用户名: 密码: 验证码:
水稻隐花色素基因(Cryptochrome)RNAi表达载体构建与转化水稻的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以载体pSPROK、pCAMBIA1300、pCAMBIA1301及拟南芥基因内含子为材料,通过酶切连接首先构建了一个RNAi工程载体pSC1301-347。然而以pSC1301-347为工具,构建了有关水稻隐花色素基因Cryla、Crylb和Cry2的四个RNAi和两个反义RNA表达载体,分别是pSC1301-347-Cryla、pSC1301-347-Cry2、pSC1301-347-Crylab、pSC1301-347-Crylab2、pSC1301-347-antiCryla和pSC1301-347-anticry2,其中前四个为RNAi表达载体,最后两个为反义RNA表达载体。通过农杆菌介导法,用这些表达载体分别转化粳稻日本晴水稻,得到200多株不同克隆的Gus阳性植株。经测序分析与转基因植株分子检测证明构建的所有表达载体插入序列正确,目的基因片段均已完整地整合于水稻基因组序列。
     对T_0代转基因植株的观察分析,初步认为:
     1.隐花色素基因对水稻结实率影响较大
     从已完成一个生命周期的4个RNAi转基因植株表现来看,植株均能正常抽穗开花,但基本不结实。pSC1301-347-Crylab2(V3)和pSC1301-347-Crylab(V9)未得到一粒种子,结实率为0;pSC1301-347-Cryla(V16)和pSC1301-347-Cry2(V19)个别植株得到少量种子。而对照日本晴结实率可达20%-30%。结实率低的原因,除冬天气候因素和转基因当代植株生长较为异常之外,推测是因为隐花色素基因被敲除或抑制后,水稻幼穗分化、减数分裂、花药开裂等某个或某些代谢过程发生障碍,导致最终不能形成正常有活力的雄蕊。
     2.子房膨大,不灌浆
     植株开花后,颖花或者空瘪,或者子房膨大不灌浆,内无淀粉等光合产物积累,只有水状的液态物质。pSC1301-347-Crylab2(V3)和pSC1301-347-Crylab(V9)两个载体的转基因植株尤其如此。推测在两个及两个以上的隐花色素基因表达受到抑制时,淀粉的生物合成或运输途径出现障碍。
     3.花药不正常
     雄蕊干瘪,颜色暗淡,花粉粒很少,不散粉。pSC1301-347-Crylab2(V3)和pSC1301-347-Crylab(V9)两个载体的转基因植株表现尤甚。推测cryptochrome基因可能参与水稻幼穗分化的某个生理生化代谢过程。
     4.植株形态上的差异
     在福州冬季光照不足的玻璃温室的环境条件下,pSC1301-347-Crylab2(V3)和pSC1301-347-Crylab(V9)转基因植株明显表现出一种病态:株高比pSC1301-347-Cryla(V16)和pSC1301-347-Cry2(V19)稍高,叶色发黄枯萎,叶片似长而软。
     5.对开花的影响
     pSC1301-347-Crylab2(V3)和pSC1301-347-Crylab(V9)转基因植株开花时间均比pSC1301-347-Cryla和pSC1301-347-Cry2要迟,因此cry基因与水稻开花有关,且抑制的基因数目越多,对开花似影响越大。
     以水稻成熟种子和幼嫩种子为材料,对水稻胚性愈伤诱导及其遗传转化进行了研究。结果表明,成熟种子、新鲜成熟种子及幼嫩种子愈伤诱导率均>81%,平均86.67%,其中以新鲜成熟种子愈伤率最高,达96.887%;抗性愈伤率成熟胚为22.21%-40.71%,平均28.49%,幼胚为36.79%-43.21%,平均40%,幼胚的抗性愈伤率高于成熟胚;分化出苗率成熟胚为59.29%-80.43%,平均71.59%,幼胚为63.16%-72.73%,平均67.95%,幼胚与成熟胚差异不明显;转化率(Gus检测阳性率)成熟胚为43.07%-81.08%,平均61.59%,幼胚为58.33%-76.67%,平均67.50%,幼胚转化率稍高于成熟胚。不同载体抗性愈伤率、分化率与转化率存在一定的差异,表明插入的外源基因片段不同对抗性愈伤率、分化率与转化率有一定的影响。
Using vectors pSPROK,pCAMBIA1300,pCAMBIA1301 and an intron from one of Arabidopsis thaliana genes as materials,an engineering vector named pSC1301-347 was constructed.Then,using pSC1301-347 as a tool vector,four RNAi and two antisense RNA expression vectors related to rice cryptochrome genes were constructed.They are pSC1301-347-Cryla,pSC1301-347-Cry2, pSC 1301-347-Crylab,pSC1301-347-Crylab2,pSC1301-347-antiCryl a and pSC1301-347-anticry2 respectively,of which the former four vectors are RNAi ones,and the last two vectors are antisense RNA ones.Through the method of Agrobacterium-mediated transformation,these expression vectors were used to transform japonica rice cultivar "Nipponbare",and finally more than 200 different colonial Gus positive plants were obtained.After sequencing analysis and the molecular assays of transformed plants,the inserted sequences of all the expression vectors were proved to be correct with the target gene fragments completely integrated into rice genome sequences.
