用户名: 密码: 验证码:
华北冬小麦—夏玉米轮作区干旱灾害风险评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北平原是中国农业主产区和粮食生产基地,冬小麦-夏玉米轮作是该地区主要的种植模式。本研究综合气象学、农学、灾害学等多学科的理论和方法,以华北地区京津冀鲁豫5省市冬小麦-夏玉米轮作种植制度为研究对象,基于该地区1981~2009年的农业气象站点资料,综合利用区域气候模式、作物模型等工具,采用月、周尺度的帕默尔干旱指数来衡量作物生育阶段的农业干旱,评估A1B情景1961~1990年和2011~2050年两个时段下,基于当前生产水平条件的新旧轮作区内干旱时空分布及干旱灾害风险。本研究主要的成果和结论如下:
     (1)A1B情景2011~2050年,华北地区冬小麦适种北界、夏玉米潜在种植区北移,冬小麦-夏玉米轮作区范围向东向北扩张;轮作区降水适宜度显著提高,未来降水条件将更有利于小麦、玉米的生长。
     (2)过去50年内(1961~2010年)华北区的年尺度干湿状况具有三类分布型,即全区干湿一致型、南北反向型和东西反向型;从时间系数上看,自80年代后期全区性的干旱程度加重。
     A1B情景下1961~1990年基准时段,华北轮作区的夏玉米、冬小麦全生育期干旱分布分别具有全区一致、南北反向、中部与南北反向的三类分布型;在80年代之前,全区一致分布型的典型性较高;80年代,后两种分布型较为典型。A1B情景下未来40a(2011~2050年),华北轮作区夏玉米、冬小麦全生育期的干旱分布特征,具有典型的全区一致性,并且在20年代~40年代初两种作物均呈现典型的连续20年的全区性的干旱。
     (3)A1B情景下1961~1990年(基准时段)和2011~2050年两个时段的玉米干旱发生频率差异较冬小麦大。未来40a冬小麦和夏玉米干旱发生频率增加,其中夏玉米大于0.45高发频率范围增加最为显著,冬小麦干旱发生频率介于0.35~0.45之间的范围增加最为显著。未来40a冬小麦和夏玉米的干旱年发生频率小于0.35的地区较基准时段的覆盖面积明显缩小,分布范围向北缩减。夏玉米在同一时段、同一干旱等级下各轮作区域内干旱发生频率均高于冬小麦的干旱发生频率,且地区之间的干旱频率的差异大于冬小麦。
     (4)未来40a内气候变化对华北轮作区限灌冬小麦影响表现为正效应,全区96%地区均表现为干旱年平均产量增加。轮作区内,未来和基准时段的冬小麦干旱年平均产量相比,表现为南部和北部产量水平变化不大,中部明显增加的格局;干旱年冬小麦的产量综合潜在损失呈下降趋势的地区占95.1%,山东省产量综合潜在损失降低幅度最大;冬小麦的潜在减产率小于基准时段的值的地区占原有轮作区的97.2%。
     2011~2050年间,华北轮作区雨养玉米的干旱年平均产量水平大部分地区表现为低于基准时段产量值;未来雨养夏玉米干旱年产量综合潜在损失量较基准时段以增加为主,与冬小麦以减少为主的趋势正好相反,河南洛阳、山东淄博潍坊一带为产量潜在损失值升高的高值中心;潜在减产率大于基准时段的值的区域占原有轮作区内的92.4%,该变化趋势与冬小麦正好相反。
     (5)未来40a的冬小麦干旱风险和基准时段相比,整体上轮作区内冬小麦干旱风险呈降低趋势,其中轮作区内低风险、较低风险和中等风险区域增加,较高和高风险区域减少。未来40a华北轮作区内夏玉米干旱风险与基准时段相比,主要呈增大趋势,其中较高和高风险区大幅增加、低风险区域锐减、新增轮作区内夏玉米干旱风险均呈较高和高风险等级。对冬小麦-夏玉米轮作体系来说,两个时段均以中等干旱风险为主,但未来40a中等干旱风险分布范围增加显著。
North China plain is the main producing areas of agriculture and food production base in China.Winter wheat and summer maize rotation is major cropping pattern in the region. Combined withtheories and methods in meteorology, agriculture, disaster sciences in this study, it was designed forevaluate the agricultural drought disaster risk at1961~1990and2011~2050under A1B climaticscenario, taken the winter wheat summer maize rotation cropping pattern as the research object, andbased on the the agro-meteorological station data for1981to2009. It was also comprehensivelyutilizing the regional climate model and crop models as tools. The Palmer Drought Severity Index wasconducted for reflect the agricultural drought status at monthly and weekly scale in crop growth periods.Based on the results above, the risk assessment results reflected the drought disaster temporal andspatial distribution, and its changes, for the current yield level of winter wheat and summer maize. Themain results and conclusions of this study are as follows:
     (1) The northern boundary of winter wheat planting and summer maize potential growing areaswould be moving northward. The area of winter wheat summer and maize rotation planting patternwould be expanded at eastward and northward. Precipitation suitability in North China was significantlyimproved in2011~2050compared with1961~1990. Its precipitation condition would be moreconducive to the cultivation of wheat and maize.
