用户名: 密码: 验证码:
大规模电力系统预期电压稳定分析与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
互联电网的建立和发展使得对大规模电力系统电压稳定分析和控制的研究越来越重要,本文首先分析了大规模电力系统计算的发展趋势,提出了一种针对大规模电力系统潮流计算的新方法和电压稳定稳态安全边界的计算方法;其次分析了传统故障后PV曲线计算的不足,提出了一种更为精确的计算方法;最后本文着重于电力系统负荷随时间变化的特性,并考虑了电力系统中的电压控制元件,提出了一种预期电压稳定分析和控制的方法。论文的主要工作如下:
     (1)本文将Flexible General Minimal Residual(FGMRES)方法应用在牛顿潮流计算的线性修正方程求解中,提出了求解潮流计算的Newton-FGMRES方法;其次发展了包括复合方法、部分预处理子修正方法和自适应精度控制方法在内的三种加速方案,并引入到Newton-FGMRES中,以此来进一步地提高Newton-FGMRES方法的求解效率,最终提出了求解潮流计算的快速Newton-FGMRES方法。相对于传统的Newton-GMRES方法以及Newton-LU方法,数值测试结果在计算时间和收敛特性两方面均显示了快速Newton-FGMRES方法的优越性。为了验证所提方法的收敛性,我们还比较了快速Newton-FGMRES方法和Newton-LU方法在不同负荷水平下的计算性能。
     (2)构造了电力系统在一个特定潮流解之下2-参数的局部分岔边界和稳态安全边界的模型,并提出了一个适合大规模电力系统的数值计算方法。本文在用连续潮流方程来描述的含有参数变化的电力系统模型的基础上,分析了系统在某一个潮流解之下的局部分岔边界和稳态安全边界,并给出了其局部分岔边界和稳态安全边界的计算流程。在测试系统中可以看到,在绝大多数情况下操作上的和工程上的约束在局部分岔达到之前就已经被破坏,这说明稳态安全边界被包含在相应的局部分岔边界之内;同时我们还研究了故障对于局部分岔边界和稳态安全边界的影响。最后我们观察了局部分岔边界和稳态安全边界的凸属性:当我们把发电机无功功率出力极限考虑为capability-Q-limit时,局部分岔边界和稳态安全边界会具有非凸的属性。
     (3)本文分析了传统的故障后PV曲线在预期电压稳定分析中的不足,并详细讨论了产生这种不足的原因;其次本文针对预期电压稳定的特点,提出了一种精确计算故障后PV曲线的方法。数值测试的结果表明在预期电压稳定分析中,传统的故障后PV曲线的计算方法无法正确反映预期的故障后PV曲线,并且相对于由本文提出的精确的故障后PV曲线,其结果往往偏于保守的。
     (4)本文考虑了有载调压变压器和并联电容器组等电压控制元件的作用,提出了预期电压稳定的分析方法;其次考察了单纯的灵敏度方法在预期电压稳定故障分析中的不足,以及产生这种不足的原因;再次我们分析了采用多阶段的方法可以提高故障分析的准确性并用一个两阶段的故障分析方法提高了单纯灵敏度法对于不安全故障的捕捉率;最后改进了现有的多阶段故障筛选和排序方法。
     (5)本文分析了电压预防控制和电压校正控制问题,结合预期电压稳定中负荷随时间变化的特性,在多个时间段上无功优化问题的基础上,提出了一种计及多个时间段负荷变化的预期电压稳定控制计算的模型,考虑到当负荷随时间不断增大时,负荷裕度有可能会减少,本文在该模型中增加了对负荷裕度的约束,使其在每个时间段上都要满足系统给定的最小负荷裕度;其次本文将目前流行的预测—校正内点法应用在该模型上,给出了详细的计算过程和计算公式。数值测试的结果表明在采用了预期电压稳定控制策略之后,每个时间段上负荷裕度均满足了系统最小负荷裕度的要求,并且在每个时间段上的负荷裕度都比不采用预期电压稳定控制策略时有不同程度的提高。
     (6)本文初步分析了可再生能源之下预期电压稳定的分析方法,随着可再生能源的提倡和发展,它们在系统中所占的比例会逐渐增加,也给系统带来了更多的不确定性。而对于负荷来说,尽管目前的短期负荷预测算法已经比较准确,但是我们也不可能保证其结果完全负荷未来的情况。因此在本文中,我们同时考察了可再生能源和负荷增长模式的不确定性,提出了在这些条件下负荷裕度的计算方法。
The fast development of interconnected power grids makes the voltage stability analy-sis and control of large-scale power systems more and more important. This dissertationinvestigates the development of the numerical analysis in power system studies and pre-sents a fast method for power flow calculations. Considering the varying load and the con-trol device, a new look-ahead voltage stability analysis and control method is proposed inthis dissertation. The main works and contributions are summarized as follows:
     (1) A Newton-FGMRES method is proposed for solving the power flow equations andthree accelerating schemes, including a hybrid scheme, a partial preconditioner updatescheme, and an adaptive tolerance control scheme, is developed to further improve the per-formance of the Newton-FGMRES method. Numerical results show the advantages of theproposed fast Newton-FGMRES method as opposed to the traditional Newton-GMRESmethod in terms of the convergence characteristics and computation time. For the robust-ness of the proposed fast Newton-FGMRES method, numerical results also show the supe-riority of the proposed method under different loading conditions.