     Based on the observation and analysis of T_o generation transformed plants,the preliminary conclusions were as follows:
     1)Cryptochrome genes had great effect on the seed-set percentage of fice
     According to the performance of the four RNAi transformed plants which each had finished one life cirle,all the plants could normally headed and flowered,but basically bore no fruits.Transformed plants from pSC1301-347-Crylab2(V3)and pSC1301-347-Crylab(V9)did not get even one grain of seed,and only one or two plants from pSC1301-347-Cryla(V16)and pSC1301-347-Cry2(V19)bore a small amount of seeds while the seed-set percent for the control variety "Nipponbare" could reach as high as 20-30%.The reasons for the low seed-set percent were probably that besides the cold weather in winter and the abnormity in the growth of the transformed plants,because of the knockdown or restraint of the cryptochrome gene(s),there existed some metabolic disturbances during the rice young panicle differentiation,meiotic division or anther dehiscence and hence the anthers with normal vigor could not be produced finally.
     2)Ovaries swelled,but did not filled
     After flowering,the rice spikelets were empty,or only the ovaries swelled with water-like substance in them and no accumulation of photosynthetic products. The transformants from pSC1301-347-Crylab2(V3)and pSC1301-347-Crylab(V9) were especially like this.The reasons for this were probably that when two or more than two cryptochrome genes were restrained in expression,some obstacle(s) occurred during the biosynthesis or transportation for starch.
     3)Anthers were abnormal
     Anthers degraded,did not spread microspores with light color and a small number of microspores.The transformants from pSC1301-347-Crylab2(V3)and pSC1301-347-Crylab(V9)were especially like this.The reasons for this were probably that cryptochrome genes were involved in some physiological or biochemical process of rice young panicle differentiation.
     4)The differences in plant morphology
     Uder the weak winter sun ligh of Fuzhou greenhouses,the transformants from pSC1301-347-Crylab2(V3)and pSC1301-347-Crylab(V9)distinctly displayed a kind of morbidity.The plants were slightly taller than those from pSC1301-347-Cryla (V16)and pSC1301-347-Cry2(V19),with leaves seemingly longer and softer,and a little whiter and faded.
     5)The influence on flowering
     Transformants from pSC1301-347-Crylab2(V3)and pSC1301-347-Crylab(V9) flowered later than those from pSC1301-347-Cryla and pSC1301-347-Cry2. Therefore,cryptochrome genes were related to rice flowering.It seemed that,the more the genes of cryptochrome were restrained,the greater the influence on flowering.
     Using rice mature and young seeds as material,the studies on rice embryogenic callus induction and the relevant genetic transformation were carried out.The results indicated that the callus induction rate for matue seeds,fresh mature seeds and young seeds was all>81%,averaged 86.67%,with the induction rate for fresh mature seeds highest up to 96.87%.The resistance callus rate for mature embryo was 22.21%-40.71%,averaged 28.49%,for young embryo was 36.79%-43.21%,averaged 40%,with that for the young embryo higher than that for the mature embryo.The seedling differentiation emergence rate was 59.29%-80.43%with an average of 71.59%for the mature embryo,and 63.16%-72.73%with an average of 67.95%for the young embryo,showing no significant differences between the two kinds of embryos.The transformation rate(Gus positive rate)was 43.07%-81.08%with an average of 61.51%for the mature embryo,and 58.33%-76.67%with an average of 67.50%for the young embryo.The transformation rate for the young embryo was slightly higher than the mature embryo.The resistant callus rate,differentiation rate and transformation rate were different among different vectors to some extent, indicating that different inserted gene fragments had some effects on them.
引文
[1]Nagy F and Sch(a|¨)fer E,2002.Phytochrome control photomorphogenesis by differentially regulated,interacting signaling pathways in higher plants.Annu.Rev.Plant Biol.,53,329-355
    [2]Shimazaki Y,Pratt L H,1985.Immunochemical detection with rabbit polyclonal and mouse monoclonal antibodies of different pools of phytochrome from etiolated and green Avena shoot.Planta,164:333-344
    [3]Sharrock R A,Quail P H,1989.Novel phytochrome sequences in Arabidopsis thaliana:structure evolution and differential expression of a plant regulatory photoreceptor family.Gene.Dev.,3:1745-1757
    [4]Furuya M,1993.Phytochromes:their molecular species gene families,and functions.Annu.Rev.Plant physiol.Plant Mol.Biol,44:617-645
    [5]刘明,赵琦王小菁.植物的光受体及其调控机制的研究.生物学通报,2005,40(5):10-12
    [6]SWART TE,CORCHNOY SB,CHRISTIE JM,et al.The photocycle of a falvin2binding domain of the blue light photo-receptor phototropin[J].J Biol Chem 2001,276:364932-36500.
