用户名: 密码: 验证码:
大棚及露地梨树生长发育特点和果实生长模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以4年生大棚和露地栽培的翠冠和黄冠梨为试材,研究比较了大棚和露地温湿度变化特点和物候期差异、梨枝叶生长发育特点及其叶片生理特性差异、梨果实生长发育特性的差异和梨果实生长模型的研究。其研究主要结果如下:
     气温和地温的季节变化均呈逐渐上升趋势,6月份之前大棚气温、相对湿度和地温均高于露地,且棚内昼夜温差大于露地。6月份起棚内外温度差异不显著。大棚栽培的翠冠和黄冠梨开花期比露地分别提早18d和18d,花期比露地长2d。果实采收期提早13d和14d,而果实发育期比露地长。另外,大棚翠冠和黄冠梨萌芽早,但落叶晚,整个营养生长期分别为242d和231d,分别比露地长27d和37d。
     大棚翠冠和黄冠梨新梢开始生长的时间均提前15d左右,大棚梨新梢长度和粗度均比露地的小,但新梢相对长度高于露地,节间长度亦分别比露地翠冠和黄冠高6.74%和10.80%。新梢长度、粗度、新梢相对长度、叶片数目和节间长度的变化与果实发育天数均与三次曲线拟合最好,相关系数高,能很好地模拟预测大棚和露地梨枝条生长发育的不同时期。大棚翠冠和黄冠梨的短枝数目比露地翠冠和黄冠少,而长枝数目大棚比露地的多。
     大棚栽培的翠冠和黄冠梨叶片鲜重、叶面积、气孔纵径大于露地,而气孔密度小于露地,叶肉栅栏组织所占比例均低于露地,海棉组织比例则高于露地,相应的栅栏组织和海棉组织的比值大棚梨叶片小于露地。大棚翠冠和黄冠梨叶片蒸腾速率比露地低,而叶绿素含量高,揭棚后,大棚梨叶片净光合速率高于露。在同一施肥水平下,不同时期大棚梨叶片N、P、K含量低于露地。
     大棚栽培的翠冠和黄冠梨果实生长发育期分别比露地的长5d和13d,果实可溶性固形物、可溶性糖和单果重均高于露地,成熟果实纵横径比露地果的大一些,果实细胞大小与果实大小变化一致。梨果实不同发育时期大棚栽培的翠冠和黄冠梨可溶性总糖、果糖、葡萄糖和蔗糖含量均高于露地,果实总酚含量和抗氧化活性比露地的低,而果实硬度均是露地高于大棚。翠冠梨可滴定酸含量是露地高于大棚,露地黄冠梨VC含量比大棚高。
     果实纵横径、鲜重、干重体积和表面积之间除果实鲜重和体积呈直线相关外,其它指标之间均呈幂函数关系,相关系数均在0.9以上,且果实横径与体积、表面积、鲜重的相关系数达0.99以上,均高于纵径与其的相关性。果实体积的变化与果实发育天数符合三次曲线,相关系数均在0.9以上。果实生长呈不均衡性,夜间生长快,白天生长减缓或负生长,且幼果期大棚翠冠和黄冠梨果实日生长量为2.16cm3·d-1和1.10 cm3·d-1,分别比露地快59.6%和45.8%。膨大期果实生长速率明显高于幼果期,大棚翠冠、大棚黄冠、露地翠冠和露地黄冠梨果实日生长量分别是幼果期的2.1、5.0、4.1和4.8倍。另外,果实生长日变化与温度的日变化负相关,而与空气相对湿度呈正相关,相关性达极显著水平。
The 4 years old pear cultivars Cuiguan and Huang guan cultivated in plastic tunnel and open field were used to study the differences of air temperature, relative humidity and phonological phases of pear and the development features of shoots, leaves and fruit of pears cultivated in plastic tunnel and open field. In addition, the fruit growth model were established between plastic tunnel and open field. The main results of this paper showed that:
     The air temperature and soil temperature were gradually rising, but the air temperature, air relative humidity, soil temperature and day-and-night temperature difference in the plastic tunnel were higher than those in the open field before June. Then the temperature in the plastic tunnel hasn't been significantly different from that in the open field. The beginning of flowering stage of Cuiguan and Huangguan pear cultivated in plastic tunnel was 18d earlier than those cultivated in open field, and the flowering stage was 2 days longer. Compared with cultivated in open field, the harvesting day of Cuiguan pear cultivated in plastic tunnel was 13 days earlier and it's fruit ripening stage was 5d longer, while the harvesting day of Huangguan pear cultivated in plastic tunnel was 14 days earlier and it's fruit ripening stage was 4 days longer. Cuiguan pear and Huangguan pear cultivated in plastic tunnel sprouted earlier and defoliated later, and the whole vegetative growth stage of Cuiguan pear was 242 days and was 27 days longer, while Cuiguan pear was 231 days and was 37 days longer.