     (2) A computational procedure to numerically construct local bifurcation boundaryand steady-state security boundary of large electric power system models. The local bifur-cation boundary and steady-state security boundary play important roles in power systemoperations and planning. Local bifurcation boundary defines the physical limitations ofpower systems while steady-state security boundary defines the operational limitations ofpower systems. Numerical results show that operational and engineering constraints areviolated before bifurcations occur, i.e. steady-state security boundary is inside its corre-sponding local bifurcation boundary. The impact of contingencies on the local bifurcationboundary and on the steady-state security boundary are presented. The convexity propertyof these boundaries is also observed. The convex property of these two boundaries is pro- nounced if the traditional treatment of Q limit; i.e. non-Q-limit or hard-Q-limit is made.However the effect of generator capability curve, capability-Q-limit, leads to the non-con-vexity of local bifurcation boundary and steady-state security boundary.
     (3) The validity of the traditional post-contingency PV curve is investigated. Based onthe look-ahead voltage stability analysis, a new method to evaluate the exact post-contin-gency PV curve is presented. Two strategies is applied to the proposed method to evaluatemore points on the curves. Numerical results show that the traditional post-contingency PVcurve can not reflect the change in look-ahead voltage stability analysis and its results isalways conservative.
     (4) Considering the local logical action of voltage control devices, a look-ahead volt-age stability analysis method is presented. The reason why the contingency ranking methodbased on sensitivities can not captures the most severe contingencies is studies and a newmulti-level contingencies ranking method is proposed. Numerical results show that the pro-posed method can be more effective in look-ahead voltage stability contingency analysis.
     (5) The voltage preventive control problem and voltage corrective control problem arestudied. Based on the varying load and the reactive power optimization problem, a newmodel of the optimization problem for the look-ahead voltage control is introduced. In thismodel, the constrains that ensure minimal load margin in each time interval is considered.The corrective-preventive interior point method is used to solve the proposed optimizationproblem. Numerical results show the effectiveness of the proposed method.
     (6)The look-ahead voltage stability with uncertainties is studied. With the develop-ment of renewable energy resources, there will be more renewable energy resources in thefuture and more uncertainties will be brought to power systems. Although the short-termload forecast can be very accurate, we still can not guarantee that loads would follow theresults of forecast. This paper considers uncertainties of both renewable energy resourcesand loads and present a method to evaluate load margins under these conditions.
引文
[1] K. Takahashi and K. Nomura, The Power System Failure on July 23, 1987 in tokyo,CIGRE SC37 1987 Meeting, 1987.