    [7]LIN C.Blue light receptors and signal transduction[J].Plant Cell,2002,S207-S225
    [8]Johnson E,Bradley M,Harberd N P,1985.Phytoresponses of light-grown phyA mutants of Arabidopsis.Plant Physiol,105:145-149
    [9]Klar T,Pokomy R,Moldt J,Batschauer A,Essen LO.Cryptochrome 3 from Arabidopsis thaliana:struetural and functional analysis of its complex with a folate light antenna.J Mol Biol.2007 Feb 23;366(3):954-64.Epub 2006 Dec 2.
    [10]Margaret Ahmad,Chentao Lin and Anthony R.Cashmore.Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation.Plant J.1995 Nov;8(5):653-8.
    [11]Lin C,Ahmad M,Gordon D,Cashmore A R.Expression of an Arabidopsis cryptochrome gene in transgenie tobacco results in hypersensitivity to blue,UV-A,and green light.Proc Nail Acad Sci(USA),1995a,92:8423-8427.
    [12]Lin C,Yang H,Guo H.,Mockler T,Chen J and Cashmora.Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome.Proc Nail Acad Sci(USA),1995a,2686-2690
    [13]Mazzella M A,Cerdan P D,Staneloni R J,and Casal,JJ.Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development.Development.2001,128:2291-2299.
    [14]Mockler T C,Guo H,Yang H,Duong H,and Lin C.Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the reguation of floral induction.Development.1999,26:2073-2082.
    [15]Bagnall D J,King RW,and HangarterR P.Blue-light promotion of flowering is absent in by4 mutants of Arabidopsis.Pianta,1996,200:278-280.
    [16]Mozley D and Thomas B.Developmental and photobiological factors affecting photoperiodic induction in Arabidopsis thaliana Heyrth.Landsberg erecta.J Exp Bot,1995,461:73-179.
    [17]Mockler T,Yang H,Yu X,Parikh D,Cheng YC,Dolan S,Lin C.Regulation of photoperiodic flowering by Arabidopsis photoreceptors.Proc Natl Acad Sci U S A.2003 Feb 18;100(4):2140-5.Epub 2003 Feb 10.
    [18]Koomneef M,Hanhart CJ,van der Veen JH.A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana.Mol Gen Genet.1991 Sep;229(1):57-66.
    [19]Guo H,Yang H,Mocker T C,Lin C.Regulation of flowering time by Arabidopsis photoreceptors.Science,1998,279:1360-1363
    [20]Ahrnad M,Jarillo JA,Cashmore AR.Chimeric proteins between cryl and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability.Plant Cell.1998 Feb;10(2):197-207.
    [21]邵宏波.高等植物开花时程的基因调控(I)[J].生物技术通报,2001,(6):12-17
    [22]LARIGUET Patrieia;FANKHAUSER Christian.Hypocotyl growth orientation in blue light is determined by phytochrome A inhibition of gravitropism and phototropin promotion of phototropism.Plant J.2004 Dec;40(5):826-34
    [23]Folta KM.Green light stimulates early stem elongation,antagonizing light-mediated growth inhibition.Plant Physiol.2004 Jul;135(3):1407-16.Epub 2004 Jul 9
    [24]Devlin PF(2002)Signs of the time:environmental input to the circadian clock.Journal of Experimental Botany,53:1535-1550
    [25]Martinez-Gareia JF,Hua E,Quail PH(2000)Direct targeting of light signals to a promoter element-bound transcription factor.Science,288:859-863
    [26]Keiko U,Torii,Timony W,Xing-W D,1998.Functional dissection of its three structural modules in light control of seeding development.The EMBO Journal,17(19):5577-5587
    [27]Lay H A,Sudip C,Ning W,Tokitaka O,Alfred B,Xing-W D,1998.Molecular interaction between COP land HY5 defines a regulatory switch for light control of Arabidopsis development.Molecular Cell,1:213-222
    [28]Zhang YC,Gong SF,Li QH,Sang Y,Yang HQ.Functional and signaling mechanism analysis of rice CRYPTOCHROME 1.Plant J.2006 Jun;46(6):971-83
    [29]Matsumoto N,Hirano T,Iwasaki T,Yamamoto N.Functional analysis and intracellular localization of rice cryptochromes.Plant Physiol.2003 Dec;133(4):1494-503.Epub 2003Dec 4.
    [30]Hirose F,Shinomura T,Tanabata T,Shimada H,Takano M.Involvement of rice cryptochromes in de-etiolation responses and flowering.Plant Cell Physiol.2006Jul;47(7):915-25.Epub 2006 Jun 7.
    [31]H iei Y,Ohta S,Komari T,et al.Efticient transformation of rice mediated by A g robacterium and sequence analysis of the boundaries of the T2DNA.P Int J,1994,6:271-282.
    [32]植物基因工程.王关林,方宏筠主编:科学出版社,2002,第二版.