     Compared with pear cultivated in open field, the beginning of shoot of Cuiguan and 'Huang Guan' pear was about 15d earlier; the shoots were shorter and finer, but the relative length was larger; and plastic tunnel could increase internode length of Cuiguan pear by 6.74% and internode length of Huangguan pear by 10.80%. The changes of length, diameter, relative length, internode length of shoots and the number of leaves in the shoots and fruit development days were perfectly fit to the cubic curve; and there was a high correlation coefficient, so it could simulate and predict the growth and development periods of branches of pear cultivated in plastic house and open field well. Compared with cultivated in open field, both the Cuiguan pear and Huangguan pear had fewer short branches, while more long branches.
     Leaf fresh weight, leaf area, stomatal longitudinal diameter of Cuiguan and Huangguan pear in plastic tunnel were greater than those in open field, but the stomatal density was less than those in open field. The proportion of pear in plastic tunnel were lower than those in open field, while the proportion of pear in plastic tunnel were higher than those in open field. Correspondingly, the ratio of palisade and spongy tissue of pear leaf in plastic tunnel was lower than those in open field. Cuiguan and Huangguan pear in plastic tunnel has higher contents of chlorophyll content and lower transpiration rate than pear planted in open field. Moreover, they had higher net photosynthetic rate than pear planted in open field after the films thrown off. At the same fertilization level,the contents of N, P, and K of pear leaves in plastic tunnel were lower than those in open field at different stages. Pear cultivated in plastic tunnel exposed to lower malonaldehyde content while higher proline content than those planted in open field.
     Fruit development period of Cuiguan and Huangguan planted in plastic tunnel were 5 and 13 days longer than they planted in open field. The contents of soluble solids and soluble sugar of fruit in plastic tunnel were higher than they in open field, too. The same as fruit mass, diameter and fruit cell size. The contents of total soluble sugar, fructose, glucose and sucrose of Cuiguan and Huangguan planted in plastic tunnel were also higher than they planted in open field. But the total phenol content and antioxidant activity of Cuiguan and Huangguan planted in plastic tunnel were lower than they planted in open field. Fruit firmness of Cuiguan and Huangguan planted in plastic tunnel was lower than they in open field. Thus fruit titratable acid content of Cuiguan planted in plastic tunnel was lower than they planted in open field, and the content of VC of Huangguan planted in plastic tunnel was little than they planted in open field.
     The relationship among the fruit diameter, fresh weight, dry weight, fruit volume and fruit area:fruit fresh weight was linearly correlated with volume, other indices showed power regressions, correlation coefficients are all above 0.9. And the correlations between fruit transverse diameter with volume, area and fresh weight were all above 0.99, higher than those of longitudinal diameter. The variation of fruit volume and the days of fruit development accord with the cubic curve, the correlation coefficient are all above 0.9. The fruit development showed lacking of uniformity, presenting growing fast at night, while growing poorly or negatively in the daytime. The fruit growth rates of Cuiguan and Huangguan is 2.16cm3·d-1 and 1.10 cm3·d-1 during Young fruit stage daily. The growth rates of fruit formation stage significantly increased compared with young fruit stage, the daily growth rates of Cuiguan in plastic house, Huangguan in plastic house,Huangguan growing naturally and Cuiguan growing naturally are 2.1 times,5.0 times,4.1 times and 4.8 times than that of young fruit stage. The fruit daily growth variation negatively correlated with the daily temperature variation, while positively correlated with the relative humidity of the atmosphere variation.