    [2]卢卫星,舒印彪,史连军,美国西部电力系统1996年8月10日大停电事故,电网技术, 1996, 20 (9), 40-42
    [3] S. Abraham, R. J. Efford, J. K. Linda, et al, Final report on the August 14th, 2003blackout in the United States and Canada: causes and recommendations,2004
    [4]王梅义,吴竞昌,蒙定中,大电网系统技术,中国电力出版社,北京, 1995
    [5]郑宝森,郭日彩,中国互联电网的发展,电网技术, 2003, 27 (2), 1-3
    [6]王锡凡,电力系统计算,水利电力出版社,北京, 1985
    [7]周孝信等,电力系统计算,水利电力出版社,北京, 1988
    [8] M. Crow, Computational Methods for Electric Power Systems, CRC Press, 2002
    [9]杨庆扬,王能超,数值分析,华中工学院出版社, 1982
    [10]刘万勋,刘长学,华伯浩等,大型稀疏线性方程组的解法,国防工业出版社,1981
    [11] J. O. Aasen, On the Reduction of a Symmetric Matrix to Tridiagonal Form, BIT, 1971,11, 233-242
    [12] R. S. Martin, G. Peters and J. H. Wilkinson, Symmetyric Decomposotion of a PositiveDefinite Matrix, Numer. Math, 1965, 7, 362-383
    [13] I. S. Duff and J. A. Scott, A Comparison of Frontal Software with Other Sparse DirectSolvers, Tech. Report RAL-TR-96-102, Department for Computation and Information,Atlas Center, Rutherford Appleton Laboratory, Oxon Oxll 0Qx, 1996
    [14] I. S. Duff and J. A. Scott, MA62-A Frontal Code for Sparse Positive-definiteSymmetric Systems from Finite-element Applications, Tech. Report RAl-TR-97-102,Department for Computation and Information, Atlas Center, Rutherford Appleton Lab-oratory, Oxon Oxll 0Qx, 1997
    [15] B. M. Irons, A Frontal Soution Program for Finite-element Analysis, InternationalJournal of Numeric Methmatics, Engrg, 1970, 2, 5-32
    [16] J. W. H. Liu, The Role of Elimination Trees in Sparse Factorization, SIAM Journal ofMatrix Analyse, 1990, 11(1), 134-172
    [17] T. A. DAVIS, A Column Pre-Ordering Strategy for the Unsymmetric-PatternMultifrontal Method, ACM Transactions on Mathematical Software, 2004, 30(2), 165-195
    [18] I. Duff, A Multifrontal Approach for Solving Sparse Linear Equations, NumericalMethods.Proceedings, Caracas, 1982, 1005, 87-98
    [19] H. Avron, G. Shklarski and S. Toledo, Parallel Unsymmetric-Pattern MultifrontalSparse LU with Column Preordering, ACM Transactions on Mathematical Software,2008, 34(2)
    [20] J. W. H. Liu, The Multifrontal Method for Sparse Matrix Solution: Theory andPractice, SIAM Review, 1992, 34(1), 82-109
    [21] I. S. Duff and J. K. Reid, The Multifrontal Solution of Indefinite Sparse SymmetricLinear Equations, ACM Transactions on Mathematical Software, 1983, 9(3), 302-325
    [22] I. S. Duff and J. K. Reid, The Multifrontal Solution of Unsymmetric Sets of LinearEquations, SIAM Journal of Scientific and Statistical Computing, 1984, 5(3), 633-641
    [23] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, et al, A Supernodal Approach to SparsePartial Pivoting, SIAM Journal of Matrix Analyse, 1999, 20(3), 720-755
    [24] N. Nachtigal, L. Reichel and L. Trefethen, A Hybrid GMRES Algorithm fornonsymmetric matrix iterations, Tech. Report.90-7, MIT, Cambridge, MA, 1990
    [25] N. M. Nachtigal, A Look-Ahead Variant of the Lanczos Algorithm and its Applicationto the Quasi-Minimal Residual Methods for Non-Hermitian Linear Systems, PhDthesis, MIT, Cambridge, MA, 1991
    [26] S. Ashby, T. Manteuffel and P. Saylor, Adaptive Polynomial Preconditioning forHermitian Indefinite Linear Systems, BIT, 1989, 29, 583-609
    [27] C. Ashcraft and R. Grimes, On Vectorizing Incomplete Factorizations and SSORPreconditioners, SIAM Journal of Scientific and Statistical Computing, 1988, 9, 122-151
    [28] O. Axelsson, Incomplete block matrix factorization preconditioning methods. Journalof Computation Application Mathematics, 1985, 12&13, 3-18
    [29] IEEE/CIGRE Joint Task Force on Stability Terms and Definitions, Definition andClassification of Power System Stability, IEEE Transactions on Power Systems, 2004,19(2), 1387-1401
    [30]彭志炜,胡国根,韩祯祥,基于分叉理论的电力系统电压稳定性分析,中国电力出版社, 2005
    [31] N. Yorino, S. Harada and H. Cheng, A Method to Approximate a Closest LoadabilityLimit Using Multiple Load Flow Solutions, IEEE Transactions on Power Systems,1997, 12(1), 424-429
