用户名: 密码: 验证码:
狭长空间油池火燃烧特性的实验与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市化进程不断加快,出现了越来越多的大型建筑和隧道空间。在外型上,许多建筑都为狭长空间。狭长空间火灾的发展受诸多因素的影响,比如燃料、火源尺寸、壁面材料、开口条件及通风条件等。因此,开展狭长空间影响火灾发展规律的因素研究有着重要意义。
     本文利用小尺度实验模拟、及数值模拟相结合的方法,研究了狭长空间内的火灾发展规律及燃烧特性的变化规律。通过文献调研,分析研究后搭建了小尺寸实验台,在此基础上搭建了小尺寸狭长空间火灾实验台,实验过程中通过改变不同的边界条件开展了一系列的实验,测量了烟气温度、浓度和质量损失速率,研究不同工况条件下狭长空间火灾的发展过程。最后对实验数据进行处理,分析研究了各种工况条件下狭长空间火灾的燃烧特性。
     通过实验模拟,首先研究了准稳态条件下开口形态的影响,正庚烷的无量纲质量损失速率随开口的增大而减小,且服从指数衰减规律;另一方面,不同开口大小的无量纲质量损失速率变化趋势相同,而且无量纲质量损失速率随开口尺寸的增大而减小。其次针对远火源场,实验证实了温度的纵向衰减符合指数关系,几种开口大小的远火源端纵向温度衰减因子变化规律一致,均随着中性面高度的增加而增大;而且中性面高度相同时,远火源端的纵向温度衰减因子随开口大小的增大而增大。之后,实验还证实了竖向温度分布属于高斯型,最高温度距顶棚的位置随中性面高度变化趋势相同。
     利用小尺寸实验模拟,研究开口位置耦合火源尺寸下的火灾发展情况。通过与开放空间Babraluskas经验值以及狭长空间0. Megret模型预测值的对比,单位面积的质量损失速率在Babraluskas经验值的最小值和最大值之间变化,但不是线性增长,而是先减小后增大;实验值比狭长空间0. Megret模型预测值高。针对狭长空间温度分布,不同油盘尺寸的无量纲顶棚温升变化趋势相同,服从指数衰减,而且具有高度的相似性。在远火源区,油盘尺寸对各断面处无量纲竖向温升分布规律影响可以忽略,不同油盘尺寸的各断面处无量纲温升均很好的服从高斯分布,并具有很高的相似性。
     随后,通过实验模拟研究了狭长空间双火源燃烧特性。研究发现,火源1和火源2不同油盘尺寸对其质量损失速率的影响比较复杂,整体而言,火源2油盘尺寸小对火源1的影响较小,油盘尺寸较大时将抑制火源1的燃烧。远火源区竖向温度分布具有高度的相似性,服从高斯分布,不随火源2油盘尺寸的变化而改变。此外,火源1的燃烧充分与否直接影响C0浓度的产量。而对于延时点火的实验研究,火源2延时点火时火源1的质量损失速率明显高于未延时的;相对于单一火源,延时点火的质量损失速率峰值明显较小。延时点火时C0浓度峰值几乎相等,相对于未延时点火的情况,C0浓度峰值小了一个量级。
     最后,利用小尺度狭长空间实验台的测量数据和数值模拟软件FDS研究了狭长空间双火源对燃烧特性的影响。通过FDS模拟,给出了x-z平面上温度场和速度场随时间的变化情况,并通过对比发现双火源作用下,对于双火源之间的温度分布而言,着火后不久燃烧比较充分,此时FDS模拟产生的烟尘高于实验值,双火源之间FDS模拟温度较高;充分发展后,燃烧不充分,FDS模拟产生的烟尘低于实验值,造成了此时的FDS模拟温度较低。对于远火源区,FDS模拟温度普遍低于实验值。
With the world's rapid economic development and accelerating process of urbanization, the number of huge building and tunnel space is increasing. In appearance, many buildings should be long and narrow space, which act as main passage for walking and fire evacuation path for a fire accident. It facilitates the human life, but also brings some fire hazards. The development of the long-narrow space fire is influenced by many factors, such as fuel, the size of fire source, opening conditions, ventilation conditions, etc. Therefore, carrying out the study of factors affecting fire development law in a long-narrow space is of great significance,
     In this study, by means of combining small-scale experiments and numerical simulation, fire development law and variation of combustion characteristics in a long-narrow space have been studied. Referring to previous research methods and ideas, a small-scale long-narrow space fire bench is constructed. By changing the opening configuration, fire source area, shape of fire source, fire source location and other boundary conditions, the fire occurrence process in the long-narrow space is reproduced and the parameters in fire process, such as smoke temperature, density, thermal radiation flux on the floor and mass loss rate of fire source, is measured accurately, which offer data support for comparison validation and discussion between theoretical model and numerical simulation.