     (2) For the past50years (1961~2010), the condition for wet or dry in North China has3-type ofdistribution patterns, which were―all consistency‖,―north-south reverse‖and―east-west reverse‖pattern. The analysis of time coefficients of three spatial distribution patterns showed that droughtdegree had an increasing trend since1980s.
     There had three distribution modes of drought for summer maize and winter wheat in1961~1990under A1B, which were―all consistency‖,―north-south reverse‖and―central reverse with north andsouth‖patterns. And its time coefficient showed that the―all consistency‖pattern was very typicalbefore1980s and the other two distribution modes were typical in1980s. For the next40years from2011~2050, the―all consistency‖drought distribution style would be mostly typical for both winterwheat and summer maize. And there would have a20consecutive years drought period at the overallrotation region for summer maize and winter wheat from2020s to the early of2040s.
     (3) The differences of maize drought occurrence frequency between1961~1990and2011~2050under A1B scenario, is larger than wheat. For the next40years, the frequency of drought will be bothincreasing for winter wheat and summer maize. The most significant increase in frequency range ofdrought occurrence area is larger than0.45for summer maize, but range from0.35to0.45for winterwheat. The area covered with drought frequency less than0.35will be significantly decreasednorthward in the next40years than baseline period for winter wheat and summer maize. It is larger ofsummer maize compared with winter wheat for the drought frequency at same time and same droughtdegree.
     (4) The effect of climate change on limited irrigating winter wheat would be positive, and96% area of the rotation planting region showed an increase in the average yield of in drought years. Theaverage yield of winter wheat in drought years in2011~2050, compared with the baseline period,showed that there’s little changes in production levels at the northern and southern, while had asignificantly increase in central region.95.1%of the region, the yield potential loss of winter wheatshowed downward trend in drought years, where the largest range of yield potential losses reductionwas located at Shandong Province. For the original rotation district,97.2%area of winter wheatpotential yield reduction was less than the value of the baseline period.
     In most part of the original rotation region, the average yield of rainfed summer maize in droughtyears in2011~2050would be lower than the values in baseline period. For the next40years, the yieldpotential losses of rainfed summer maize in drought years were higher than the baseline period, whichwas opposite to the decrease trend of winter wheat and the highest central region of yield potentiallosses were around Luoyang in Henan Province, Zibo and Weifang in Shandong Province. The ratio ofpotential yield reduction was greater than the value of the baseline period, in the92.4%of originalcropping rotation region, and the trend of winter wheat is just the opposite
     (5) Compared with baseline period, winter wheat drought risk overall rotation cropping area wasdecreasing in2011~2050. However, the very low risk, low risk and medium risk area of winter wheatwould be increase, while the high and very high risk area will be decrease. Drought risk for summermaize would mainly trend to increase in the next40years compared with the risk level for baselineperiod, especially that its high and very high risk area would be substantial increase, the low risk regionwould decrease sharply, and the risk of summer maize in new rotation region showed a high or veryhigh degree. Considering the whole rotation pattern, it was mainly midium drought risk both inreference prieod and future, but with a larger area in future than1961~1990.
引文
[1].陈邦柱,秦大河.气候变化与生态环境研讨会文集.气象出版社,北京,2004,13-20.
    [2].陈怀亮,张红卫,薛昌颖.中国极端天气事件与农业气象服务.气象与环境科学,2010,33(3):67-77.
    [3].成林,刘荣花,王信理.气候变化对河南省灌溉小麦的影响及对策初探.应用气象学报.2012,23(5):571-577.
    [4].崔读昌,曹广才,张文,等.中国小麦气候生态区划.贵州,贵州科技出版社.1991.
    [5].邓根云.气候变化对中国农业的影响.北京,北京科技出版社.1993.
    [6].丁一汇,任国玉,翟盘茂等.气候变化国家评估报告(I):中国气候变化的历史和未来趋势[J].气候变化研究进展,2006,2(1):3-9.
    [7].郭建平,高潘.东北地区主要粮食作物的气候适应性与最优结构研究.资源科学.1993,(2):57-63.
    [8].郭建平,高素华,潘亚茹.东北地区农业气候生产潜力及其开发利用对策.气象.1995,21(2):3-9.