    [32]杨宁,冯治鸿,周双喜,大电力系统中潮流多解的求取及其应用技术,1996,电网技术, 20 (5)
    [33]程浩忠,电力系统潮流多根算法及其初值研究,电网技术,1996,20(6),25-31
    [34] I. Dobson and L. Lu, New Methods For Computing A Closest Saddle NodeBifurcation And Worst Case Load Power Margin For Voltage Collapse, IEEETransactions on Power Systems, 1993, 8(3), 905-913
    [35] P.W. Sauer and M. A. Pai, Power System Steady-state Stability and The Load FlowJacobian, IEEE Transactions on Power Systems, 1990, 5, 1374-1383
    [36] C. A. Canizares, F. L. Alvarado, C. L. DeMarco, et al., Point of Collapse MethodsApplied to AC/DC Power Systems, IEEE Transactions on Power Systems, 1992, 7,673-683
    [37] N. Flatabo, R. Ognedal and T. Carlsen, Voltage Stability Condition in a PowerTransmission System Calculated by Sensitivity Methods, IEEE Transactions on PowerSystems, 1990, 5(4), 1286-1293
    [38] Y. Tada, H. Okamoto, R. Tanabe, et al., Two Novel Screening Methods to DecideNetwork Configurations to Maintain Voltage Stability Using Sensitivity Analysis,Proceedings of IEEE International Conference on PICA, 1999, 79-85
    [39] T. Van Cutsem, An Approach to Corrective Control of Voltage Instability UsingSimulation and Sensitivity, IEEE Transactions on Power Systems, 1995, 10, 616-622
    [40]周双喜,朱凌志,郭锡玖等,电力系统电压稳定性及其控制,中国电力出版社,2004
    [41] H. H. Young, T. P. Ching and W. W. Lin, Fast Calculation of a Voltage Stability Indexof Power Systems, IEEE Transactions on Power Systems, 1997, 12, 1555-1560
    [42] A. Berizzi, P. Finazzi, D. Dosi, et al., First and Second Order Methods for VoltageCollapse Assessment and Security Enhancement, IEEE Transactions on Pwer Systems,1998, 13, 543-551
    [43] O. O. Obadina and G. J. Berg, Determination of Voltage Stability Limit inMultimachine Power Systems, IEEE Transactions on Power Systems, 1988, 3, 1545-1554
    [44]吴浩,电力系统电压稳定研究,博士论文,浙江大学, 2002
    [45] Y. Sekine and H. Ohtsuki, Cascaded Voltage Collapse, IEEE Transactions on Powersystems, 1990, 5(1), 250-256
    [46] J. Deuse and M. Stubbe, Dynamic Simulation of Voltage Collapses, IEEE Transactionson Power Systems, 1993, 8, 894-904
    [47] R. J. Koessler and J.W. Feltes, Time-domain Simulation Investigates Voltage Collapse,IEEE Transactions on Computer Applications in Power, 1993, 6(4), 18-22
    [48] C. L. Demarco and T. J. Overbye, An Energy Based Security Methods for AssessingVulnerability to Voltage Collapse, IEEE Transactions on Power Systems, 1990, 5(2),419-427
    [49] T. Van. Cutsem and C. D. Vournas, Voltage Stability of Electric Power Systems,Kluwer Academic Publishers, 1998
    [50] Q. Wang, H. Song, A. Venkataramana, Continuation-Based Quasi-Steady-StateAnalysis, IEEE Transactions on Power Systems, 2006, 21, 171-179
    [51] Q. Wang, A Novel Continuation-Based Quasi-Steady-State Analysis Approach toMitigate Long-Term Voltage Instability, Iowa State University, 2001
    [52] Q. Wang, A Novel Approach to Implement Generic Load Restoration in ContinuationBased Quasi-Steady-State Analysis, IEEE Transactions on Power Systems, 2005, 20,516-518
    [53] R. Barrett, M. Berry, T. F. Chan, et al., Templates for the Solution of Linear Systems:Building Blocks for Iterative Methods, Philadelphia, PA, SIAM, 1994
    [54] Y. Saad and M. Schultz, GMRES: a Generalized Minimal Residual Algorithm forSolving Nonsymmetric Linear Systems, SIAM Journal of Scientific and StatisticalComputing, 1986, 7(3), 856-869
    [55] F. D. Galiana, H. Javidi and S. McFee, On the Application of a Pre-ConditionedConjugate Gradient Algorithm to Power Network Analysis, IEEE Transactions onPower Systems, 1994, 9(2), 629-636
    [56] H. Mori, H. Tanaka and J. Kanno, A Preconditioned Fast Decoupled Power FlowMethod for Contingency Screening, IEEE Transactions on Power Systems, 1996,11(1), 357-363
    [57] A. Semlyen, Fundamental Concepts of a Krylov Subspace Power Flow Methodology,IEEE Transactions on Power Systems, 1996, 11(3), 1528-1534