     First, with a series of experiments, the effect of opening configuration in a quasi-steady-state had been studied. Dimensionless mass loss rate of n-heptane reduced with the increasing of opening size and was subject to exponential decay. On the other hand, dimensionless mass loss rate of different opening sizes had the same change tendency. Second, for the far fire source field, the experiments confirmed that the longitudinal temperature reduction was subject to exponential relationship and the decay factors of longitudinal temperature reduction with several different opening sizes had the same variation, which increased with the increase of the neutral plane height. Also, when the neutral plane height was same, the decay factor of longitudinal temperature reduction would grow up with the increase of opening size. After that, experiments also confirmed that the temperature profile had a good agreement with Gaussian distribution and the location of the maximum temperature from ceiling varied with the neutral plane height.
     According to a series of small scale experiments, the influence of fire size coupling with opening position on the fire development was studied. Compared to the Babraluskas empirical value in open space and the predicted value by O. Megret model in long-narrow space respectively, the mass loss rate per unit area ranged from the minimum to the maximum of Babraluskas empirical value, which decreased at the beginning and increased subsequently, rather than linear growth; and the measurements were higher than the predicted values obtained by O. Megret model. The dimensionless ceiling temperatures of the oil pans with different sizes all had agreement with exponential attenuation, and the variation trend was highly similar. For the far fire source field, the influence of the oil pan size on the dimensionless ceiling temperatures at different cross sections could be ignored; the dimensionless ceiling temperatures at different cross sections with different sizes of the oil pans had good agreement with Gauss Distribution, which was also highly similar.
     Subsequently, the combustion characteristics with double fire sources in long-narrow space were studied by a series of experiments. The results showed that the influence of the two fire resources on the mass loss rate was quite complicated. As a whole, it would strongly restrain the combustion of fire source at the closed end when the size of fire source in the middle increased. For the far fire source field, the temperatures at different cross sections had good agreement with Gauss Distribution, which were not affected with fire source size in the middle. When fire source in the middle ignited after fire source at the closed end, mass loss rate of the latter was higher obviously than the experiments that were not delayed.
     Finally, comparing with the results measured in a series of small scale experiments, the influence of double fire sources in long-narrow space on the combustion characteristic was studied by Fire Dynamics Simulator (FDS). The variation of temperature distribution and velocity distribution in X-Z plane over time is studied through FDS simulation. The results showed that when double fire sources existed in long-narrow space, the velocity distribution between the double fire sources as well as in the region far from the fire source had good agreement with Gauss Distribution respectively. In the region between the two fire sources, the simulated smoke temperature was higher than measured results, and the deviation mainly came from the underestimate of the mass loss rate after the complete combustion. While in the region far from the fire source, the simulated temperature was lower than measured results.
引文
[1]R.O. Carvel, A.N. Beard, P.W. Jowitt. Fire Spread between Vehicles in Tunnels: Effects of Tunnel Size, Longitudinal Ventilation and Vehicle Spacing, Fire Technology,2005,41:271-304
    [2]陈宜吉,隧道列车火灾案例及预防[M],中国铁道出版社,1998年,北京.
    [3]田鸿宾,孙兆荃.1995.世界城市地铁发展综述[J].土木工程学报,23(1):73-78.
    [4]李东.2007.中国地铁建设情况[EB/OL].杭州:浙江在线,[2007-3-28]. http://www.ccmetro.com/newsite/readnews.aspx?id=28456.