    [33]精编分子生物学实验指南(第四版).F.M.奥斯伯等主编:科学出版社,2002
    [34]分子克隆实验指南(第三版).J.萨姆布鲁克等主编:科学出版社,2002
    [35]曹孟良.农杆菌介导的水稻高效遗传转化体系的建立[J].湖南农业大学学报(自然科学版),1999,(5):5-12
    [36]J iang J D,L inscombe S D,Wang J L,et al.High efficiency transformation of U S rice lines from mature seed2derived calli and segregation of glufosinate resistance under field condition.Crop S ci,2000,40:1729-1741
    [37]Upadhyyaya N M,Surin B,Ramm K,et al.A g robacterium mediated transformation of A ustalian rice eultivars Jarrah and Amaroo using modified promoters and selectable markers.A ustJ P lant Phy siol,2000,27:201-210
    [38]黄健秋,卫志明,安海龙,徐淑平,章冰.根癌土壤杆菌介导的水稻高效转化和转基因植株的高频再生[J].植物学报,2000,(11):1172-1178
    [39]S.Ignacimuthu,S.Aroekiasamy.Agrobacterium-mediated transformation of an elite indica rice for insect resistance.CURRENT SCIENCE,VOL.90,NO.6,25 MARCH 2006
    [40]林拥军,陈浩,曹应龙,吴昌银,文静,李亚芳,华红霞.农杆菌介导的牡丹江8号高效转基因体系的建立[J].作物学报,2002,(3):294-300
    [41]蒋家焕,刘峰,许明,黄志伟,谢丽雪,郑金贵.高赖氨酸蛋白基因遗传转化水稻的研究[J].福建农林大学学报(自然科学版),2006,(6):615-618
    [42]王玉珍,罗景兰,徐进,刘香玲.农杆菌介导的水稻遗传转化与植株再生[J].华北农学报,2005,(2):8-11
    [43]刘志学,张旭,徐亚南,何艺园,马向前,沈大棱,唐克轩.用LBA4404/pCAMBIA系列转化水稻的最佳条件[J].复旦学报(自然科学版),1999,(4):439-443
    [44]金松恒,翁晓燕,王妮妍,李雪芹,毛伟华,蒋德安.Rubisco活化酶基因反义表达载体的构建与水稻的遗传转化[J].遗传,2004,(6):881-886
    [45]王亚琴,粱承邺.硝酸银在水稻农杆菌转化中的作用[J].湖南大学学报(自然科学版),2004,(2):28-31+51
    [46]Wu G,Spalding EP.eparate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings.Proc Natl Acad Sci U S A.2007 Nov 20;104(47):18813-8.Epub 2007 Nov 14.
    [47]Riese M,Zobell O,Saedler H,Huijser P.SBP-domain transcription factors as possible effectors of cryptochrome-mediated blue light signalling in the moss Physcomitrella patens.Planta.2008 Jan;227(2):505-15.Epub 2007 Nov 8.
    [48]Zhao X,Yu X,Foo E,Symons GM,Lopez J,Bendehakkalu KT,Xiang J,Weller JL,Liu X,Reid JB,Lin C.A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation.Plant Physiol.2007 Sep;145(1):106-18.Epub 2007 Jul 20.
    [49]Folta KM,Maruhnich SA.Green light:a signal to slow down or stop.J Exp Bot.2007;58(12):3099-111.Epub 2007 Jul 13.Review.
    [50]Immeln D,Schlesinger R,Heberle J,Kottke T.Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome.J Biol Chem.2007 Jul 27;282(30):21720-8.Epub 2007 Jun 4.
    [51]Kleine T,Kindgren P,Benedict C,Hendfiekson L,Strand A.Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance.Plant Physiol.2007 Jul;144(3):1391-406.Epub 2007 May 3.
    [52]Phee BK,Park S,Cho JH,Jeon JS,Bhoo SH,Hahn TR.Comparative proteomie analysis of blue light signaling components in the Arabidopsis cryPtochrome 1 mutant.Mol Cells.2007Apr 30;23(2):154-60.
    [53]Yu X,Shalitin D,Liu X,Maymon M,Klejnot J,Yang H,Lopez J,Zhao X,Bendehakkalu KT,Lin C.Derepression of the NC80 motif is critical for the photoactivation of Arabidopsis CRY2.Proc Natl Acad Sci U S A.2007 Apr 24;104(17):7289-94.Epub 2007 Apr 16.
    [54]Banerjee R,Schleicher E,Meier S,Viana RM,Pokomy R,Ahmad M,Bittl R,Batschauer A. The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone.J Biol Chem.2007 May 18;282(20):14916-22. Epub 2007 Mar 13.
    [55] Klar T, Pokorny R, Moldt J, Batschauer A, Essen LO. Cryptochrome 3 from Arabidopsis thaliana: structural and functional analysis of its complex with a folate light antenna.J Mol Biol. 2007 Feb 23;366(3):954-64. Epub 2006 Dec 2.
    [56] Huang Y, Baxter R, Smith BS, Partch CL, Colbert CL, Deisenhofer J. Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity.Proc NatlAcad Sci U S A.2006 Nov21;103(47):17701-6. Epub 2006 Nov 13.