    [9].何奇瑾,周广胜.我国春玉米潜在种植分布区的气候适宜性.生态学报.2012,32(12):3931-3939.
    [10].胡亚南,李阔,许吟隆.1951-2010年华北平原农业气象灾害特征分析及粮食减产风险评估.中国农业气象.2013,34(2):197-203
    [11].黄会平.1949-2007年全国干旱灾害特征、成因及减灾对策.干旱区资源与环境.2010,24(11):94-98.
    [12].黄荣辉,徐予红,周连童.我国夏季降水的年代际变化及华北干旱化趋势高原气象.1999,18(4):465-476.
    [13].姜志伟,陈仲新,周清波,等.CERES_wheat作物模型参数全局敏感性分析.农业工程学报.2011,27(1):236-242.
    [14].赖纯佳,千怀遂,段海来,等.淮河流域双季稻气候适宜度及其变化趋势.生态学杂志.2009,28(11):2339-2346.
    [15].赖纯佳,千怀遂,段海来,等.淮河流域小麦-水稻种植制度的气候适宜性.中国农业科学.2011,44(14):2868-2875.
    [16].李崇银.气候动力学引论.北京,气象出版社.2009.
    [17].李翠金.异常干旱气候事件及其对农业影响评估模式.地理学报.2000,55(增刊):39-45.
    [18].李骥,皇甫庭,王志红.小麦-玉米复种连作关键技术.北京,中国农业科学技术出版社.2012.
    [19].李克南,杨晓光,刘志娟,等.全球气候变化对中国种植制度可能影响分析ⅲ.中国北方地区气候资源变化特征及其对种植制度界限的可能影响.中国农业科学.2010,43(10):2088-2097.
    [20].李茂松,李森,李育慧.中国近50年旱灾灾情分析.中国农业气象.2003,24(1):7-10.
    [21].李秀芬,马树庆,宫丽娟,等.基于wofost的东北地区玉米生育期气象条件适宜度评价.中国农业气象.2013,34(1):43-49.
    [22].李勇,杨晓光,代姝玮,等.长江中下游地区农业气候资源时空变化特征.应用生态学报.2010,21(11):2912-2921.
    [23].刘德祥,董安祥,邓振镛.中国西北地区气候变暖对农业的影响.自然资源学报.2005,20(1):119-125.
    [24].刘庚山,郭安红,安顺清,等.帕默尔干旱指标及其应用研究进展.自然灾害学报.2004,13(4):21-27.
    [25].刘巽浩,韩湘玲.中国的多熟种植.北京,北京农业大学出版社.1987.
    [26].刘园.气候因子和栽培管理对华北冬小麦-夏玉米生产体系的影响.资源与环境学院.北京,2010,中国农业大学.博士论文.
    [27].刘增进,李宝萍,李远华,等.冬小麦水分利用效率与最优灌溉制度的研究.农业工程学报.2004,20(4):58-63.
    [28].吕娟,高辉,孙洪泉.21世纪以来我国干旱灾害特点及成因分析.中国防汛抗旱.2011,21(5):38-43.
    [29].马柱国,符淙斌.1951~2004年中国北方干旱化的基本事实.科学通报.2006,51(20):2429-2439.
    [30].祁海霞,智协飞,白永清.中国干旱发生频率的年代际变化特征及趋势分析.2011,(4):447-455.
    [31].钱正安,吴统文,宋敏红,等.干旱灾害和我过西北干旱气候的研究进展及问题.地球科学进展.2001,15(1):28-38.
    [32].秦大河,陈振林,罗勇等.气候变化科学的最新认知.气候变化研究进展,2007,3(2):63-73.
    [33].曲曼丽.农业气候实习指导.北京,北京农业大学出版社.1990.
    [34].商彦蕊.河北省农业旱灾脆弱性区划与减灾.灾害学.2001,16(3):28-37.
    [35].商彦蕊.农业旱灾研究进展.地理与地理信息科学.2004,20(4):101-105.
    [36].史印山,姚学祥,杨晓亮,等.华北夏季旱涝的特征分析.气象科学.2008,28(4):377-383.
    [37].谭方颖,王建林,宋迎波,等.华北平原近45年农业气候资源变化特征分析.中国农业气象.2009,30(1):19-24.
    [38].谭金芳,韩燕来.华北小麦-玉米一体化高效施肥理论与技术.北京,中国农业大学出版社.2012.
    [39].王馥棠.近十年来我国气候变暖影响研究的若干进展.应用气象学报.2002,13(6):755-766.
    [40].王培娟,梁宏,李祎君,等.气候变暖对东北三省春玉米发育期及种植布局的影响.资源科学.2011,33(10):1976-1983.
    [41].王秋香,魏文寿,王金民.新疆北疆最大积雪深度EOF展开场的时间变化规律.冰川冻土.2008,30(2):244-249.