    [5]孔祥金.全国公路隧道最新统计资料.公路隧道,2004,(4):41
    [6]蔡逸峰.世界上最长的穿越海峡的隧道[J].交通与运输,2008,(1):46-47
    [7]瑞士开通世界最长陆上隧道[J].岩土工程界,2007,10(8):18
    [8]张惠兰.城市地下通道半封闭结构的设计.铁道勘测与设计,2006,(2):97-101.
    [9]何滨,张国贤.郑州市地下空间开发利用浅析.山西建筑,2010,01:49.
    [10]沈晓舟.浅析中等城市地下空间开发的利用.山西建筑,2010,36(5):45-46.
    [I1]朱红梅,谭雪兰.试论长沙市地下商业街合理开发利用.亚热带资源与环境学报.2009,4(3):37-42.
    [12]许兰兰,檀丽丽.浅谈城市地下空间的利用.山西建筑,2006,32(16):30-31.
    [13]郑士贵.城市地下空间的开发利用.中国人民防空,2002,6:29-30.
    [14]许维敏.浅谈城市地下通道与商业及地铁的结合.交通与运输(学术版).2009,25:76-79.
    [15]中华人民共和国建设部,《地铁设计规范》(Code for Design of Metro, GB50157-2003[M],中国计划出版社,2003年7月
    [16]黄钊.地下商业街的火灾防护[J].重庆三峡学院学报,2006,18(6):112-117
    [17]逢辉.地下商业街系统设计探讨[J].建材.建筑.装修,2008,9(6):25-26
    [18]熊洪,刘曦娟等.国内地下商业街防排烟系统及疏散诱导系统现状[J].消防科学与技术,1999,(2):166-172
    [19]《建筑设计防火规范》GB50016-2006.
    [20]黄白蓉.长内走道排烟优化控制方式的适用条件研究.消防科学与技术.2009,28(8):577-579.
    [21]黄白蓉.长内走道排烟优化方式可行性研究.消防科学与技 术.2009,28(1):40-42.
    [22]Haukur Ingason, Ulf Wickstrom. Tunnel fire safety research in Europe. Industrial Fire Journal.2011,01(82):30-33
    [23]束昱.2009.城市地下空间灾害事故案例选编[M].上海:同济大学出版社.
    [24]公安部消防局.1998.中国火灾统计年鉴[M].北京:警察教育出版社.
    [25]公安部消防局.1999.中国火灾统计年鉴[M].北京:警察教育出版社.
    [26]公安部消防局.2000.中国火灾统计年鉴[M].北京:警察教育出版社.
    [27]公安部消防局.2001.中国火灾统计年鉴[M].北京:警察教育出版社.
    [28]Fennell D.1988. Investigation into the King's Cross Underground Fire[M].1st ed. London:The Stationery Office Books.
    [29]Moodie K.1992. The King's Cross Fire:Damage Assessment and Overview of the Technical Investigation[J]. Fire Safety Journal,18(1):13-33.
    [30]Fire engulfs AlPine Tunnel, killingtwo, South China Monring Post, Inetrnational, P.A15,6June,2005.
    [31]Park H J.2004. An investigation into mysterious questions arising from the Daegu underground railway arson case through fire simulation and small-scale fire test [C], Proceedings of the 6th asia-oceania symposium on fire science and technology, Daegu,16-27.
    [32]Chow W K.2008. Necessity of Testing Combustibles under Well-developed Fires[J]. Journal of Fire Sciences,26(4):311-329.
    [33]北京青年报.http://wenku.baidu.com/view/26c702c458f5f61fb7366635.html
    [34]http://www.nfdaily.cn/bignews/hot/content/2008-05/04/content_4393274.htm
    [35]孙楠楠.2010.地下商业建筑的火灾特点与灭火救援[J].消防技术与产品信息,7:32-36.
    [36]杨立中,邹兰.2005.地铁火灾研究综述[J].工程建设与设计,11:8-12.
    [37]胡隆华.2006.隧道火灾烟气蔓延的热物理特性研究[D]:[博士].合肥:中国科学技术大学.