    [57] Li QH, Yang HQ. Cryptochrome signaling in plants.Photochem Photobiol. 2007 Jan-Feb;83(1):94-101. Review.
    [58] Thomas B. Light signals and flowering.J Exp Bot. 2006;57(13):3387-93. Epub 2006 Sep 15.Review.
    [59] Ahmad M, Galland P, Ritz T, Wiltschko R, Wiltschko W. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta. 2007 Feb;225(3):615-24.Epub 2006 Sep 6.
    [60] Canamero RC, Bakrim N, Bouly JP, Garay A, Dudkin EE, Habricot Y, Ahmad M. Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana. Planta. 2006 Oct;224(5):995-1003. Epub 2006 May 9.
    [61] Platten JD, Foo E, Foucher F, Hecht V, Reid JB, Weller JL. The cryptochrome gene family in pea includes two differentially expressed CRY2 genes.Plant Mol Biol. 2005 Nov; 59(4):683-96.
    [62] Platten JD, Foo E, Elliott RC, Hecht V, Reid JB, Weller JL. Cryptochrome 1 contributes to blue-light sensing in pea.Plant Physiol. 2005 Nov;139(3):1472-82. Epub 2005 Oct 21.
    [63] Lariguet P, Dunand C. Plant photoreceptors: phylogenetic overview. J Mol Evol. 2005 Oct;61(4):559-69. Epub 2005 Sep 13.
    [64] Falciatore A, Bowler C. The evolution and function of blue and red light photoreceptors.Curr Top Dev Biol. 2005;68:317-50. Review.
    [65] Wang H. Signaling mechanisms of higher plant photoreceptors: a structure-function perspective. Curr Top Dev Biol. 2005;68:227-61. Review.
    [66] Franklin KA, Lamer VS, Whitelam GC. The signal transducing photoreceptors of plants.Int J Dev Biol. 2005;49(5-6):653-64. Review.
    
    [67] Casal JJ, Yanovsky MJ. Regulation of gene expression by light.Int J Dev Biol. 2005; 49(5-6):501-11. Review
    [68]Mao J,Zhang YC,Sang Y,Li QH,Yang HQ.From The Cover:A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening.Proc Natl Acad Sci U S A.2005 Aug 23;102(34):12270-5.Epub 2005 Aug 10.
    [69]Ulm R,Nagy F.Signalling and gene regulation in response to ultraviolet light.Curr Opin Plant Biol.2005 Oct;8(5):477-82.Review.
    [70]Lin C,Todo T.The cryptochromes.Genome Biol.2005;6(5):220.Epub 2005 Apr 29.Review.
    [71]庄伟建.隐光敏素及其信号传导研究进展.遗传.2005:27(2):325-34.Chinese
    [72]Banerjee R,Batschauer A.Plant blue-light receptors.Planta.2005 Jan;220(3):498-502.Epub 2004 Nov 18.Review.No abstract available.
    [73]Yang J,Lin R,Sullivan J,Hoecker U,Liu B,Xu L,Deng XW,Wang H.Light regulates COPl-mediated degradation ofHFR1,a transcription factor essential for light signaling in Arabidopsis.Plant Cell.2005 Mar;17(3):804-21.Epub 2005 Feb 10.
    [74]Usami T,Mochizuki N,Kondo M,Nishimura M,Nagatani A.Cryptochromes and phytochromes synergistically regulate Arabidopsis root greening under blue light.Plant Cell Physiol.2004 Dec;45(12):1798-808.
    [75]Giliberto L,Perrotta G,Pallara P,Weller JL,Fraser PD,Bramley PM,Fiore A,Tavazza M,Giuliano G.Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development,flowering time,and fruit antioxidant content.Plant Physiol.2005Jan;137(1):199-208.Epub 2004 Dec 23.
    [76]Chen M,Chory J,Fankhauser C.Light signal transduction in higher plants.Annu Rev Genet.2004;38:87-117.Review.
    [77]Lariguet P,Fankhauser C.Hypoeotyl growth.orientation in blue light is determined by phytoehrome A inhibition of gravitropism and phototropin promotion of phototropism.Plant J.2004 Dec;40(5):826-34.
    [78]Fankhauser C,Casal JJ.Phenotypic characterization of a photomorphogenic mutant.Plant J.2004 Sep;39(5):747-60.
    [79]Folta KM.Green light stimulates early stem elongation,antagonizing light-mediated growth inhibition.Plant Physiol.2004 Jul;135(3):1407-16.Epub 2004 Jul 9.
    [80]Ohgishi M,Saji K,Okada K,Sakai T.Functional analysis of each blue light receptor,cryl,cry2,phot1,and phot2,by using combinatorial multiple mutants in Arabidopsis.Proc Natl Aead Sei U S A.2004 Feb 24;101(8):2223-8.Erratum in:Proc Natl Acad Sci U S A.2004Apt 13;101(15):5696.