    [42].王文,徐红. Palmer干旱指数在淮河流域的修正及应用.地球科学进展.2012,27(1):60-67.
    [43].王秀东.我国生产中小麦品种更替与退出机制研究(项目报告).任爱胜,李志明,胡志全.等北京,2008,中国农业科学院农业经济与发展研究所:1-36.
    [44].王宗明,张柏,张树清,等.松嫩平原农业气候生产潜力及自然资源利用率研究.中国农业气象.2005,26(1):1-6.
    [45].魏凤英,曹洪兴.华北干旱异常的地域特征.华北农业干旱研究进展.王馥棠,徐祥德,王春乙.北京,气象出版社.1997:11-19.
    [46].魏凤英.现代气候统计诊断与预测技术(第2版).北京,气象出版社.2007.
    [47].魏瑞江,宋迎波,王鑫.基于气候适宜度的玉米产量动态预报方法.应用气象学报.2009,20(5):622-627.
    [48].吴利红,娄伟平,柳.苗,等.油菜花期降水适宜度变化趋势及风险评估.中国农业科学.2011,44(3):620-626.
    [49].吴绍洪,尹云鹤.极端事件对人类系统的影响.气候变化研究进展.2012,8(2):99-102.
    [50].袭祝香,王文跃,时霞丽.吉林省春旱风险评估及区划.中国农业气象.2008,29(1):1-19.
    [51].肖晶晶,霍治国,金志凤,等.冬小麦节水灌溉气象等级指标.生态学杂志.2012,31(10):2521-2528.
    [52].徐建军,朱乾根.印度与东亚夏季风环流对ENSO及其年代际异常响应的数值研究.大气科学.1999,23(2):214-226.
    [53].徐新创.中国东部季风区农业干旱风险评估.中国科学院地理科学与资源研究所.北京,2011.博士论文.
    [54].杨红龙.利用PRECIS进行中国极端气候事件变化的情景分析.兰州大学,兰州,2010,博士论文.
    [55].杨勤.宁夏区域太阳日辐射通量计算方法的研究.干旱气象.2007,25(3):23-27.
    [56].杨帅英,郝芳华,宁大同.干旱灾害风险评估的研究进展.安全与环境学报.2004,4(2):79-82.
    [57].杨晓光,刘志娟,陈阜.全球气候变暖对中国种植制度可能影响ⅰ.气候变暖对中国种植制度北界和粮食产量可能影响的分析.中国农业科学.2010,43(2):329-336.
    [58].杨彦武,于强,王靖.近40年华北及华东局部主要气候资源要素的时空变异性.资源科学,2004,26(4):46-50.
    [59].杨志勇,刘琳,曹永强,等.农业干旱灾害风险评价及预测预警研究进展.水利经济.2011,29(2):12-17.
    [60].姚玉璧,张存杰,邓振镛,等.气象、农业干旱指标综述.干旱地区农业研究.2007,25(1):185-189.
    [61].冶明珠,郭建平,袁彬,等.气候变化背景下东北地区热量资源及玉米温度适宜度.应用生态学报.2012,23(10):2786-2794.
    [62].叶建刚,申双和,吕厚荃.修正帕默尔干旱指数在农业干旱监测中的应用.中国农业气象.2009,30(2):257-261.
    [63].易雪,王建林,宋迎波.气候适宜指数在早稻产量动态预报上的应用.气象.2010,36(6):85-89.
    [64].尹姗,孙诚,李建平.灾害风险的决定因素及其管理.气候变化研究进展.2012,8(2):84-89.
    [65].翟盘茂,潘晓华.中国北方近50年温度和降水极端事件变化.地理学报,2003,58(1):1-10.
    [66].张桂荣.小麦玉米一体化栽培技术.北京,中国农业科学技术出版社.2009.
    [67].张强,高歌,邹旭恺.中国近50年干旱灾害时空变化特点.气候变化与气候变异:生态-环境演变及可持续发展.国家气候中心.北京,气象出版社.2006:263-265.
    [68].张强,潘学标,马柱国等.干旱.北京:气象出版社,2009.
    [69].张庆云,卫捷,陶诗言.近50年华北干旱的年代际和年际变化及大气环流特征.气候与环境研究.2003,8(3):307-318.
    [70].张伟兵,朱云枫.区域场次特大旱灾评价指标体系与方法探讨.中国水利水电科学研究院学报.2008,6(2):111-117.
    [71].张卫建,陈金,徐志宇,等.东北稻作系统对气候变暖的实际响应与适应.中国农业科学.2012,45(7):1265-1273.
    [72].赵海燕,张强,高歌,等.中国1951-2007年农业干旱的特征分析.自然灾害学报.2010,19(4):201-206.