    [38]李树涛.2005.地下建筑火灾烟气危害性及对策探讨[J].武等学院学报,21(6):25-26.
    [39]韩涛.2008.地下工程火灾发生特征与防护对策研究[J].山西建筑,34(4):209-211.
    [40]陈鼎榕.2003.地铁火灾事故下的安全疏散[J].城市轨道交通研究,2:29-31.
    [41]尹利敏.2007.试论地下商业建筑的火灾与扑救[J].科技经济市场,10:109-110.
    [42]Alan N. Beard. Fire safety in tunnels [J]. Fire Safety Journal,2009,44(2): 276-278
    [43]曹炳坤.敲响地铁安全警[J].交通与运输,2005,(7):55
    [44]Hedenfalk J, Wahlstrom B. Lessons from the Baku subway fire. In:Third international conference, Nice, France,9-11 March 1999,15-28
    [45]Anders Lonnermark, Haukur Ingason. Gas temperatures in heavy goods vehicle fires in tunnels [J]. Fire Safety Journal,2005,40 (6):506-527
    [46]A.G. Smith, P.J.N. Pells. Impact of fire on tunnels in Hawkesbury sandstone [J]. Tunnelling and Underground Space Technology,2008,23 (1):65-74
    [47]G. B. Grant, S. F. Jagger, C. J. Lea. Fires in tunnels. Phil. Trans. R. Soc. Lond. A,1998,356:2873-2906
    [48]熊海群.2007.地下商业街的防火设计研究[D]:[硕士].重庆:重庆大学.
    [49]Alan Beard, Richard Carvel. The Handbook of Tunnel Fire Safety [M].London: Thomas Telford,2005
    [50]范维澄,王清安,姜冯辉,周建军.火灾简明学教程.合肥:中国科学技术大学出版社,1995
    [51]Heselden A J M, Melinek S J.1972. Fire Research note no.1029. The early stages of fire growth in a compartment. A co-operative research programme of the CIB (Commission W14). First Phase[R]. Borehamwood, England:Fire Research Station.
    [52]Michael A. Delichatsios, Yee-Ping Lee, Piotr Tofilo.2009. A new correlation for gas temperature inside a burning enclosure. Fire Safety Journal.44, pp.1003-1009.
    [53]Ewens, D.S. et al. The transport and remote oxidation of compartment fire exhaust gases. Master of Science Thesis, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University.1994.134
    [54]Thomas I, Bennetts I.1999. Fires in enclosures with single ventilation openings-comparison of long and wide enclosures[C]. Proceedings of the Sixth IAFSS Symposium, Poitiers, France:941-952.
    [55]Thomas I, Moinuddin K, Bennetts I.2005. Fires development in a deep enclosure[C]. Proceedings of the Eighth IAFSS Symposium, Beijing, China: 1277-1288.
    [56]IAN THOMAS, KHALID MOINUDDIN, and IAN BENNETTS.2005. Fire Development in a Deep Enclosure, FIRE SAFETY SCIENCE-PROCEEDINGS OF THE EIGHTH INTERNATIONAL SYMPOSIUM:1277-1288
    [57]石龙.2009.计算机显示器火灾特性的实验研究[D]:[硕士].合肥:中国科学技术大学.
    [58]Babrauskas, V. Estimating Large Pool Fire Burning Rates [J]. Fire Technology, 1983,4:251-261.
    [59]Babrauskas, V.1985. Free Burning Fire[J].FireSafetyJoumal,11(1):33-51
    [60]V.I. Blinov, G.N. Khudiakov.1958. Review-Certain Laws Governing Diffusive Burning of Liquids [J]. Fire Research Abstracts and Reviews,1:41-44.