    [58] M. A. Pai and H. Dag, Iterative Solver Techniques in Large Scale Power SystemComputation, In, Proceedings of the 36th IEEE Conference on Decision and Control,San Diego, CA, 1997, 3861-3866
    [59] A. J. Flueck and H. D. Chiang, Solving the Nonlinear Power Flow Equations with anInexact Newton Method Using GMRES, IEEE Transactions on Power Systems, 1998,13(2), 267-273
    [60] D. Chaniotis and M. A. Pai, Iterative Solver Techniques in the Dynamic Simulation ofPower Systems, In, Power Engineering Society Summer Meeting, Seattle, WA, 2000,609-613
    [61] M. A. Pai, P. W. Sauer and A. Y. Kulkarni, A Preconditioned Iterative Solver forDynamic Simulation of Power Systems, IEEE International Symposium on Circuitsand Systems, 1995, 1279-1282
    [62] H. Dag and A. Semlyen, A New Preconditioned Conjugate Gradient Power Flow,IEEE Transactions on Power Systems, 2003, 18(4), 1248-1255
    [63] F. de Leon and A. Semlyen, Iterative Solvers in the Newton Power Flow Problem:Preconditioners, Inexact Solutions and Partial Jacobian Updates, In, IEE Proceedingson Generation, Transmission and Distribution, 2002, 149(4), 479-484
    [64] A. B. Alves, E. N. Asada and A. Monticelli, Critical Evaluation of Direct and IterativeMethods for Solving Ax=b Systems in Power Flow Calculations and ContingencyAnalysis, IEEE Transactions on Power Systems, 1999, 12(4), 702-708
    [65] Y. Chen and C. Shen, A Jacobian-free Newton-GMRES(m) Method with AdaptivePreconditioner and its Application for Power Flow Calculations, IEEE Transactions onPower Systems, 2006, 21(3), 1096-1103
    [66] V. Simoncini and D. B. Szyld, Flexible Inner-outer Krylov Subspace Methods, SIAMJ. Numer. Anal, 2002, 40(6), 2219-2239
    [67] Y. Saad, A Flexible Inner-outer Preconditioned GMRES Algorithm, SIAM J. Sci.Stat.Comput., 1993, 14(2), 461-469
    [68] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd edition, Baltimore,Maryland, The Johns Hopkins University Press, 1996
    [69] C. Dimitrios, Krylov Subspace Methods in Power System Studies, [Dissertation],University of Illinois at Urbana-Champaign, 2001
    [70] T. F. Chan and H. A. Van der Vorst, Approximate and Incomplete Factorizations,ICASE/LaRC Interdisciplinary Series in Science and Engineering, 1994, 167-201
    [71] Y. Saad, SPARSKIT: a basic tool kit for sparse matrix computations, 1994
    [72] W. F. Tinney and C. E. Hart, Power Flow Solution by Newton's Method, IEEETransactions on Power Apparatus and Systems, 1967, PAS-86, 1449-1460
    [73] S. M. Chan and V. Brandwajn, Partial Matrix Refactorization, IEEE Transactions onPower Systems, 1986, PWRS1(1), 193-200
    [74] F. D. Galiana and M. Banakar, Approximation formulae for dependent load flowvariables, IEEE Transactions on Power Apparatus Systems, 1981, PAS-100, 1128-1137
    [75] P. Dersin and A. H. Levis, Feasibility Sets for Steady-State Loads in Electric PowerNetworks, IEEE Transactions on Power Apparatus Systems, 1982, PAS-101, 60-70
    [76] F. F. Wu and S. Kumagai, Steady-State Security Regions of Power Systems, IEEETransactions on Circuits and systems, 1982, CAS-29(11), 703-711
    [77] I. Dobson and L. Liu L, Voltage collapse precipitated by the immediate change instability when generator reactive power limits are encountered, IEEE Transactions onCircuits and Systems-I: Fundamental Theory and Applications, 1992, 39(9), 762-766
    [78] S. H. Li and H. D. Chiang, Structure-induced Bifurcation in Large-scale ElectricPower Systems, International Journal of Bifurcation and Chaos, 2008, 18(5), 1415-1424
    [79] I. A. Hiskens and B. B. Chakrabarti, Direct Calculation of Reactive Power LimitPoints, International Journal of Electrical Power and Energy Systems, 1996, 18(2),121-129
    [80] I. A. Hiskens and R. J. Davy, Exploring the Power Flow Solution Space Boundary,IEEE Transactions on Power Systems, 2001, 16(3), 389-395
