227-2302
    [349]Casiraghi G, Zanardi F, Appendino G, et al. The vinylogous aldol reaction:A valuable, yet understated carbon-carbon bond-forming maneuver. Chemical Reviews 2000,100(6):1929-1972
    [350]Kamble V T, Joshi N S. Synthesis of beta-amino alcohols by ring opening of epoxides with amines catalyzed by cyanuric chloride under mild and solvent-free conditions. Green Chemistry Letters and Reviews 2010,3(4):275-281
    [351]Peruncheralathan S, Teller H, Schneider C. Titanium Binolate Catalyzed Aminolysis of meso Aziridines:A Highly Enantioselective and Direct Access to 1,2-Diamines. Angewandte Chemie-International Edition 2009,48(26): 4849-4852
    [352]Mai E, Schneider C. Scandium-bipyridine-catalyzed enantioselective aminolysis of meso-epoxides. Chemistry-a European Journal 2007,13(9):2729-2741
    [353]Bao H, Zhou J, Wang Z, Guo Y, et al. Insight into the mechanism of the asymmetric ring-opening aminolysis of 4,4-dimethyl-3,5,8-trioxabicyclo[5.1.0]octane catalyzed by titanium/BINOLate/water system:Evidence for the Ti(BINOLate)(2)-bearing active catalyst entities and the role of water. Journal of the American Chemical Society 2008,130(31):10116-10127
    [354]Schulz S, Spielmann J, Blaeser D, et al. X-Ray crystal structure of a heterobimetallic Al-Zn-oxide complex. Chemical Communications 2011,47(9): 2676-2678
    [355]Mouri S, Chen Z, Mitsunuma H, et al. Catalytic Asymmetric Synthesis of 3-Aminooxindoles:Enantiofacial Selectivity Switch in Bimetallic vs Monometallic Schiff Base Catalysis. Journal of the American Chemical Society 2010,132(4):1255-1257
    [356]Piesik D F J, Range S, Harder S. Bimetallic Calcium and Zinc Complexes with Bridged-Diketiminate Ligands:Investigations on Epoxide/CO2 Copolymerization. Organometallics 2008,27(23):6178-6187
    [357]Bok T, Yun H, Lee B Y. Bimetallic Fluorine-Substituted Anilido-Aldimine Zinc Complexes for CO2/(Cyclohexene Oxide) Copolymerization. Inorganic Chemistry 2006,45(10):4228-4237
    [358]Yoshikai N, Yamanaka M, Ojima I, et al. Bimetallic Synergism in Alkyne Silylformylation Catalyzed by a Cobalt-Rhodium Mixed-Metal Cluster. Organometallics 2006,25(16):3867-3875
    [359]Lee B Y, Kwon H Y, Lee S Y, et al. Bimetallic Anilido-Aldimine Zinc Complexes for Epoxide/CO2 Copolymerization. Journal of the American Chemical Society 2005,127(9):3031-3037
    [360]Kabalka G W, Venkataiah B, Dong G. Palladium-Catalyzed Regio- and Stereoselective Cross-Coupling of Baylis-Hillman Adducts and Bimetals:A Novel Method for the Synthesis of Substituted Allylsilanes and Allylgermanes. Organometallics 2005,24(4):762-764

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700