引文
[1]中海林,温景辉,邹利人,董彬.我国果树设施栽培研究进展[J].吉林农业科学.2007,32(2):50-54.
    [2]王中英,王艺,吕晓燕.果树的设施栽培[J].世界农业.1997,(06):28-31.
    [3]曲柏宏,朴永浩,金京南.苹果梨授粉用花粉的采集、运输及贮藏技术[J].延边大学农学学报.2003,25(1):8-12.
    [4]边卫东,李智永.黄金梨日光温室栽培丰产技术[J].农业工程技术(温室园艺).2007,(01):49-50.
    [5]秦嗣军,吕德国,刘国成.北方日光温室梨生长节律与早果丰产技术研究[J].北方园艺.2005,(2):16-17.
    [6]徐兆林.梨棚架式栽培配套技术研究[D].长沙:湖南农业大学.2008.
    [7]姜淑苓,陈长兰,贾敬贤,马力,李振茹.适宜日光温室栽培梨品种筛选[J].中国果树.2007,(1):22-23.
    [8]王涛,陈伟立,黄雪燕,陈丹霞,蔡美艳.适宜浙江温岭塑料大棚栽培的梨品种筛选[J].中国南方果树.2008,37(3):69-70.
    [9]杨青松,蔺经,盛宝龙,颜志梅,李小刚,常有宏.梨棚架栽培架体搭建及整形修剪技术[J].中国南方果树.2006,35(2):72-76.
    [10]雷世俊,肖军,王翠红.设施栽培果树授粉树不足的补救措施[J].西北园艺.2003,(12):19.
    [11]李金强.火龙果授粉技术研究进展[J].江苏农业科学.2009,(4):188-189.
    [12]罗延恂.苹果、梨树液体授粉新技术[J].农业科技通讯.1985,(05):12.
    [14]傅玉瑚,程福厚,陈敬谊,贾永祥.鸭梨鸭头突起发生规律的研究[J].园艺学报.1992,19(1):79-80.
    [15]陈昭存,陈家红,陈艳玲,葛敏.砀山酥梨不同序位花授粉试验[J].烟台果树.1999,(3):34.
    [16]庞明珠,陈昭存,宋清,王素侠,樊德刚.圆黄梨不同花粉和不同序位花的授粉试验[J].河北果树.2005,85(03):10.
    [17]杨文彩,吴宪峰,陈昭存.黄冠梨不同花粉和不同序位花授粉试验[J].烟台果树.2004,85(1):35.
    [18]张建英,朱亚伟,陈运娣,史莉.梨不同花序位结实特性的研究[J].河北林业科技,2004,(06):18-19.
    [19]康国栋,程存刚,李敏,杨玲.黄金梨花序不同留果部位对果实品质的影响[J].河北果树.2006,(04):6-7.
    [20]康国栋,程存刚,李敏,杨玲.锦丰梨不同序位果实品质的比较试验[J].中国果树.2006,(5):19-20.
    [21]黄新忠,陆修闽,张长和,林洪龙,李忠才.翠冠梨果枝类型及坐果序位与产量和果实品质的关系[J].福建农业学报.2007,22(1):23-26.
    [22]王鑫,伍涛,陶书田,席东,孙继亮,张绍铃.梨花序不同序位坐果对果实发育及品质的影响[J].西北植物学报.2010,30(9):1865-1870.
    [23]陈一帆,周春华.果实套袋研究进展[J].安徽农业科学.2008,36(13):5415-5417.
    [24]高大同.套袋对梨、苹果果实生长发育及性状影响的研究[D].南京:南京农业大学.2006.
    [25]王晓庆.大棚栽培梨果实发育及品质形成特性研究初报[D].南京:南京农业大学.2008.
    [26]王涛,冯先桔,林媚,黄雪燕,陈丹霞,温明霞.大棚栽培对翠冠梨叶片和果实矿质元素吸收与积累的影响[J].浙江农业学报.2008,20(3):190-194.
    [27]王涛.影响大棚梨熟期、产量与品质的因子及其调控技术[J].农业工程技术(温室园艺).2009,(02):41-42.
    [28]轩兴栓,张慎好,李智永,王学东.梨日光温室栽培技术[J].河北果树.2008,(4):13-15.