    [73].赵文双,商彦蕊,黄定华,等.农业旱灾风险分析研究进展.水科学与工程技术.2007,(6):1-5.
    [74].中国农业科学院.中国农业气象学.北京,中国农业出版社.1999.
    [75].中国气象局.气象干旱等级.中华人民共和国国家标准.北京,2006,中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会. GB/T20481-2006.
    [76].钟秀丽,王道龙,李玉中,等.黄淮麦区小麦拔节后霜害的风险评估.应用气象学报.2007,18(1):102-107.
    [77]. Abkowitz, M. D., S. Chatterjee. Regional disaster risk: Assessment and mitigation concepts in anall-hazards context. Journal of Homeland Security and Emergency Management.2012,9(1),1-5
    [78]. Adam, C. Coping with adversity: The macroeconomic management of natural disasters. EnvironmentalScience&Policy.2013,27, Supplement1(0): S99-S111.
    [79]. Alam, M. M. Statistical downscaling of extremes of precipitation in mesoscale catchments fromdifferent rcms and their effects on local hydrology Institut für Wasserbau,2011, Universit t Stuttgart.Ph.D thesis.
    [80]. Alexandrov, V. Summarizing crop growth simulation models in europe with potential for operationalassessment of crop status and yield prognosis. Report of the RA VI Working Group on AgriculturalMeteorology.2002:119.
    [81]. Allen, R. G., L. S. Pereira, D. Raes, et al. Crop evapotranspiration-guidelines for computing crop waterrequirements-fao irrigation and drainage paper56. Roma, FAO-Food and Agriculture Organization ofthe United Nations.1998.
    [82]. Arnell, N. W., D. A. Hudson, R. G. Jones. Climate change scenarios from a regional climate model:Estimating change in runoff in southern africa. Journal of Geophysical Research: Atmospheres.2003,108:4519-4535.
    [83]. Antwi-Agyei, P., E. D. G. Fraser, A. J. Dougill, et al. Mapping the vulnerability of crop production todrought in ghana using rainfall, yield and socioeconomic data. Applied Geography.2012,32(2):324-334.
    [84]. Cardona, O. D., M. K. v. Aalst, J. Birkmann, et al. Determinants of risk: Exposure and vulnerability.Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. C. B.Field, V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach,G.-K.Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.).A Special Report of Working Groups I and II ofthe Intergovernmental Panel on Climate Change (IPCC). Cambridge, UK, and New York, NY, USA,2012:65-108.
    [85]. Cardona, O. D., J. C. Bertoni, T. Gibbs, et al. Science for a better life: Developing regional scientificprograms in priority areas for latin america and the caribbean. Volume2, Understanding and managingrisk associated with natural hazards: a comprehensive scientific approach for Latin America and theCaribbean. Rio de Janeiro and Mexico,2010, ICSU-LAC:88.
    [86]. Cheng, J., J.-p. Tao. Fuzzy comprehensive evaluation of drought vulnerability based on the analytichierarchy process:—an empirical study from xiaogan city in hubei province. Agriculture andAgricultural Science Procedia.2010,1(0):126-135.
    [87]. Cheng, Y.-x., J.-f. Huang, Z.-l. Han, et al. Cold damage risk assessment of double cropping rice inhunan, china. Journal of Integrative Agriculture.2013,12(2):352-363.
    [88]. Dai, A., K. E. Trenberth, T. Qian. A global dataset of palmer drought severity index for1870-2002:Relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology.2004,5(6):1117-1130.
    [89]. Garrett Campbell, G., T. G. F. Kittel, G. A. Meehl, et al. Low-frequency variability and co2transientclimate change. Part2: EOF analysis of co2and model-configuration sensitivity. Global and PlanetaryChange.1995,10(1–4):201-216.
    [90]. Ghaffari, A., H. Cook, H. Lee. Climate change and winter wheat management: A modelling scenario forsouth-eastern england. Climatic Change.2002,55(4):509-533.
    [91]. Hallack-Alegria, M., D. W. Watkins. Annual and warm season drought intensity–duration–frequencyanalysis for sonora, mexico. Journal of Climate.2007,20(9):1897-1909.
    [92]. Hawkins, E., T. M. Osborne, C. K. Ho, et al. Calibration and bias correction of climate projections forcrop modelling: An idealised case study over europe. Agricultural and Forest Meteorology.2013,170:19-31.
    [93]. Hayes, M. J. Comparison of major drought indices.2013. from http://drought.unl.edu/Planning/Mornitoring/ComparisonofIndicesIntro.aspx.
    [94]. Heddinghaus, T. R., D. Miskus, P. Sabol. Palmcode.F.2013. ftp://ftp.cpc.ncep.noaa.gov/htdocs/temp2/.
