用户名: 密码: 验证码:
北京山区典型森林生态系统土壤—植物—大气连续体水分传输与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水分由土壤进入森林植物体内,通过茎杆到达叶片,再从气孔以水汽的形式扩散到空气边际层,最后参与大气的湍流交换,形成相互作用且动态统一的连续系统,即土壤-植被-大气连续体(Soil-Plant-Atmosphere Continuum),简称SPAC.由于研究方法和观测手段的不足,过去这一研究一直以农田生态系统为主,对于高大、复杂多样的森林生态系统研究较少。本研究主要以北京山区典型人工林为研究对象,依托国家林业局首都圈森林生态系统定位观测研究站,对该地区典型森林生态系统进行长期定位观测。通过分析SPAC各界面之间的能量交换和SPAC系统内水分传输及其驱动机制:
     (1)北京地区典型森林生态系统热量平衡各项都与净辐射有相同的日变化特征,一般表现为净辐射>潜热通量>显热通量>土壤热通量。生长季生态系统所接受的净辐射绝大部分用于潜热交换和显热交换,非生长季净辐射绝大部分用于潜热交换。潜热通量占净辐射的比例8-9月逐渐下降,9月上旬下降最快,而潜热通量和土壤热通量的比例9-10月逐渐上升,反映了植被生命活动能力的季节变化。在非生长季时土壤是森林生态系统的热源之一,热量由土壤向上传递。而生长季时则相反,是热能汇。年平均土壤热量为-1.48w/m2,说明年尺度上,土壤也是森林生态系统的热源。
     (2)各林分土壤容重除了侧柏外都随土层深度增加而增加。平均土壤容重排序为:侧柏林>油松林>刺槐林>栓皮栎林。针叶林的土壤渗透能力要明显高于阔叶林。土壤入渗过程用蒋定生公式拟合的效果最佳。通过逐步回归分析表明,土壤入渗率与土壤初始含水量和非毛管孔隙度关系最密切。通过相关分析得出土壤日蒸发量与相对湿度、降水量与呈负相关,而与VDP、太阳辐射与土壤日蒸发量呈正相关关系。通过CCA的自动前向选择对影响土壤水分因子进行排序,其影响大小的顺序为降雨量>土壤热通量>土壤水势>大气温度>大气湿度。这一排序结果表明长时序的土壤水分变化最主要的影响因素是降水量,其次热能是土壤水分传输的重要影响要素。
     (3)北京山区林分树种树干液流速率均呈典型的单峰变化趋势。四个树种的树干液流速率都为晴天>阴天>雨天。侧柏、油松、刺槐和栓皮栎的树干液流速率与气温、相对湿度、太阳辐射和VDP四个环境因子都达到了0.01水平上显著相关,其中与太阳辐射的相关性都最高。四个树种生长季的总蒸腾量存在很大差异,总蒸腾量排序为侧柏(428.71mm)>油松(329.30mm)>栓皮栎(311.82mm)>刺槐(263.05mm)。相同树种林分生长季内各月的蒸腾量也各不相同,总体来说,5、6月份的蒸腾量相对较小,7、8、9三个月份的林分蒸腾量相对较高
     (4)多年降雨资料表明北京地区10年间降雨量变化较均匀,无明显波动。北京地区季节降雨特征为:降雨量季节差异很大,其中夏季降雨量最大,平均降雨量达到302.7mm,占年均降雨量的64%。主要降雨类型为小雨(0-10mm)降雨场次达60场,占了总降雨场次的67.4%,但其对降雨总量的贡献率却并不是最大的,仅占17.1%。研究区场降雨雨强特征:降雨强度受控于降雨量与降雨历时,89场降雨的平均降雨强度介于0.02-37.16mm/h之间。
     (5)根据实测及文献资料调整参数后的COUP model可以较好的应用于研究区。采用R2和均方根误差来评价模型的模拟效果,COUP model可以较好的对土壤水分动态和植物蒸散进行模拟。林分蒸腾及林冠截留是重要的水分输出项,林分蒸腾在各个林分中均占到50%以上,林冠截留占有的比例也在15%以上,土壤蒸发在这个水量平衡过程中也占有一定的比例,而地表径流计枯落物截持占用的比例较小。枯落物层截留分配比例均在1%以下,地表径流分配比例均在3%左右。
As the main structure of the terrestrial ecosystem, the forest ecosystem cover approximately30%of the terrestrial surface. Through the exchange of energy and matter between soil and atmosphere, the forest ecosystem profoundly influenced and shaped the terrestrial ecosystem. The relationship between forests and water is the core direction of the study of forest ecology and soil and water conservation. Water move from the soil into the forest canopy through stalks, then evaporate in the form of water vapor into the air marginal layer, and finally participate in the exchange of atmospheric turbulence. The formation of a unified continuous interaction and dynamic system, namely soil-vegetation-atmosphere continuum (SPAC).