    [29]姜卫兵,韩浩章,汪良驹,马凯.落叶果树需冷量及其机理研究进展[J].果树学报.2003,20(5):364-368.
    [30]贾桂梅,许春燕,卢建立,李春强.河北中部设施果树需冷量研究[J].安徽农业科学.2010,38(27):14888-14889+14891.
    [31]王晨,王涛,房经贵,蔡斌华.果树设施栽培研究进展[J].江苏农业科学.2009,(04):197-200.
    [32]王淑春,周竹英,何增会.果树设施栽培需冷量及犹他模型[J].河北林业.2002,29(3):24.
    [33]姜卫兵,韩浩章,戴美松,汪良驹,马凯.苏南地区主要落叶果树的需冷量[J].果树学报.2005,22(001):75-77.
    [34]宋仁平,毛永民,中莲英,鹿金颖,马庆华,李鹏丽.果树设施栽培研究进展[J].河北农业大学学报.2003,26(z1):79-82.
    [35]徐养福,魏安智,杨恒,杨途熙.日光温室与露地栽培杏树花期物候与花型的对比研究[J].陕西林业科技.2005,(4):13-15+23.
    [36]韩冬梅,易干军,蔡长河,霍合强.果树设施栽培研究与应用[J].华南师范大学学报(自然科学版).2000,(3):99-106.
    [37]张彦昌,马骏.温度对设施果树发育进程影响的研究进展[J].山西果树.2008,(02):40-41.
    [38]T. Caruso, P. Inglese, A. Motisi. Greenhouse forced and field growing of Maravilha peach[J]. Fruit Varieties Journal.1993,47 (2):114-122.
    [39]王志强,何方,牛良,刘淑娥.设施栽培油桃光合特性研究[J].园艺学报.2000,27(4):245-250.
    [40]魏珉,邢禹贤,王秀峰,马红.日光温室CO2浓度变化规律研究[J].应用生态学报.2003,14(03):354-358.
    [41]亢立,董晓飞.节能日光温室CO2的施用[J].北方园艺.1996,(04):29.
    [42]高清华,叶正文,章镇,李世诚,吴钰良,苏明中.设施栽培中早熟甜油桃的光合特性研究[J].农业现代化研究.2006,27(04):307-310.
    [43]吴伟.果树设施栽培的现状与展望[J].经济林研究.2003,21(4):134-137.
    [44]侯新村.设施桃树CO_2施肥效应及控施技术研究[D].泰安市:山东农业大学.2002.
    [45]王涛,陈伟立,陈丹霞,黄雪燕,金伟.翠冠梨大棚栽培光温变化及生长发育规律研究[J].安徽农学通报.2007,13(10):78-80.
    [46]钱培华,金凤雷,骆军,金江华,费立斌,李正弟.连栋大棚梨先促成后避雨栽培效果初报[J].中国南方果树.2006,35(5):63-64.
    [47]王志强,牛良,刘淑娥.设施栽培对油桃营养生长及果实生长发育的影响[J].果树学报.2002,19(2):98-103.
    [48]赵文东.葡萄保护地栽培技术[M].北京:中国农业出版社.1998:46-49;83-84.
    [49]严大义.大棚葡萄[M].北京:中国农业科技出版社.1999:26-33;53;73.
    [50]胡新喜,熊兴耀,肖海霞.果树设施栽培研究进展[J].河南科技大学学报(农学版).2004,24(1):44-48.
    [51]杜建厂,马凯,王兴娜.避雨栽培对藤稔葡萄果实品质的影响[J].中外葡萄与葡萄酒.2001,(03):36-37.
    [52]张海森,高东升,李冬梅,李宪利.设施桃果实品质发育生理研究[J].中国农学通报.2005,21(7):286-288+297.
    [53]张新生,陈湖,傅友.光照对设施油桃果实糖积累及代谢相关酶活性的影响[J].河北农业科学.2008,12(4):12-15.
    [54]赵永红,李宪利,高东升.设施油桃果实的糖积累与相关酶活性[J].果树学报.2006,23(1):118-120.
    [55]范爽,高东升,李忠勇.设施栽培中‘春捷’桃糖积累与相关酶活性的变化[J].园艺学报.2006,33(6):1307-1309.