    [61]Anthony Hamins, Takashi Kashiwagi, Robert R.1996. Characteristics of Pool Fire Burning[R]. Building and Fire Research Laboratory, National Institute of standard and Technology, Gaithersburg, MD
    [62]Anthony HaminS, Jiann C.Yang, Takashi Kashiwagi.1999. A Global Medel for predicting the Burning Rates of Liquid Pool Fires[R].Building and Fire research Laboratory. National Institute of standard and Technology, NISTIR 6381
    [63]Blinov V.I., Khudiakov G.N.1961. Diffusion Burning of Liquids, U.S. Army Translation [M],NIST No.AD296762,105-108
    [64]孙志友,庄磊,陆守香,2008,正方形煤油池火燃烧特性研究,火灾科学,17(2):93-98
    [65]Welker J.R., Pipkin O.A., Sliepcevieh C.M.1965.The effect of wind on Flames [J]. Fire Technology,1(2):122-129
    [66]O. Megret, O. Vauquelin.2000. A model to evaluate tunnel fire characteristics. Fire Safety Journal,34:393-401
    [67]Putnam AA, Speich CF. A model study of the interaction of multiple turbulent diffusion flames [J]. Proceedings of the Combustion Institute,1963,9:867-877.
    [68]Thomas PH, Baldwin R and Heselden AJM. Buoyant diffusion flames:sortie measurements of air entrainment, heat transfer and flame merging [J]. Proceedings of the Combustion Institute,1965,10:983-996.
    [69]Baldwin R. Flame merging in multiple fires [J]. Combustion and Flame,1968, 12(4):318-324.
    [70]Huffman K, Welker J. et al. Interaction effects of multiple pool fires [J]. Fire Technology,1969,5(3):225-232.
    [71]Satoh K, Shinohara M, Yang KT. Experimental observations and analysis of square arrays of equi-distant multiple fires [A. Proceedings of the Third Asia-Oceania Symposium on Fire Science and Technology Singapore [C], June 1998: 517-528.
    [72]Satoh K, Shinohara M, Yang KT. Experimental observations and analysis of square arrays of equi-distant multiple fires affected by 3 shear flow field [A]. Proceedings of the Seventh Brazilian Congress of Engineering and Thermal Sciences[C], Rio de Janeiro,1998:490-495.
    [73]Satoh K, Ping ZJ, Liu N, Yang KT. Experiments and analysis of interaction among multiple fires in equidistant fire arrays [A]. Proceedings of the ASME Summer
    Heat Transfer Conference[C],2005(1):709-712.
    [74]Liu NA, Liu Q, Deng ZH, Kohyu S, Zhu JP. Burnout time data analysis on interaction effects among multiple fires in fire arrays[J]. Proceedings of the Combustion Institute,2007,31:2589-2597
    [75]刘琼,多火源燃烧动力学机制与规律研究[D].中国科学技术大学,合肥,2010.
    [76]李树声,战咏梅,多火源通道火灾流场特性的实验与数值研究[J],哈尔滨工程大学学报,2013,34(4):1-5
    [1]范维澄、刘乃安,火灾安全科学一一个新兴交叉的工程科学领域,中国工程科学[J],2001年第3卷第1期:6-14
    [2]杨其新,阎治国,秦岭终南山特长公路隧道火灾模型实验研究,广西交通科技[J],2003年,VOI.28(3):18-25.
    [3]Riehter, E., Smoke and Temperature Development in Tunnels-Experimental Results of Full Scale Fire Tests.2nd Int. Con.f Safety in Road and Rail Tunnels[C], Granada, SPain1995 PP.295-302.
    [4]Geogre B.Grnat and Dougal Drysdale, Estimating heat release rates from large-scale tunnel fires. Fire Safety Science-Proceedings of the fifth international symposium[C], PP1213-1224.
    [5]Bettis, R.J., Jagger, S.F. & Moodie, K., Reduced Scale Simulations of Fires in Partially blocked Tunnels, Proceeding of Int. Conf Fires in Tunnels[C], Boras, Oetober10-11,1994, PP.162-186.
    [6]R.O.Cavrel, D.D. Dyrsdale. The influence of tunnel geometry and ventilation on the heat release rate of a fire, Fire Technology [J] 40(2004):5-26.
    [7]曹智明,杨其新.秦岭终南山特长公路隧道火灾模式下的通风组织实验方案研究.公路学报.2003年7月第7期:77-180.
    [8]Malhotra, H.L., Goods Vehicle Fire Test in a Tunnel.2nd Int. Con.f on Safety in Road and Rail Tunnels[C], Granada, Spain,1995, PP.237-244.