     In this study, research mainly focus the forest plantation of Beijing mountainous area. Relying on the State Forestry Administration metropolitan Forest Ecosystem Research Station, the area of forest ecosystems typical positioned for long-term observation. By analyzing the energy exchange between the interface and the SPAC SPAC each water transfer system and its drive mechanism, this study made following conclusions:
     (1) In the non-growing season when the soil is one of the heat of forest ecosystems, the heat is passed up from the soil. And when the growing season, by contrast, is a heat sink. The yearly mean soil heat was-1.48w/m2, the instructions on-year scale, the soil is one heat source of forest ecosystem. Soil heat flux, especially the soil surface heat flux is closely related to the net radiation, soil heat flux in the study area and the regression equation for net radiation. Indicating that the soil heat flux greatly affected by the net radiation, may be due to the higher forest canopy, making a greater proportion of net radiation reaches the earth's surface, soil heat flux outside influence by more intense. Use of net radiation to soil heat flux is an effective way.
     (2) Beijing regions typical forest ecosystems are associated with the heat balance of the net radiation has the same diurnal variation, the relationship between the number of generally expressed as net radiation> latent heat flux> sensible heat flux> soil heat fluxes. Growing season ecosystem net radiation received by the majority for latent heat exchange and sensible heat exchange, rather than the growing season, the vast majority of net radiation for latent heat exchange. Latent heat flux ratio of net radiation decreased from August to September, the fastest decline in early September, while the proportion of latent heat flux and soil heat flux gradually increased from September to October, reflecting the seasonal changes in vegetation life activity.
     (3) Species stands with soil infiltration law has some differences, the size of initial infiltration rate is sort of cork oak forest> side Berlin> pine forest> locust forest, steady infiltration rate of side order of magnitude Berlin> pine forest> locust forest> cork oak forest, sorting average penetration rate and the total amount of permeate side of the Berlin> pine forest> locust forest> cork oak forests, soil infiltration capacity in general seems to be significantly higher than the coniferous forest broadleaf forest. By stepwise regression analysis showed that soil infiltration rate initial soil moisture and non-capillary porosity has the closest relationship.
     (4) Through the automatic selection of the former CCA to factors affecting soil moisture sort order of magnitude of the impact of rainfall> soil heat flux> soil water> air temperature> atmospheric humidity. This sort results show that soil moisture change the timing of the long main factor is rainfall, followed by heat is an important factor affecting soil moisture transfer.
     (5) based on the measured and literature after COUP model adjustment parameters can be appropriate applied to the study area. R2and root mean square error using simulation to evaluate the effect of the model, COUP model can appropriate soil moisture and plant transpiration dynamics simulation.
引文
1. Amiro B. D., Barr A. G., Black T. A., et al. Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada [J]. Agricultural and Forest Meteorology,2006, 136(3-4):237-251.
    2. Barr A. G., Morgenstern K., Black T. A., et al. Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux [J]. Agricultural and Forest Meteorology,2006,140(1-4):322-337.
    3. Beringer J., Hutley L. B., Hacker J. M., et al. Patterns and processes of carbon, water and energy cycles across northern Australian landscapes:From point to region [J]. Agricultural and Forest Meteorology,2011.
    4. Bernhofer Christian. Estimation forest evapotranspiration at a non-ideal site [J]. Agricultural And Forest Meteorology,1992,60(1-2):17-32.
    5. Bonan Gordon B. Forests and climate change:forcings, feedbacks, and the climate benefits of forests [J]. science,2008,320(5882):1444.