    [56]T. Moriguchi, T. Sanada, S. Yamaki. Seasonal fluctuations of some enzymes relating to sucrose and sorbitol metabolism in peach fruit[J]. Journal of the American Society for Horticultural Science. 1990,115 (2):278-281.
    [57]G. Vizzotto, R. Pinton, Z. Varanini, G. Costa. Sucrose accumulation in developing peach fruit[J]. Physiologia Plantarum.1996,96 (2):225-230.
    [58]高昂,刘道伟,牛良,俞宏,王志强.设施栽培油桃果实内源激素变化规律研究[J].中国园艺文摘.2010,26(1):1-4.
    [59]A. N. Miller, C. S. Walsh. Indole-3-acetic acid concentration and ethylene evolution during early fruit development in peach[J]. Plant Growth Regulation.1990,9 (1):37-46.
    [60]L. Batjer, G. C. Martin. The influence of night temperature on growth and development of early Redhaven peaches[J]. Proceedings of the American Society of Horticultural Science.1965, (87): 139-144.
    [61]张民,高勇.设施果树限根生产技术[J].河北果树.2001,(2):41.
    [62]束怀瑞.果树栽培生理学[M].北京:农业出版社.1993.
    [63]毕彦勇,高东升,王晓英,李宪利.设施油桃根系生长及与地上部生长的相关性[J].果树学报.2003,20(6):455-458.
    [64]J. Williamson, D. Coston. The relationship among root growth, shoot growth, and fruit growth of peach[J]. Journal of the American Society for Horticultural Science (USA).1989,114 (2):180-183.
    [65]P. Jarvis, W. Edwards, H. Talbot:Models of plant and crop water use[A]. D. A. Rose,D. A. Charles-Edwards. Mathematics and Plant Physiology[C]. New York:Academic Press; 1981: 151-194.
    [66]X. Le Roux, S. Grand, E. Dreyer, F. A. Daudet. Parameterization and testing of a biochemically based photosynthesis model for walnut (Juglans regia) trees and seedlings[J]. Tree Physiology. 1999,19 (8):481-492.
    [67]J. Luck, H. B. Luck, M. Bakkali. A comprehensive model for acrotonic, mesotonic and basitonic branchings in plants[J]. Acta Biotheoretica.1990,38 (3):257-288.
    [68]J. Perttunen, R. SIEV NEN, E. Nikinmaa, H. Salminen, H. Saarenmaa, V KEV. LIGNUM:a tree model based on simple structural units[J]. Annals of Botany.1996,77 (1):87-89.
    [69]R. List, M. KuPPERS:Light climate and assimilate distribution within segment oriented woody plants growth in the simulation program MADEIRA[A]. A. Kastner-Maresch, M. S. W. Kurth,B. Breckling. Individual-based structural and functional models in ecology[C]. Bayreuther Forum Okologie:Band; 1998:141-153.
    [70]S. Fishman, M. Genard. A biophysical model of fruit growth:simulation of seasonal and diurnal dynamics of mass[J]. Plant, Cell & Environment.1998,21 (8):739-752.
    [71]P. Balandier, A. Lacointe, X. Le Roux, H. Sinoquet, P. Cruiziat, S. Le Dizes. SIMWAL:a structural-functional model simulating single walnut tree growth in response to climate and pruning[J]. Annals of Forest Science.2000,57 (5):571-585.
    [72]F. Berninger, E. Nikinmaa, R. Sievanen, P. Nygren. Modelling of reserve carbohydrate dynamics, regrowth and nodulation in a N2-fixing tree managed by periodic prunings[J]. Plant, Cell and Environment.2000,23 (10):1025-1040.
    [73]A. Bosc. EMILION, a tree functional-structural model:presentation and first application to the analysis of branch carbon balance[J]. Annals of Forest Science.2000,57 (5):555-569.
    [74]C. Eschenbach. The effect of light acclimation of single leaves on whole tree growth and competition-an application of the tree growth model ALMIS[J]. Annals of Forest Science.2000,57 (5):599-609.
    [75]M. Allen, P. Prusinkiewicz, T. DeJong. Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees:the L-PEACH model[J]. New Phytologist.2005,166 (3):869-880.