    [81]刘永巍,田红刚,李玉华,孟昭河.根癌农杆菌介导的水稻遗传转化[J].牡丹江师范学院 学报(自然科学版),2008,(1):30-32
    [82]危晓薇,王冬梅,祖木热木·吐尔逊.水稻成熟胚愈伤组织诱导及其植株再生[J].新疆农业科学,2007,(6):889-891
    [83]向殿军,张瑜,殷奎德.农杆菌介导的转ICEl基因提高水稻的耐寒性[J].中国水稻科学,2007,(5):482-486.
    [84]刘清,朱允华,吴顺,沈革志,萧浪涛.遗传转化过程中水稻愈伤组织的内源植物激素变化动态研究[J].中国农业科学,2007,(10):2361-2367
    [85]唐微.农杆菌介导的明恢63转化体系的建立[J].湖北农业科学,2007,(3):332-334
    [86]潘素君,戴良英,刘雄伦,王国梁.农杆菌介导的遗传转化在水稻基因工程中的应用[J].中国稻米,2007,(3):10-14
    [87]宁约瑟,刘雄伦,戴良英,王国梁.根癌农杆菌介导水稻遗传转化研究进展及展望[J].中国农学通报,2007,(3):47-52
    [88]向殿军,张瑜,殷奎德.农杆菌介导寒地水稻遗传转化的研究[J].生物技术通报,2007,(2):139-142
    [89]王彩芬,付永彩,朱作峰,徐杰,葛占宇,孙传清.水稻遗传转化甘露糖安全筛选体系的建立[J].西北农业学报,2007,(2):41-45
    [90]李建粤,毛万霞,范士靖,吕英海.导入反义蜡质基因改良水稻稻米的食味品质和营养品质[J].植物研究,2007,(1):94-98
    [91]陈彩艳,肖晗,张文利,王爱菊,夏志辉,李晓兵,翟文学,程祝宽,朱立煌.以花药愈伤组织为受体的水稻转化和RNA干扰研究[J].中国科学(C辑:生命科学),2006,(4):289-301
    [92]马静,韩国敏,李树华.野生稻DNA导入水稻后代的抗病性遗传规律研究[J].宁夏农林科技,2006,(6):4-5
    [93]吴关庭,郎春秀,胡张华,陈笑芸,王伏林,金卫,陈锦清.应用反义PEP基因表达技术提高稻米脂肪含量[J].植物生理与分子生物学学报,2006,(3):339-344
    [94]张启军,尹福强,王世全,李平,邹江石,吕川根.根癌农杆菌介导gna基因对水稻的转化[J].中国农学通报,2006,(6).
    [95]王育花,田继微,肖国樱.根癌农杆菌介导的水稻遗传转化影响因素研究[J].江西农业学报,2006,(3):40-44
    [96]乐宁,罗荡平,段承杰,罗雪梅,储成才,唐纪良,冯家勋.水稻OsNPR1基因RNA干涉载体的构建及其对水稻的转化[J].广西农业生物科学,2005,(4):269-274
    [97]刘香玲,王玉珍,罗景兰.水稻成熟胚愈伤组织的诱导和分化因素的研究[J].山东农业科学,2005,(5):13-15
    [98]刘元风,刘彦卓,王金花,罗文永,毛兴学,李玲,李晓方.根癌农杆菌介导籼稻遗传转化影响因 素研究[J].分子植物育种,2005,(5):737-743+748
    [99]李学贵,陈婷,李霞.农杆菌介导的水稻基因转化技术的研究进展[J].德州学院学报,2005,(4):8-11
    [100]高方远,SE宗阳,李浩杰,陆贤军,任光俊.导入反义Wx基因改良杂交籼稻保持系直链淀粉含量[J].作物学报,2005,(7):876-881
    [101]吕彦,SE平荣,孙业盈,董春林,陈德西,邓晓建.农杆菌介导遗传转化在水稻基因工程育种中的应用[J].分子植物育种,2005,(4):543-549
    [102]孟昭河,孟巧霞,刘永巍,李春光,张景龙.根癌农杆菌介导反义蜡质基因获得水稻植株研究初报[J].黑龙江农业科学,2005,(2):8-12
    [103]蒋苏,陈彩艳,程祝宽,蔡润,翟文学,朱立煌.用花药愈伤组织作为转化受体的水稻转基因植株的分析[J].遗传学报,2004,(12):1381-1387
    [104]刘永巍,孟巧霞,党永志,孟昭河,李春光,刘国权.根癌农杆菌介导获得粳稻转基因植株研究[J].中国农学通报,2004,(5):41-44
    [105]黄红梅,杨永智,张治国,宛淑艳,郭蔼光,吴金霞,路铁刚.影响根癌农杆菌介导的高效水稻遗传转化的相关因素分析[J].西北农林科技大学学报(自然科学版),2004,(9):4-8
    [106]王景余,林秀云,李明生.水稻遗传转化研究进展[J].生物技术通报,2002,(1):20-25
    [107]伍成祥,宛煜嵩,徐俊,苏金,方宣钧.水稻成熟胚盾片诱导愈伤组织再生体系的建立[J].热带作物学报,2002,(3):88-94
    [108]曹明霞,卫志明,黄健秋.根癌农杆菌介导的水稻遗传转化[J].植物生理学通讯,2002,(5):423-427
    [109]易自力,严钦泉,邓启云,刘选明,周朴华,李祥,储成才.几种水稻籼型恢复系和不育系离体培养和遗传转化的研究[J].湖南大学学报(自然科学版),2002,(1):1-7
    [110]沈圣泉,张仁华,舒庆尧.水稻常用的遗传转化技术及应用现状[J].中国农学通报,2001,(1):37-39
    [110]殷丽青,王新其,韩志勇,程磊,沈革志.根癌农杆菌介导反义蜡质基因的水稻遗传转化[J].上海交通大学学报(农业科学版),2001,(4):285-289
    [111]贝丽霞,王守德,史芝文,徐仲,郭三堆.用基因枪法将Bt杀虫基因导入水稻愈伤组织的研究[J].东北农业大学学报,2001,(1):90-94