    6. Burns George P. Measurement of solar radiant energy in plant habitates [J]. Ecology,1923, 2(4):189-195.
    7. Chang Mingtech. Forest hydrology:An introduction to water and forest (3rd ed.)[M]. New York:CRC Press,2012.
    8. Chapin Iii F. Stuart, Matson Pamela A., Mooney Harold A. Principles of Terrestrial Ecosystem Ecology [M]. New York:Springer,2012.
    9. Chuang Yao-Li, Oren Ram, Bertozzi Andrea L., et al. The porous media model for the hydraulic system of a conifer tree:Linking sap flux data to transpiration rate [J]. Ecological Modelling, 2006,191(3):447-468.
    10. Dunne Thomas, Zhang Weihua, Aubry Brian F. Effects of rainfall, vegetation, and microtopography on infiltration and runoff [J]. Water Resources Research,1991,27(9):2271-2285.
    11. Falk M., Wharton S., Schroeder M., et al. Flux partitioning in an old-growth forest:seasonal and interannual dynamics [J]. Tree physiology,2008,28(4):509.
    12. Fisher Joshua B., Baldocchi Dennis D., Misson Laurent, et al. What the towers don't see at night: nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California [J]. Tree Physiology, 2007,27(4):597-610.
    13. Fleischbein Katrin, Wilcke Wolfgang, Goller Rainer, et al. Rainfall interception in a lower montane forest in Ecuador:effects of canopy properties [J]. Hydrological Processes,2005, 19(7):1355-1371.
    14. Foken T. The energy balace closure problem:an overview [J]. Ecological Applications,2008, 18(6):1351-1367.
    15. Gates David Murray, Brown A. H. Energy exchange in the biosphere [M]. New York:Harper and Row Publishers, Inc.,1962.
    16. Harden Carol P., Scruggs P. Delmas. Infiltration on mountain slopes:a comparison of three environments [J]. Geomorphology,2003,55(1):5-24.
    17. Honert Van Den, T. H. Water transport in plants as a catenary proesss [J]. Discussions of the Faraday Society,1948,3:146-153.
    18. Horton Robert Elmer. Surface runoff phenomena [M]. Ann Arbor:Edwards Brothers, Inc.,1935.
    19. Jansson Per-Erik, Karlberg Louise,张洪江,等.土壤-植物-大气系统热量、物质运移综合模型理论与实践[M].北京:科学出版社,2010.
    20. Jhorar R. K., Van Dam J. C., Bastiaanssen Wgm, et al. Calibration of effective soil hydraulic parameters of heterogeneous soil profiles [J]. Journal of Hydrology,2004,285(1):233-247.
    21. Katul G., Porporato A., Oren R. Stochastic dynamics of plant-water interactions [J]. Annu. Rev. Ecol. Evol. Syst.,2007,38:767-791.
    22. Li Zhengquan, Yu Guirui, Wen Xuefa, et al. Energy balance closure at ChinaFLUX sites [J]. Science in China Series D-Earth Sciences,2005,48:51-62.
    23. Lu N., Chen S., Wilske B., et al. Evapotranspiration and soil water relationships in a range of disturbed and undisturbed ecosystems in the semi-arid Inner Mongolia, China [J]. Journal of Plant Ecology,2011,4(1-2):49.
    24. Mackay D. Scott, Band Lawrence E. Forest ecosystem processes at the watershed scale:dynamic coupling of distributed hydrology and canopy growth [J]. Hydrological Processes,1997,11(9): 1197-1217.
    25. Mcculloch James Sg, Robinson Mark. History of forest hydrology [J]. Journal of Hydrology, 1993,150(2):189-216.
    26. Mcdonnell Jeffrey J. A rationale for old water discharge through macropores in a steep, humid catchment [J]. Water Resources Research,1990,26(11):2821-2832.
    27. Mengistu M. G., Savage M. J. Surface renewal method for estimating sensible heat flux [J]. Water SA (Online),2010,36(1):9-18.
    28. Moore C. J. A comparative study of radiation balace above forest and grassland [J]. Quarterly Journal of the Royal Meteorological Society,1976,102(434):889-899.