    [81] Y. V. Makarov, D. J.Hill and Z. Y. Dong, Computation of Bifurcation Boundaries forPower Systems: A New -Plane Method, IEEE Transactions on Circuits and Systems-I:Fundamental Theory and Applications, 2000, 47(4), 536-544
    [82] A. Ozcan and H. Schattler, A Computational Method for the Calculation of theFeasibility Boundary and Clustering in Differential-Algebraic Systems, IEEE Trans.Circuits and Systems-I: Regular Papers, 2005, 52(9), 1940-1952
    [83] T. V. Cutsem, A method to compute reactive power margins with respect to voltagecollapse, IEEE Transactions on Power Systems, 1991, 6(1), 145-156
    [84] O. O. Obadina and G. J. Berg, Identifying electrically weak and strong segments of apower system from a voltage stability viewpoint, Proceedings of the IEE, 1990, 137(3),205-212
    [85] H. D.Chiang, W. Ma, R. J. Thomas, et al., A Tool for Analyzing Voltage Collapse inElectric Power Systems, Power Systems Computation Conference, 1990, 1210-1217
    [86] K. Iba, H. Suzuki, M. Egawa, et al., Calculation of critical loading condition with nosecurve using homotopy continuation method, IEEE Transactions on Power Systems,1991, 6(2), 584-593
    [87] V. Ajjarapu and C. Christy, The Continuation Power Flow: A Tool for Steady StateVoltage Stability Analysis, IEEE Transactions on Power Systems, 1992, 7(1), 416-123
    [88] C. A. Canizares and F. L. Alvarado, Point of Collapse and Continuation Methods forLarge AC/DC systems, IEEE Transactions on Power Systems, 1993, 8(1), 1-8
    [89] H. D. Chiang, A. J. Flueck, K. S. Shah, et al., CPFLOW: A Practical Tool for TracingPower System Steady State Stationary Behavior Due to Load and GenerationVariations, IEEE Transactions on Power Systems, 1995, 10(2), 623-634
    [90] N. Yorino, H. Q. Li and H. Sasaki, A Predictor/Corrector Scheme for Obtaining Q-Limit Points for Power Flow Studies, IEEE Transactions on Power Systems, 2005,20(1), 130-137
    [91] Y. V. Makarov, Z. Y. Dong and D. J. Hill, On Convexity of Power Flow FeasibilityBoundary, IEEE Transactions on Power Systems, 2008, 23(2), 811-813
    [92] J. J. Grainger and W. D. Stevenson Jr, Power System Analysis, Mcgraw-hill, 1994
    [93] A. R. Bergen and V. Vittal, Power Systems Analysis, Prentice Hall, 2000
    [94] P. Kundur, Power System Stability and Control, New York, McGraw Hill, 1994
    [95] R. Seydel, From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis,New York, Springer, 1988
    [96] X. Yue and V. Venkatasubramanian, Complementary Limit Induced BifurcationTheorem and Analysis of Q Limits in Power-flow Studies, Bulk Power SysemsDynamics and Control - VII Revitalizing Operational Reliability, 1-8, 2007
    [97] H. D. Chiang, C. S. Wang and A. J. Flueck, Look-ahead Voltage and Load MarginContingency Selection Functions for Large-Scale Power Systems, IEEE Transactionson Power Systems, 1997, 12(1), 173-180
    [98] V. Venkatasubramanian, H. Schattler and J. Zaborszky, Local Bifurcations andFeasibility Regions in Differential-Algebraic Systems, IEEE Transactions onAutomatic Control, 1995, 40(12), 1992-2013
    [99] H. G. Kwatny, R. F. Fischl and C. O. Nwankpa, Local Bifurcation in Power Systems:Theory, Computation, and Application, Proceedings of the IEEE, 1995, 83(11), 1456-1483
    [100] C. W. Tan, M. Varghese, P. P. Varaiya, et al., Bifurcation, Chaos, and VoltageCollapse in Power Systems, Proceedings of the IEEE, 1995, 83(11), 1484-1496
    [101] I. Dobson and H. D. Chiang, Towards a Theory of Voltage Collapse in Electric PowerSystems, System and Control Letter, 1989, 13, 253-262
    [102]陈珩,电力系统稳态分析,北京,水利电力出版社, 1985
    [103]邱晓燕,李兴源,林伟,在线电压稳定性评估中事故筛选和排序方法的研究,中国电机工程学报, 2004, 24 (9), 50-55
    [104] A. Ozdemir, R. Caglar and C. Singh, Transmission Losses Based MW ContingencyRanking, Electrical Engineering, 2006, 88(4), 275-280
    [105] S. Sundhararajan, Contingency screening method for voltage stability analysis in theassessment of available transfer capability in deregulated power systems, [Disserta-tion], Kansas State University, 2001