    [112]程磊,周根余,沈革志.根癌农杆菌介导的水稻遗传转化(综述)[J].上海农业学报,2000,(4):43-51
    [113]刘志学,马向前,何艺园,徐亚南,叶鸣明,唐克轩.农杆菌介导遗传转化中辅助处理方法的改良[J].复旦学报(自然科学版),1999,(5):601-604
    [114]房迈莼,王小菁,李洪清.光对植物生物钟的调节.植物学通报2005,22(2):207-214.
    [115]刘明,赵琦,王小菁,赵玉锦,童哲.植物的光受体及其调控机制的研究.生物学通报,2005,40(5):10-12
    [116]范玉琴,李德红.植物的蓝光受体及其信号转导[J].激光生物学报,2004,(4).314-320
    [117]闫海芳,周波,李玉花.光受体及光信号转导[J].植物学通报,2004,(2):235-246
    [118]常立,文国琴.植物蓝光受体研究进展[J].生物技术通讯,2004,(2):169-171
    [119]王小菁.我国光形态建成研究回顾[J].植物学通报,2003,(4):407-415
    [120]叶珍.隐花色素与植物的光形态建成[J].四川农业大学学报,2003,(3):267-270+274
    [121]王小菁.隐花色素与COP1在拟南芥光控发育中相互作用的直接证据[J].植物学通报,2002,(1):127
    [122]刘清丽,李合生,伍素辉.光质对农垦58s黄化苗形态建成、色素和蛋白质含量的影响[J].华中农业大学学报,1994,(6):636-640
    [123]田保明,陈占宽,杨光圣,苗利娟,梁会娟.基于RNAi技术转移脂肪酸延长酶基因fael 及转基因油菜的获得[J].中国油料作物学报,2007,(2):133-137
    [124]刘月英,周志平,马俊莲,张子德,唐霞.RNAi及其抑制目的基因表达的机制[J].安徽农业科学,2007,(13):3826-3827
    [125]梁会娟,曹刚强,苗利娟,田保明,翁海波,黄冰艳,陈占宽.根癌农杆菌介导的fad2 RNA 干扰体基因转化甘蓝型油菜的研究[J].河南农业科学,2007,(1):34-38
    [126]陈占宽,张新友,苗利娟,黄冰艳,汤丰收,张忠信.花生△-(12)-脂肪酸去饱和酶基因RNAi表达载体的构建[J].华北农学报,2006,(4):9-12
    [127]姜洋,肖尊安,李俊全.RNA干扰降低烟草植株中内源生长素水平[J].北京师范大学学报(自然科学版),2006,(4):401-404
    [128]沈兆奎,郝泽东.RNAi技术及其应用[J].安徽农业科学,2006,(8):1517+1519
    [129]梁会娟,苗丽娟,曹刚强,田保明,陈占宽.甘蓝型油菜△-(12)-油酸去饱和酶基因RNAi 载体的构建.河南农业科学,2006,(6):36-41+46
    [130]陈芸,朱作言.RNA干扰在抗病毒研究中的应用[J].水生生物学报,2006,(3):356-359
    [131]李小平,邓楠,马嫒嫒,李鹏丽,王勇,张韧,王宁宁.大豆类受体蛋白激酶基因(rlpk2)RNAi双元表达载体的构建及其转基因[J].分子细胞生物8学报,2006,(1):1-8
    [132]夏广清,朱俊义,何启伟,赵双宜,王翠花.利用RNA干扰技术获得晚抽薹开花转基因大白菜(英文)[J].植物生理与分子生物学学报,2007,(5):416+411-415
    [133]吴丹,章丽娜,石娇,高志峰,谭克,刘雷,胡兰.RNA干扰的实验方法及应用[J].畜牧与兽医,2007,(7):65-68
    [134]田保明,陈占宽,杨光圣,苗利娟,梁会娟.基于RNAi技术转移脂肪酸延长酶基因fael及 转基因油菜的获得[J].中国油料作物学报,2007,(2):133-137
    [135]仲明,张宏福,董枫岚,王润平,刘燕,杨琳.RNAi表达载体对avUCP基因表达的抑制作用[J].畜牧兽医学报,2007,(4):352-355
    [136]陈彩艳,肖晗,张文利,王爱菊,夏志辉,李晓兵,翟文学,程祝宽,朱立煌.以花药愈伤组织为受体的水稻转化和RNA干扰研究[J].中国科学(C辑:生命科学),2006,(4):289-301
    [137]王玥,牛俊奇,丁艳华,王峰.应用RNA干扰抑制乙型肝炎病毒复制和表达[J].中华肝脏病杂志,2006,(10):790-792
    [138]姜洋,肖尊安,李俊全.RNA干扰降低烟草植株中内源生长素水平[J].北京师范大学学报(自然科学版),2006,(4):401-404
    [139]谷习文,周荆荣,郑新民,魏庆信.α-1,3-半乳糖苷转移酶基因沉默载体的构建[J].湖北农业科学,2006,(2):147-149
    [140]田保明,陈占宽,苗利娟,梁会娟,黄冰艳,翁海波,易明林,曹刚强,郅玉宝.甘蓝型油菜脂肪酸延长酶FAE1 RNA干扰体的构建[J].河南农业科学,2006,(3):43-47
    [141]邹丰才,宋慧群,陈宁,朱兴全.RNA干扰技术及其在寄生线虫基因功能研究中的应用[J].中国兽医科学,2006,(1):80-84
    [142]柴晓杰,王丕武,关淑艳,徐亚维.应用RNA干扰技术降低玉米支链淀粉含量[J].植物生理与分子生物学学报,2005,(6):625-630
    [143]钱华冬,朱建国,华修国.RNA干扰技术应用研究进展[J].畜牧与兽医,2005,(10):52-54
    [144]姜庆林,季从亮,周群兰,卢克伦,陈国宏.RNA干扰与基因沉默[J].中国兽医学报,2005,(2):221-224