    [9]R.O.Cavrel, A.N. Beard, PW.Jowitt. The influence of longitudinal ventilation systems on fires in tunnels, Tunnelling and Underground Space Technology [J], 16(2001):3-21.
    [10]Bechtel/Parsons Brinckerhoff, Memorial Tunnel Fire Ventilation Test Program, Comprehensive Test Report, Massachusetts Highway Department, November, 2005.
    [11]Alan Beard, Richy Carvel, The Handbook of Tunnel Fire Safety[M],2005, Thomas Telford, Ltd.
    [12]Anders Lonnermark, Haukur Ingason, Gas Temperature in Heavy Goods Vehicle Fires in Tunnels, Fire Safety Journal 40 [J](2005):506-527.
    [13]Huakur Ingason, Anders Lonnermark, Heat Release Rates from Heavy Goods Vehicle Trailer Fires in Tunnels, Fire Safety Journal(J] 40 (2005):646-668.
    [14]Kunikane, Y, Kawabata, N., Ishikawa,.T, Takekuni, K. & Shimoda, A. Thermal fumes and smoke induced by bus fire accident in lager cross sectional tunnel. Proc.5th JSME-KSME Fluids Engineering Conference[C], No.v17-21,2002, Nagoya, Japan.
    [15]Y. Wu, M.Z.A. Bakar. Control of smoke flow in tunnel fires usinglongitudinal ventilation systems-a study of the critical velocity. Fire Safety Journal 35 (2000) 363-390
    [16]O. Vauquelin. Experimental simulations of fire-induced smoke control in tunnels using an "air—helium reduced scale model":Principle, limitations, results and future. Tunneling and Underground Space Technology,2008,23:171-178.
    [17]Jae Seong Roha, Seung Shin Yanga, Hong SunR you, etal, An experimental study on the effect of ventilation velocity on burning rate in tunnel fires-heptanes Pool fire ease, Building and Environment,2008,43(7):1225-1231.
    [18]罗庆,张泽江,梅秀娟,王厚华,兰彬.2008.地下商业街火灾烟气流动的实体燃烧实验分析[J].重庆大学学报(自然科学版),31(9):1074-1077.
    [19]刘军军,兰彬,张文良,梅秀娟,张青岚,万世银.2001.地下商业街火灾烟气成分试验研究[J].消防科学与技术,1:10-12.
    [20]张青岚,兰彬,张文良,梅秀娟,刘军军,万世银.2001.地下商业街火灾烟气流速的试验研究[J].消防科学与技术,1:13-16.
    [21]袁建平,方正,黄海峰,唐智.水平隧道火灾通风纵向临界风速模型.土木建筑与环境工程.2009,31(6):66-70.
    [22]特长公路隧道纵向排烟模式与独立排烟道集中排烟模式模型实验研究,中南大学研究报告,2009.
    [23]阳东.狭长受限空间火灾烟气分层与卷吸特性研究[D].中国科学技术大学.2010
    [24]Mao J, Xi Y H, Bai G, Fan H M, Ji, H Z.2011. A model experimental study on backdraught in tunnel fires[J]. Fire Safety Journal,46(4):164-177.
    [25]James G. Quintiere, Fundamentals of Fire Phenomena,2006.
    [26]Matsushita T, Klote J H.1992. NISTIR 4982. Smoke Movement in a Corridor-Hybrid Model, Simple Model and Comparison with Experiments[R]. Gaithersbug, MD:National Institute of Standards and Technology.
    [27]Glenn P F.1997. NISTIR 6046. A Note on Improving Corridor Flow Predictions in a Zone Fire Model[R]. Gaithersbug, MD:National Institute of Standards and Technology.
    [28]Walter W J, Richard D, etc..2004. NIST Special Publication 1030. CFAST-Consolidated Model of Fire Growth and Smoke Transport (Version 5), Technical Reference Guide[R]. Gaithersbug, MD:National Institute of Standards and Technology.
    [29]Sartorius Mechatronics Inc.2006. LA64001S Reference[M]. Shanghai, China: Sartorius Chinese Branch Company.