    [106] K. Nithiyananthan, N. Manoharan and V. Ramachandran, An Efficient Algorithm forContingency Ranking Based on Reactive Compensation Index, Journal of ElectricalEngineering, 2006, 57(2), 116-119
    [107] S. Greene, I. Dobson and F. L. Alvarado, Contingency Ranking for Voltage Collapsevia Sensitivities from a Single Nose Curve, IEEE Transactions on Power Systems,1999, 14(1), 232-240
    [108] S. Greene, Margin and Sensitivity Methods for Security Analysis of Electric PowerSystems, [Dissertation], University of Wisconsin, 1998
    [109] S. Greene, I. Dobson and F. L. Alvarado, Sensitivity of transfer capability marginswith a fast formula, IEEE Transactions on Power Systems, 2002, 17(1), 34-40
    [110]李少华,结构诱导分岔和改进的连续潮流在电压稳定分析中的发展及应用,[学位论文],上海交通大学, 2008
    [111] S. Greene, I. Dobson and F. L. Alvarado, Sensitivity of the Loading Margin toVoltage Collapse with Respect to Arbitrary Parameters, IEEE Transactions on PowerSystems, 1997, 12(1), 262-272
    [112] H. Song, B. Lee, S. H. Kwon, et al., Reactive Reserve-based ContingencyConstrained Optimal Power Flow (RCCOPF) for Enhancement of Voltage StabilityMargins, IEEE Transactions on Power Systems, 2003, 18(4), 1538-1546
    [113] A. K. Srivastava and A. J. Flueck, A Novel and Fast Two-Stage Right EigenvectorBased Branch Outage Contingency Ranking, Power Engineering Society GeneralMeeting, 2005, 3, 3062-3067
    [114] N. P. Patidar and J. Sharma, Loadability Margin Estimation of Power System UsingModel Trees, Power India Conference, 2006
    [115] Thierry Van Cutsem, Voltage Instability: Phenomena, Countermeasures, andAnalysis methods, Proceedings of the IEEE, 2000, 88, 208-227
    [116] E. Vaahedi, Y. Mansour, C. Fuchs, et al., Dynamic Security Contained OptimalPower Flow/Var Planning, IEEE Transactions on Power Systems, 2001, 16(1), 38-43
    [117] J. Q. Zhao, H. D. Chiang, H. Li, et al., A Novel Preventive Control Approach forMitigating Voltage Collapse, Power Engineering Society General Meeting, 2006
    [118] X. Wang, G. C. Ejebe, J. Tong, et al., Preventive/Corrective Control for VoltageStability Using Direct Interior Point Method, IEEE Transactions on Power Systems,1998, 13(3), 878-883
    [119] T. Van Cutsem, Y. Jacquemart, J.-N. Marquet, et al., A Comprehensive analysis ofMid-Term Voltage Stability, IEEE Transactions on Power Systems, 1995, 10(3), 1173-1182
    [120] G. Q. Li and X. Wang, A New Active power Corrective Control Algorithm Based onSensitivity Method, IEEE Conference on Computer, Communication, Control andPower Engineering, 1993, 5, 55-58
    [121] J. A. Momoh and Y. C. Wan, The Sensitivity Analysis Based Corrective ControlScheme of Power System, IEEE International Conference on Intelligent Systems forthe 21st Century, 1995, 2, 1351-1355
    [122] Zhihong Feng, Venkataramana Ajjarapu, and Dominic J. Maratukulam, AComprehensive Approach for Preventive and Corrective Control to Mitigate VoltageCollapse, IEEE Transactions on Power Systems, 2000, 15(2), 791-797
    [123] Youman Deng, Xiaojuan Ren, Changcheng Zhao, et al., A Heuristic and AlgorithmicCombined Approach for Reactive Power Optimization with Time-varying LoadDemand in Distribution Systems, IEEE Transactions on Power Systems, 2002, 17(4),1068-1072
    [124] Fang Liu, C. Y. Chung, K. P. Wong, et al., Hybrid Immune Genetic Method forDynamic Reactive Power Optimization, International Conference on Power SystemTechnology, 2006
    [125] Ming-bo Liu, Chun-ming Zhu, Kang-ling Qian et al., Dynamic Reactive PowerOptimization Algorithm Incorporating Action Number Constraints of Control Devices,Proceedings of the CSEE, 2004, 24(3), 34-40
    [126] Yong-jun Zhang and Zhen Ren, Real-time optimal reactive power dispatch usingmulti-agent technique, Electric Power Systems Research, 2001, 69(3), 259-265
    [127] S. Salamat Sharif and James H. Taylor, Dynamic Optimal Reactive Power Flow,Proceedings of American Control Conference, 1998.