    29. Novak M. D. Dynamics of the near-surface evaporation zone and corresponding effects on the surface energy balance of a drying bare soil [J]. Agricultural and Forest Meteorology,2010.
    30. O'Brien E. M. Water-energy dynamics, climate, and prediction of woody plant species richness: an interim general model [J]. Journal of Biogeography,1998:379-398.
    31. Perez P. J., Castellvi F., Ibafiez M., et al. Assessment of reliability of Bowen ratio method for partitioning fluxes [J]. Agricultural and Forest Meteorology,1999,97(3):141-150.
    32. Philip J. R. Plant water relations:some physical aspects [J]. Annual Review of Plant Physiology, 1966,17(1):245-268.
    33. Qiu Yang, Fu Bojie, Wang Jun, et al. Spatiotemporal prediction of soil moisture content using multiple-linear regression in a small catchment of the Loess Plateau, China [J]. CATENA,2003, 54(1-2):173-195.
    34. Sklash Michael G., Farvolden Robert N. The role of groundwater in storm runoff [J]. Journal of Hydrology,1979,43(1-4):45-65.
    35. Slatyer R. O., Taylor S. A. Terminology in plant-and soil-water relations [J]. Nature,1960,187: 922-924.
    36. Song C., Katul G., Oren R., et al. Energy, water, and carbon fluxes in a loblolly pine stand: Results from uniform and gappy canopy models with comparisons to eddy flux data [J]. Journal of Geophysical Research,2009,114(G04021).
    37. Steppe Kathy, De Pauw Dirk Jw, Lemeur Raoul, et al. A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth [J]. Tree Physiology, 2006,26(3):257-273.
    38. Steppe Kathy, Lemeur Raoul, Samson R. Sap flow dynamics of a beech tree during the solar eclipse of 11 August 1999 [J]. Agricultural and Forest Meteorology,2002,112:139-149.
    39. Van der Molen M. K., Dolman A. J., Ciais P., et al. Drought and ecosystem carbon cycling [J]. Agricultural and Forest Meteorology,2011,151(7):765-773.
    40. Waring R. H., Running S. W. Sapwood water storage:its contribution to transportation and effect upon water conductance through the stems of old-growth Douglas-Fir [J]. Plant, Cell & Environment,1978,1(2):131-140.
    41. Xue Bao-Lin, Kumagai Tomo'omi, Iida Shin'ichi, et al. Influences of canopy structure and physiological traits on flux partitioning between understory and overstory in an eastern Siberian boreal larch forest [J]. Ecological Modelling,2011,222(2011):1479-1490.
    42.鲍文,何丙辉,包维楷,等.森林植被对降水的截留效应研究[J].水土保持研究,2004,11(1):193-197.
    43.陈慧新,余新晓,杨新兵,等.北京山区6种乔木树种的光合特性研究[J].安徽农业科学,2010,(36):20953-20955.
    44.陈丽华.黄土地区水土保持林地土壤入渗规律的研究[J].北京林业大学学报,1995,17(3):51-55.
    45.程根伟,余新晓,赵玉涛.山地森林生态系统水文循环与数学模拟[M].北京:科学出 版社,2004.
    46.党宏忠.祁连山水源涵养林水文特征研究[D]:东北林业大学,2004.
    47.樊登星,余新晓,岳永杰,等.北京西山不同林分枯落物层持水特性研究[J].北京林业大学学报,2008,30(S2):177-181.
    48.关德新,金明淑,徐浩.长白山阔叶红松林生长季反射率特征[J].应用生态学报,2002,13(12):1544-1546.
    49.何东宁,王占林,张洪勋.青海乐都地区森林涵养水源效能研究[J].植物生态学与地植物学学报,1991,15(1):71-78.
    50.贺庆棠.气象学[M].北京:中国林业出版社,1988.
    51.贺庆棠,刘祚昌.森林的热量平衡[J].林业科学,1980,16(1):24-33.
    52.候小金.毛竹土壤—植物—大气连续体(SPAC)水分特征研究[D]:中国林业科学研究院,2010.
    53.焦醒,刘广全,匡尚富,等Penman-Monteith模型在森林植被蒸散研究中的应用[J].水利学报,2010,41(2):245-252.