    [30]魏涛.狭长地下空间火灾烟气运动物理模型及尺度准则研究.合肥:中国科学技术大学博士学位论文,2011.
    [1]范维澄,王清安,姜冯辉,周建军,火灾学简明教程,中国科学技术大学出版社,1995
    [2]R.O. Carvel, A.N. Beard, P.W. Jowitt. Fire Spread between Vehicles in Tunnels: Effects of Tunnel Size, Longitudinal Ventilation and Vehicle Spacing, Fire Technology,2005,41:271-304
    [3]Oka Y., Atkinson G.T. Control of Smoke Flow in Tunnel Fires. Fire Safety Journal, 1995,25:305-322.
    [4]Hwang, C.C., Edwards, J.C. The Critical Ventilation Velocity in Tunnel Fires-A Computer Simulation. Fire Safety Journal,2005,40:213-244.
    [5]Tajadura, R.B., Morros, C.S., Marigorta, E.B. Influence of the Slope in the Ventilation Semi-Transversal System of an Urban Tunnel. Tunnelling and Underground Space Technology,2006,21:21-28.
    [6]Alpert R L.1975. Turbulent Ceiling-Jet Induced by Large Scale Fires[J]. Combustion Science and Technology,11(5&6):197-213.
    [7]Delichatsios M A.1981. The flow of fire gases under a beamed ceiling[J]. Combustion and Flame,43:1-10.
    [8]Kunsch J P.1999. Critical velocity and range of a fire-gas plume in a ventilated tunnel[J]. Atmospheric Environment,33(1):13-24.
    [9]Kunsch J P.2002. Simple model for control of fire gases in a ventilated tunnel[J]. Fire Safety Journal,37(1):67-81.
    [10]David D.Evans.1995. CEILING JET FLOWS[J]. SFPE Handbook of Fire Protection Engineering,4(2):32-39.
    [11]J.G. Quintiere.2006. Fundamentals of Fire Phenomena[M]. Chemical Industry Press.
    [12]叶宏,葛新石等,传热和传质基本原理(第六版),化学工业出版社:2007
    [13]魏涛.狭长地下空间火灾烟气运动物理模型及尺度准则研究.合肥:中国科学技术大学博士学位论文,2011.
    [14]R. L. Alpert, Ceiling jet flows. In:SFPE handbook of fire protection engineering. 3rd ed. National Fire Protection Association,2002.
    [15]E. Evers and A. Waterhouse. A Complete Model for Analyzing Smoke Movement in Buildings, Building Research Establishment, BRE CP 69/78.
    [16]胡隆华.隧道火灾烟气蔓延的热物理特性研究.合肥:中国科学技术大学博士学位论文,2006.
    [1]Babrauskas, V. Estimating Large Pool Fire Burning Rates [J]. Fire Technology, 1983,4:251-261.
    [2]Babrauskas, V,1985. Free Burning Fire[J].FireSafetyJoumal,11(1):33-51
    [3]V.I. Blinov, G.N. Khudiakov.1958. Review-Certain Laws Governing Diffusive Burning of Liquids [J]. Fire Research Abstracts and Reviews,1:41-44.
    [4]Anthony Hamins, Takashi Kashiwagi, Robert R.1996. Characteristics of Pool Fire Burning[R]. Building and Fire Research Laboratory, National Institute of standard and Technology, Gaithersburg, MD
    [5]Anthony HaminS, Jiann C.Yang, Takashi Kashiwagi.1999. A Global Medel for predicting the Burning Rates of Liquid Pool Fires[R].Building and Fire research Laboratory. National Institute of standard and Technology, NISTIR 6381
    [6]Blinov V.I., Khudiakov G.N.1961. Diffusion Burning of Liquids, U.S. Army Translation [M],NIST No.AD296762,105-108
    [7]孙志友,庄磊,陆守香,2008,正方形煤油池火燃烧特性研究,火灾科学,17(2):93-98
    [8]魏涛,宗若雯,李松阳,陈吕义,廖光煊,2010,腔室油池火轰燃前过程的尺度准则,燃烧科学与技术,16(3):262-268
    [9]HUGUES PRETREL, PHILLIPE QUERRE, MARC FORESTIER.2006. Experimental study of burning rate behaviour in confined and ventilated fire compartments消防科学与技术,25(2):185-194
    [10]吴向君,浦金云,李营,刘辉,2010,受限空间内油料火灾的热释放速率分析,海军工程大学学报,22(6):96-100
    [11]冯瑞,霍然,于海春,2005,受限空间油池火燃烧特性的实验研究,消防科学与技术,24(3):288-291
    [12]O. Megret,O. Vauquelin.2000. A model to evaluate tunnel fire characteristics. Fire Safety Journal,34:393-401
    [1]Huffman K, Welker J. et al. Interaction effects of multiple pool fires[J]. Fire Technology,1969,5(3):225-232.