    [145]赵庆臻,赵双宜,夏光敏.植物RNA沉默机制的研究进展[J].遗传学报,2005,(1):104-110
    [146]陈吉刚,郑肖娟,龚辉,周继勇.RNA干扰研究进展[J].中国预防兽医学报,2004,(2):76-79
    [147]马中良,杨怀义,田波.真核生物中的微小RNA及其功能研究进展[J].遗传学报,2003,(7):693-697
    [148]Wu G,Spalding EP.Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings.Proc Natl Acad Sci U S A.2007 Nov 20;104(47):18813-8.Epub 2007 Nov 14
    [149]Endo M,Mochizuki N,Suzuki T,Nagatani A.CRYPTOCHROME2 in vascular bundles regulates flowering in Arabidopsis.Plant Cell.2007,Jan;19(1):84-93.Epub 2007 Jan 26.
    [150] El-Din El-Assal S, Alonso-Blanco C, Peeters AJ, Wagemaker C, Weller JL, Koornneef M.The role of cryptochrome 2 in flowering in Arabidopsis. Plant Physiol. 2003 Dec; 133(4):1504-16. Epub 2003 Nov 6.
    [151] Canamero RC, Bakrim N, Bouly JP, Garay A, Dudkin EE, Habricot Y, Ahmad M.Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana. Planta. 2006 Oct;224(5):995-1003. Epub 2006 May 9.
    [152] Phee BK, Park S, Cho JH, Jeon JS, Bhoo SH, Hahn TR. Comparative proteomic analysis of blue light signaling components in the Arabidopsis cryptochrome 1 mutant. Mol Cells. 2007 Apr 30;23(2):154-60.
    [153] Danon A, Coll NS, Apel K. Cryptochrome-1-dependent execution of programmed cell death induced by singlet oxygen in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2006 Nov 7; 103(45): 17036-41. Epub 2006 Oct 30.
    [154] Shalitin D, Yu X, Maymon M, Mockler T, Lin C. Blue light-dependent in vivo and in vitro phosphorylation of Arabidopsis cryptochrome 1. Plant Cell. 2003 Oct;15(10):2421-9.
    [155] Ahmad M, Cashmore AR. The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana. Plant J. 1997 Mar,11(3):421-7.
    [156] Ohgishi M, Saji K, Okada K, Sakai T. Functional analysis of each blue light receptor, cry1,cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2223-8.
    [157] Lin C, Yang H, Guo H, Mockler T, Chen J, Cashmore AR. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2686-90.
    [158] Kang B, Grancher N, Koyffmann V, Lardemer D, Burney S, Ahmad M. Multiple interactions between cryptochrome and phototropin blue-light signalling pathways in Arabidopsis thaliana. Planta. 2008 Apr;227(5):1091-9. Epub 2008 Jan 9.
    [159] Yu X, Klejnot J, Zhao X, Shalitin D, Maymon M, Yang H, Lee J, Liu X, Lopez J, Lin C.Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus. Plant Cell. 2007 Oct; 19(10):3146-56. Epub 2007 Oct 26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700