    54.康绍忠,刘晓明,熊运章.土壤-植物-大气连续体水分传输理论及其应用[M].北京:水利水电出版社,1994.
    55.刘昌明,孙睿.水循环的生态学方面:土壤-植被-大气系统水分能量平衡研究进展[J].水科学进展,1999,10(3):251-259.
    56.刘昌明,王会肖.土壤-作物-大气界面水分过程与节水调控[M].北京:科学出版社,1999.
    57.刘昌明,张喜英,胡春胜SPAC界面水分通量调控理论及其在农业节水中的应用[J].北京师范大学学报(自然科学版),2009,(Z1):446-451.
    58.刘晨峰.北京地区杨树人工林能量和水量平衡研究[D]:北京林业大学,2007.
    59.刘世荣,温远光,王兵,等.中国森林生态系统水文生态功能规律[M]:中国林业出版社,1996.
    60.刘树华,黄子琛,刘立超.土壤—植被—大气连续体中蒸散过程的数值模拟[J].地理学报,1996,51(2):118-126.
    61.刘文兆.土壤-植物系统水分运移过程的阻容电模拟[J].生态学报,2005,25(11):155-161.
    62.穆宏强,夏军,胡玉惠.陆面过程参数化方案研究综述[J].人民长江,2000,31(7):10-12.
    63.聂立水.油松栓皮栎混交林土壤—植物—大气系统水分特征研究[D]:北京林业大学,2005.
    64.佘冬立,邵明安,俞双恩.黄土高原典型植被覆盖下SPAC系统水量平衡模拟[J].农业机械学报,2011,42(5):73-78.
    65.孙立达,朱金兆.水土保持林体系综合效益研究与评价[M].北京:中国科学技术出版社.1995.
    66.孙鹏飞,周宏飞,李彦,等.古尔班通古特沙漠原生梭梭树干液流及耗水量[J].生态学报,2010,(24).
    67.孙鹏森,马履一.京北水源保护林格局及不同尺度下树种耗水特性的研究[D]:北京林业大学,2000.
    68.孙雪峰,陈灵芝.暖温带落叶阔叶林辐射能量环境初步研究[J].生态学报,1995,15(3):278286.
    69.王安志,裴铁璠.森林蒸散测算方法研究进展与展望[J].应用生态学报,2001,12(6):933-937.
    70.王兵,刘世荣,崔向慧,等.全球陆地生态系统水热平衡规律研究进展[J].世界林业研究,2002,15(1):19-28.
    71.王根轩,赵松岭.在大气干旱条件下胀果甘草气孔振荡的RLC电路模拟[J].应用生态学报,1993,4(2):131-135.
    72.王贺年,余新晓,李轶涛.北京山区林地土壤水分动态变化[J].山地学报,2011,(06):701-706.
    73.王金叶,于澎涛,王彦辉.森林生态水文过程研究:以甘肃祁连山水源涵养林为例[M].北京:科学出版社,2008.
    74.王礼先,张志强.森林植被变化的水文生态效应研究进展[J].世界林业研究,1998,11(6):15-24.
    75.王彦辉,于澎涛,徐德应,等.林冠截留降雨模型转化和参数规律的初步研究[J].北京林业大学学报,1998,20(6):29-34.
    76.王佑民.我国林冠降水再分配研究综述(Ⅰ)[J].西北林学院学报,2000a,15(3):1-7.
    77.王佑民.我国林冠降水再分配研究综述(Ⅱ)[J].西北林学院学报,2000b,15(4):1-5.
    78.卫三平,王力,吴发启.SVAT模型的研究与应用[J].中国水土保持科学,2008,6(2):113-120.
    79.温远光,刘世荣.我国主要森林生态系统类型降水截留规律的数量分析[J].林业科学,1995,31(4):289-298.
    80.翁笃鸣,高庆先.中国大气净辐射的气候特征[J].南京气象学院学报,1996,19(4):450-455.
    81.吴家兵,关德新,赵晓松,等.东北阔叶红松林能量平衡特征[J].生态学报,2005,25(10):25202526.