    [95]. Ho, C. K., D. B. Stephenson, M. Collins, et al. Calibration strategies: A source of additional uncertaintyin climate change projections. Bulletin of the American Meteorological Society.2012,93(1):21-26.
    [96]. Hu, S., Mo, X., Lin, Z.et.al.. Emergy Assessment of a Wheat-Maize Rotation System with DifferentWater Assignments in the North China Plain[J]. Environmental Management,2010,46(4):643-657.
    [97]. Huang, C. An application of calculated fuzzy risk. Information Sciences.2002,142(1–4):37-56.
    [98]. Hunt, L. A., L. Kuchar, C. J. Swanton. Estimation of solar radiation for use in crop modelling.Agricultural and Forest Meteorology.1998,91(3–4):293-300.
    [99]. Iida, T., S.-I. Saitoh. Temporal and spatial variability of chlorophyll concentrations in the bering seausing empirical orthogonal function (EOF) analysis of remote sensing data. Deep Sea Research Part II:Topical Studies in Oceanography.2007,54(23–26):2657-2671.
    [100]. IPCC. Summary for policymakers.In: Managing the risks of extrem events and disasters toadvance climate change adaptation [field, c.B., v.Barros, t.F. Stocker, d.Qin, d.J. Dokken, k.L. Ebi,m.D.Mastrandrea,k.J.Mach, g.-k. Plattner, s.K.Allen, m.Tignor, and p.M. Midgley (eds)]. A SpecialReport of Working GroupsⅠand Ⅱof the Integovernmental Panel on Climate Change. Cambiridge,UK,and, New York, NY, USA,2012:1-19.
    [101]. Irmak, A., J. W. Jones, T. Mavromatic, et al. Evaluating methods for simulating soybean cultivarresponses using cross validation. Agron. J.2000,92:1140-1149.
    [102]. Jones, J. W., G. Hoogenboom, C. H. Porter, et al. Dssat cropping system model. EuropeanJournal of Agronomy.2003,18:235-265.
    [103]. Jones, R., L. Mearns. Assessing future climate risks. Adaptation Policy Frameworks for ClimateChange: Developing Strategies, Policies and Measures.2005:119-143.
    [104]. Kabat, P., B. Marshall, B. J. van den Broek. Comparison of simulation results and evaluation ofparameterization schemes Modelling and parameterization of the soil-plant-atmosphere system. Acomparison of potato growth models. P. Kabat, B. Marshall, B. J. v. d. Broek and J. V. H. v. Keulen.Wageningen, Wageningen Pers.1995:439-501.
    [105]. Kanellou, E, E. Tsiros, C. Domenikiotis, et al.. Meteorological and agrohydrological droughtmonitoring based on conventional and remotely sensed data. EGU General Assembly2008,10,EGU2008-A-07302.
    [106]. Kaukoranta, T., K. Hakala. Impact of spring warming on sowing times of cereal, potato and sugarbeet in finland. Agricultural and Food Science.2008,17(2):165-176.
    [107]. Kim, D. H., C. Yoo, T.-W. Kim. Application of spatial EOF and multivariate time series model forevaluating agricultural drought vulnerability in korea. Advances in Water Resources.2011,34(3):340-350.
    [108]. Kim, K. Y., G. R. North. EOF analysis of surface temperature field in a stochastic climate model.Journal of Climate.1993,6:1681-1690.
    [109]. Kobayashi, K., M. U. Salam. Comparing simulated and measured values using mean squareddeviation and its components. Agron. J.2000,92:345-352.
    [110]. Kogan, F., N. Kussul, T. Adamenko, et al. Winter wheat yield forecasting in ukraine based on earthobservation, meteorological data and biophysical models. International Journal of Applied EarthObservation and Geoinformation.2013,23(0):192-203.
    [111]. Li, Q. Fuzzy approach to analysis of flood risk based on variable fuzzy sets and improvedinformation diffusion methods. Natural Hazards and Earth System Science.2013,13(2):239-249.
    [112]. Liu, D. L., B. J. Scott. Estimation of solar radiation in australia from rainfall and temperatureobservations. Agricultural and Forest Meteorology.2001,106(1):41-59.
    [113]. Loague, K., R. E. Green. Statistical and graphical methods for evaluating solute transport models:Overview and application. J. Contam. Hydrol.1991,7:51-73.
    [114]. Loague, K. M., R. A. Freeze. A comparison of rainfall-runoff modelling techniques on smallupland catchments. Water Resour. Res.1985,21:329-348..
    [115]. Lorentz, E. N. Empirical orthogonal functions and statistical weather prediction. Statisticalforecasting project. Department of Metrology Science Report1. Massachusetts,1956, Institute ofTechnology.:1-48.