    [128] Yuan-Yih Hsu and Feng-Chang Lu, A Combined Artificial Neural Network-FuzzyDynamic Programming Approach to Reactive Power/Voltage Control in a DistributionSubstation, IEEE Transactions on Power Systems, 1998, 13(4), 1265-1271
    [129] Yong-jun Zhang and Zhen Ren, Optimal Reactive Power Dispatch Considering Costsof Adjusting the Control Devices, IEEE Transactions on Power Systems, 2005, 20(3),1349-1356
    [130] Taher Niknam, A New Approach Based on Ant Colony Optimization for Daily Volt/Var Control in Distribution Networks Considering Distributed Generators, EnergyConversion and Management, 2008, 49, 3417-3424
    [131] Y. C. Wu and A. S. Debs and R. E. Marsten, A Direct Nonlinear Predictor-CorrectorPrimal-Dual Interior Point Algorithm for Optimal Power Flows, IEEE Transactions onPower Systems, 1994, 9(2), 876-883
    [132] E. Haesen, C. Bastiaensen, J. Driesen, et al., A Probabilistic Formulation of LoadMargins in Power Systems with Stochastic Generation, IEEE Transaction on PowerSystems, 2009, 24(2), 951-958
    [133] I. Dobson, L. Lu and Y. Hu, A Direct Method for Computing a Closest Saddle NodeBifurcation in the Load Power Parameter Space of an Electric Power System, IEEEInternational Symposium on Circuits and Systems, Singapore, 1991, 5, 3019-3022
    [134] I. Dobson, L. Lu, Using an Iterative Method to Compute a Closest Saddle NodeBifurcation in the Load Power Parameter Space of an Electric Power System, in [135]
    [135] L.H. Fink, et al., Proceedings: Bulk Power System Voltage Phenomena, VoltageStability and Security ECC/NSF Workshop, Deep Creek Lake, MD, Aug. 1991, ECCInc., 4400 Fair Lakes Court, Fairfax, VA 22033-3899
    [136] I. Dobson, An Iterative Method to Compute the Closest Saddle Node or HopfBifurcation in Multidimensional Parameter Space, IEEE International Symposium onCircuits and Systems, San Diego, 1992, 5, 2513-2516
    [137] Y. Kataoka, A Probabilistic Nodal Loading Model and Worst Case Solutions forElectric Power System Voltage Stability Assessment, IEEE Transactions on PowerSystems, 2003, 18(4), 1507-1514
    [138]胡泽春,王锡凡,程浩忠,最近电压稳定临界点的两层规划模型和信赖域算法,中国电机工程学报, 2008, 28 (1) , 6-11
    [139] Z. Xiuhong, W. kewen, L. Ming, Y. Wanhui, et al., Two Extended Approaches forVoltage Stability Studies of Quadratic and Probabilistic Continuation Load Flow,International Conference on Power System Technology, 2002
    [140]宗秀红,王克文,张建芬,董泰福,电压稳定分析的二阶概率连续潮流法,继电器, 2003, 31 (8), 1-4
    [141] S. Chaitusaney and A. Yokoyama, Maximum Distributed Generation with VoltageRegulation under Uncertainty of Renewable Energy Resources, IEEJ Transactions onPower and Energy, 2007, 127(1), 113-120
    [142] A. M. Leite da Silva, I. P. Coutinho, A. C. Zambroni de Souza, et al., VoltageCollapse Risk Assessment, Elect. Power Syst. Res., 2000, 54, 221-227
    [143] V. Knazkins, Stability of Power Systems with Large Amounts of DistributedGeneration, Ph.D. Dissertation, Royal Inst. Technol. (KTH), Stockholm, Sweden, 2004
    [144] S.S. Isukapalli, A. Roy and P.G. Georgopoulos, Stochastic Response SurfaceMethods (SRSMs) for Uncertainty Propagation: Application to Environmental andBiological Systems, Risk Analysis, Vol. 18, No. 3, 1998
    [145]韩冬,贺仁睦,马进,等,基于随机响应面法的动态仿真不确定性分析,电力系统自动化, 2008, 32 (20), 11-15
    [146] S. S. Isukapalli, Uncertainty Analysis of Transport-transformation Models, Ph.D.Dissertation, Grad. Sch. New Jersey, Rutgers Univ., New Brunswick, NJ, Jan. 1999
    [147] R. Cameron and W. Martin, The orthogonal Development of Nonlinear Functional inSeries of Fourier-Hermite Functional, Math Ann, 1947, 48, 385
    [148]刘颖,基于随机响应面法的结构可靠度研究,硕士学位论文,广西大学,2008
    [149] I. Dobson, L. Lu, New Methods for Computing a Closest Saddle Node Bifurcationand Worst Case Load Power Margin for Voltage Collapse, IEEE Transaction on PowerSystems, 1993, 8(3), 905-913

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700