    82.吴饮孝,赵鸿雁,刘向东,等.森林枯枝落叶层涵养水源保持水土的作用评价[J].土壤侵蚀与水土保持学报,1998,4(2):23-28.
    83.熊伟,王彦辉,于澎涛,等.华北落叶松树干液流的个体差异和林分蒸腾估计的尺度上推[J].林业科学,2008,(1):34-40.
    84.杨启良,张富仓,刘小刚,等.植物水分传输过程中的调控机制研究进展[J].生态学报, 2011,(15):44274436.
    85.杨勤.宁夏区域太阳日辐射通量计算方法的研究[J].干早气象,2007,25(3):23-27.
    86.于澎涛.分布式水文模型在森林水文学中的应用[J].林业科学研究,2000,13(4):431-438.
    87.余新晓,秦永胜,陈丽华,等.北京山地森林生态系统服务功能及其价值初步研究[J].生态学报,2002,22(5):783-786.
    88.余新晓,张志强,陈丽华,等.森林生态水文[M].北京:中国林业出版社,2004.
    89.张新建,袁凤辉,陈妮娜,等.长白山阔叶红松林能量平衡和蒸散[J].应用生态学报,2011,22(3):607-613.
    90.张艳武,冯起,黄静,等.黑河下游绿洲地表辐射平衡及小气候特征分析[J].冰川冻土,2006,28(2):191-198.
    91.张振明,余新晓,牛健植,等.不同林分枯落物层的水文生态功能[J].水土保持学报,2005,19(3):139-143.
    92.赵成义,黄俊梅,王玉潮,等.植物根系吸水特性研究[J].干旱区地理,1999,(2):88-96.
    93.赵平.整树水力导度协同冠层气孔导度调节森林蒸腾[J].生态学报,2011,31(4):1164-1173.
    94.赵平,饶兴权,马玲,等.基于树干液流测定值进行尺度扩展的马占相思林段蒸腾和冠层气孔导度[J].植物生态学报,2006,(4):655-665.
    95.周国逸.生态系统水热原理及其应用[M].北京:气象出版社,1997.
    96.周择福,李昌哲.北京九龙山不同立地土壤蓄水量及水分有效性的研究[J].林业科学研究,1995,8(2):182-187.
    97.朱劲伟,曾士余,朱廷曜.论杉木人工林中直射光的透过[J].林业科学,1986,2(22):123-134.
    98.邴龙飞,苏红波,邵全琴,等.近30年来中国陆地蒸散量和土壤水分变化特征分析[J].地球信息科学学报,2012,14(1):1-13.
    99.曾锋,张金池.植物蒸散耗水量计算方法综述[J].世界林业研究,2001,14(2):23-28.
    100.符素华,刘宝元,吴敬东,等.北京地区坡面径流计算模型的比较研究[J].地理科学,2002,22(5):604-609.
    101.聂立水,李吉跃,戴伟.北京西山油松栓皮栎混交林的土壤水分特征[J].林业科学,2007,43(z1):4347.
    102.司建华,冯起,张小由,等.植物蒸散耗水量测定方法研究进展[J].水科学进展,2005,16(3):450-459.
    103.王兵,崔向慧,杨锋伟.中国森林生态系统定位研究网络的建设与发展[J].生态学杂志,2004,23(4):84-91.
    104.王文,诸葛绪霞,周炫.植物截留观测方法综述[J].河海大学学报(自然科学版),2010, 38(5):495-504.
    105.魏天兴,朱金兆.黄土区人工林地水分供耗特点与林分生产力研究[J].土壤侵蚀与水土保持学报,1999,5(4):45-51.
    106.张光灿,刘霞,赵玫.树冠截留降雨模型研究进展及其述评[J].南京林业大学学报(自然科学版),2000,24(1):64-68.
    107.赵西宁,吴发启.土壤水分入渗的研究进展和评述[J].西北林学院学报,2004,19(1):42-45.
    108.赵艳云,程积民,万惠娥,等.林地枯落物层水文特征研究进展[J].中国水土保持科学,2007,5(2):130-134.
    109.赵洋毅,王玉杰,王云琦,等.基于修正的Gash模型模拟缙云山毛竹林降雨截留[J].林业科学,2011a,47(9):15-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700