    [116]. Mannocchi, F., F. Todisco, L. Vergni (2003). Agricultural drought: Indices, definition and analysis.UNESCO/IAHS/IWIIA Symposium The Basis of Civilization—Water Science, Roma.
    [117]. Mavromatis, T. Drought index evaluation for assessing future wheat production in greece.International Journal of Climatology.2007,27(7):911-924.
    [118]. Mir, R. R., M. Zaman-Allah, N. Sreenivasulu, et al. Integrated genomics, physiology and breedingapproaches for improving drought tolerance in crops. Theoretical and Applied Genetics.2012,125(4):625-645.
    [119]. Mishra, A. K., V. P. Singh. Analysis of drought severity-area-frequency curves using a generalcirculation model and scenario uncertainty. Journal of Geophysical Research: Atmospheres.2009,114(D6): D06120.
    [120]. Mishra, A. K., V. P. Singh. Drought modeling-a review. Journal of Hydrology.2011, In Press,Accepted Manuscript
    [121]. Mishra, A. K., V. P. Singh, V. R. Desai. Drought characterization: A probabilistic approach.Stochastic Environmental Research and Risk Assessment.2009,23(1):41-55.
    [122]. NDMCa. Type of drought. from http://drought.unl.edu/DroughtBasics/TypesofDrought.aspx.
    [123]. NDMCb. Climate division standardized precipitation index (SPI). from http://drought.unl.edu/MonitoringTools/ClimateDivisionSPI.aspx.
    [124]. Nejedlik, P., S. Orlandini. Survey of agrometeorological practices and applications in europeregarding climate change impacts.2008.
    [125]. North, G. R., T. L. Bell, R. F. Cahalan, et al. Sampling errors in the estimation of empiricalorthogonal functions. Monthly Weather Review.1982,110(7):699-706.
    [126]. Olesen, J. E., T. Carter, C. Díaz-Ambrona, et al. Uncertainties in projected impacts of climatechange on european agriculture and terrestrial ecosystems based on scenarios from regional climatemodels. Climatic Change.2007,81(1):123-143.
    [127]. Otun, J. A. Analysis and quantification of drought using meteorological indices in the sudano-sahelregion of nigeria. Department of Water Resources and Environmental Engineering. Zaria,2005,Ahmadu Bello University. Degree of Doctor of Philosophy.
    [128]. Palmer, W. C. Meteorological drought. Office of Climatology Research Paper. Washington, D.C.,1965, Weather Bureau.45:1-58.
    [129]. Panu, U. S., T. C. Sharma. Challenges in drought research: Some perspectives and future.Hydrological Sciences.2002,47(Special Issue: Towards Integrated Water Resources Management forSustainable Development):19-30.
    [130]. Pasho, E., J. J. Camarero, M. de Luis, et al. Impacts of drought at different time scales on forestgrowth across a wide climatic gradient in north-eastern spain. Agricultural and Forest Meteorology.2011,151(12):1800-1811.
    [131]. Petak, W. J., A. A. Atkisson. Natural hazard risk assessment and public policy: Anticipating theunexpected, Cambridge Univ Press.1982.
    [132]. Probert, M. E., J. P. Dimes, B. A. Keating, et al. Apsim's water and nitrogen modules andsimulation of the dynamics of water and nitrogen in fallow systems. Agri. Syst.1998,56:1-28.
    [133]. Quiring, S. M., T. N. Papakryiakou. An evaluation of agricultural drought indices for the canadianprairies. Agricultural and Forest Meteorology.2003,118(1–2):49-62.
    [134]. Rivington, M., K. Matthews, K. Buchan. A comparison of methods for providing solar radiationdata to crop models and decision support systems. Proc. Int. Environmental Modelling and SoftwareSociety, Lugano, Switzerland.2002:24-27.
    [135]. Schipper, L., M. Pelling. Disaster risk, climate change and international development: Scope for,and challenges to, integration. Disasters.2006,30(1):19-38.
    [136]. Schrier, G. v. d., P. D. Jones, K. R. Briffa. A global dataset of self-calibrating palmer droughtseverity index dataset. EMS Annual Meeting,2010.
    [137]. Simelton, E., E. D. Fraser, M. Termansen, et al. Typologies of crop-drought vulnerability: Anempirical analysis of the socio-economic factors that influence the sensitivity and resilience to droughtof three major food crops in china (1961–2001). Environmental Science&Policy.2009,12(4):438-452.
    [138]. Sivakumar, M. Empirical analysis of dry spells for agricultural applications in west africa. Journalof Climate.1992,5(5):532-539.