    [2]Satoh K, Shinohara M, Yang KT. Experimental observations and analysis of square arrays of equi-distant multiple fires [A. Proceedings of the Third Asia-Oceania Symposium on Fire Science and Technology Singapore [C], June 1998: 517-528.
    [3]Satoh K, Shinohara M, Yang KT. Experimental observations and analysis of square arrays of equi-distant multiple fires affected by 3 shear flow field [A]. Proceedings of the Seventh Brazilian Congress of Engineering and Thermal Sciences[C], Rio de Janeiro,1998:490-495.
    [4]Satoh K, Ping ZJ, Liu N, Yang KT. Experiments and analysis of interaction among multiple fires in equidistant fire arrays [A]. Proceedings of the ASME Summer
    Heat Transfer Conference[C],2005(1):709-712.
    [5]Liu NA, Liu Q, Deng ZH, Kohyu S, Zhu JP. Burnout time data analysis on interaction effects among multiple fires in fire arrays[J]. Proceedings of the Combustion Institute,2007,31:2589-2597
    [6]刘琼,多火源燃烧动力学机制与规律研究[D].中国科学技术大学,合肥,2010.
    [7]李树声,战咏梅,多火源通道火灾流场特性的实验与数值研究[J],哈尔滨工程大学学报,2013,34(4):1-5
    [8]Putnam AA, Speich CF. A model study of the interaction of multiple turbulent diffusion flames [J]. Proceedings of the Combustion Institute,1963,9:867-877.
    [9]Thomas PH, Baldwin R and Heselden AJM. Buoyant diffusion flames:sortie measurements of air entrainment, heat transfer and flame merging [J]. Proceedings of the Combustion Institute,1965,10:983-996.
    [10]Baldwin R. Flame merging in multiple fires [J]. Combustion and Flame,1968, 12(4):318-324.
    [1]Jain S, Kumar S, Kumar S, Sharma T P.2008. Numerical simulation of fire in a tunnel:Comparative study of CFAST and CFX predictions[J]. Tunnelling and Underground Space Technology,23(2):160-170.
    [2]Lee S R and Ryou H S.2006. A numerical study on smoke movement in longitudinal ventilation tunnel fires for different aspect ratio [J]. Building and Environment,41(6):719-725.
    [3]Hu L H, Huo R, Peng W, Chow W K, and Yang R X.2006. On the maximum smoke temperature under the ceiling in tunnel fires[J]. Tunnelling and Underground Space Technology,21(6):650-655.
    [4]李树声,战咏梅,多火源通道火灾流场特性的实验与数值研究[J],哈尔滨工程大学学报,2013,34(4):1-5
    [5]Kevin Mc Grattan, Bryan Klein. Fire Dynamics Simulator (Version 5) User's Guide,2008,10.
    [6]McGrattan K B and McDermott R.2010. NIST Special Publication 1018-5. Fire Dynamics Simulator (Version 5), Technical Reference Guide, Volume 1: Mathematical Model[R]. Gaithersburg, MD:National Institute of Standards and Technology.
    [7]Smagorinsky. General Circulation Experiments with the Primitive Equations I. The Basic Experiment.Monthly Weather Review,91(3):99-164, March 1963.
    [8]Mason P J and Callen N S.1986. On the magnitude of the subgrid-scale eddy coefficient in large-eddy simulations of turbulent channel flow[J]. Journal of Fluid Mechanics,162:439-462.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700