    [139]. Solomon S., Qin D.H., Manning M.et.al. The Physical Science Basis.Contribution of workinggroupⅠto the fourth assessment report of the intergovernmental panel on climate change, Cambridge,UK and New York, USA. Cambridge University Press,2007.996
    [140]. Sun, L., S. W. Mitchell, A. Davidson. Multiple drought indices for agricultural drought riskassessment on the Canadian Prairies. International Journal of Climatology.2011,32(11):1628-1639
    [141]. Takezawa, N., K. Miyagi, Y. Ito, et al. Disaster risk assessment system, disaster risk assessmentsupport method, disaster risk assessment service providing system, disaster risk assessment method, anddisaster risk assessment service providing method,2004, Google Patents.
    [142]. Tsai, C.-H., C.-W. Chen. The establishment of a rapid natural disaster risk assessment model forthe tourism industry. Tourism Management.2011,32(1):158-171.
    [143]. Tsakiris, G., D. Pangalou, H. Vangelis. Regional drought assessment based on the reconnaissancedrought index (rdi). Water Resources Management.2007,21(5):821-833.
    [144]. Tubiello, F. N., M. Donatelli, C. Rosenzweig, et al. Effects of climate change and elevated CO2oncropping systems: Model predictions at two italian locations. European Journal of Agronomy.2000,13(2):179-189.
    [145]. van Aalst, M. K., T. Cannon, I. Burton. Community level adaptation to climate change: Thepotential role of participatory community risk assessment. Global Environmental Change.2008,18(1):165-179.
    [146]. van der Schrier, G., K. R. Briffa, P. D. Jones, et al. Summer moisture variability across europe.Journal of Climate.2006,19(12):2818-2834.
    [147]. Van Westen, C. J.3.10remote sensing and gis for natural hazards assessment and disaster riskmanagement. Treatise on geomorphology. F. S. Editor-in-Chief: John. San Diego, Academic Press.2013:259-298.
    [148]. Vicente-Serrano, S. M., S. Beguera-Portugus. Estimating extreme dry-spell risk in the middle ebrovalley (northeastern spain): A comparative analysis of partial duration series with a general paretodistribution and annual maxima series with a gumbel distribution. International Journal of Climatology.2003,23(9):1103-1118.
    [149]. Vicente-Serrano, S. M., S. Beguería, L. Gimeno, et al. Challenges for drought mitigation in africa:The potential use of geospatial data and drought information systems. Applied Geography.2012,34:471-486.
    [150]. Wells, N., S. Goddard, M. J. Hayes. A self-calibrating palmer drought severity index. Journal ofClimate.2004,17(12):2335-2351.
    [151]. Wilby, R., S. Charles, E. Zorita, et al. Guidelines for use of climate scenarios developed fromstatistical downscaling methods. IPCC task group on data and scenario support for impacts and climateanalysis,2004.
    [152]. Wilhite, D. A., M. H. Glantz. Understanding the drought phenomenon: The role of definitions.Water International.1985,10(3):111–120.
    [153]. Wilhite, D. A., M. D. Svoboda. Drought early warning systems in the context of droughtpreparedness and mitigation. Early warning systems for drought preparedness and drought management.2000:1-21.
    [154]. Wilks, D. S. Chapter12-principal component (EOF) analysis. International geophysics. S. W.Daniel, Academic Press.2011,100:519-562.
    [155]. Willmott, C. J., S. G. Ackleson, R. E. Davis, et al. Statistics for the evaluation and comparison ofmodels. J. Geophys. Res.1985,90:8995-9005.
    [156]. Yang, J., D. J. Greenwood, D. L. Rowell, et al. Statistical methods for evaluating a crop nitrogensimulation model,n_able. Agr. Syst.2000,64(1):37-53.
    [157]. Yang, J. Y., E. C. Huffman. Easygrapher: Software for graphical and statistical validation of dssatoutputs. Computers and Electronics in Agriculture2004,45:125-132.
    [158]. Yinpeng, L., Y. Wei, W. Meng, et al. Climate change and drought: A risk assessment of crop-yieldimpacts. Climate Research.2009,39:31–46.
    [159]. Zerbini, S., F. Raicich, M. Errico, et al. An EOF and svd analysis of interannual variability of gpscoordinates, environmental parameters and space gravity data. Journal of Geodynamics.2013,67:111-124.
    [160]. Zhai P, Zhang X, Wang H., et.al.. Trends in Total Precipitation and Frequency of DailyPrecipitation Extremes over China. Journal of Climate,2005,18(7):1096-1108.
    [161]. Zhang, J. Risk assessment of drought disaster in the maize-growing region of songliao plain, china.Agriculture, Ecosystems&Environment.2004,102(2):133-153.
    [162]. Zhong, L., L. Liu, Y. Liu. Natural disaster risk assessment of grain production in dongting lakearea, china. Agriculture and Agricultural Science Procedia.2010,1:24-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700