    [76]S. Gayler, T. Grams, W. Heller, D. Treutter, E. Priesack. A dynamical model of environmental effects on allocation to carbon-based secondary compounds in juvenile trees[J]. Annals of Botany. 2008,101 (8):1089-1098.
    [77]李天忠,张志宏.现代果树生物学[M].北京:科学出版社.2008:387-405.
    [78]郝小琴,孟宪宇.单木生长的视景仿真模型[J].北京林业大学学报.1993,15(4):21-31.
    [79]郝小琴,孟宪宇,宋铁英.森林生长视景仿真技术的研究[J].林业资源管理.1992,20(5):57-60.
    [80]郝小琴.森林景物的三维迭代函数系统建模技术的研究[J].计算机学报.1999,22(7):768-773.
    [81]蔡振江,刘军,赵艳.L系统在计算机作物模拟及可视化中的应用[J].河北农业大学学报.2003,26(4):98-101.
    [82]陈昭炯.基于L-系统的植物结构形态模拟方法[J].计算机辅助设计与图形学学报.2000,12(8):571-574.
    [83]张树兵,王建中.基于L系统的植物建模方法改进[J].中国图象图形学报A辑.2002,7(5):457-460.
    [84]魏琼,蒋湘宁.基于DOL系统的树木三维可视化模型研究[J].北京林业大学学报.2003,25(3):64-67.
    [85]贾克功.我国果树设施栽培的问题与对策[J].北京农业.2003,(10):1-2.
    [86]李政红.设施果树栽培研究进展[J].农业工程技术.温室园艺.2008,(11):32-33.
    [87]张一晨,王涛.大棚梨熟期、产量与品质的影响因子及调控技术[J].现代农业科学.2009,16(2):53-54.
    [88]王艳霞.梨设施栽培技术[J].河北果树.2009,(3):17-19.
    [89]陈在新,夏华诚.气候生态与栽培方式对砂梨生长结果习性的影响[J].湖北农学院学报.1998,18(4):311-314.
    [90]骆建霞,赵国防,史燕山,孙世海,张凤才.园艺植物科学研究导论[J].天津农学院学报.2003,10(4):62-64.
    [91]储长树,朱军.塑料大棚内空气温、湿度变化规律及通风效应[J].中国农业气象.1992,13(3):32-35.
    [92]蔡美艳,陈丹霞,颜利荣,张仙平,黄雪燕.梨大棚栽培期温、湿度环境变化规律的研究[J].现代农业科学.2008,(10):54-55.
    [93]马光恕,廉华.设施内环境要素的变化规律及对蔬菜生长发育的影响[J].黑龙江八一农垦大学学报.2002,14(3):16-20.
    [94]肖辉林,郑习健.土壤变暖对土壤微生物活性的影响[J].土壤与环境.2001,10(2):138-142.
    [95]李仁杰,朱世东,袁凌云,龙杰,单国雷.温室内地温变化规律及与气温的相关性[J].中国农学通报.2010,26(24):209-212.
    [96]金志凤,封秀燕,陈十平.大棚气温变化特征及其对杨梅生育期的影响[J].浙江农业科学,2004,(2):57-59.
    [97]朱更瑞,方伟超,陈昌文,章秋平,杨刚.大棚油桃生长发育的特点[J].果树学报.2006,23(4):527-530.
    [98]吴月燕,周淑惠,徐永刚,张建人.大棚保温式栽培对葡萄生长结果的影响[J].上海农业科技.1999,(4):56-58.
    [99]杨晓平,胡红菊,田瑞,张靖国,陈启亮.翠冠梨新梢与果实生长发育动态及相关性研究[J].湖北农业科学.2009,48(12):3050-3052.
    [100]黄新忠,林洪龙,张长和,李忠才.翠冠梨主要特性与关键栽培技术[J].福建果树.2003,(1):30-31.
    [101]陈雪梅,王友保.浅谈叶片结构对环境的适应[J].安徽农学通报.2007,13(19):80-81.
    [102]苏印泉,张军侠.10种茶树叶片比较解剖学及与抗生关系的研究[J].西北林学院学报.1998,13(4):1-8.
    [103]王怡.三种抗旱植物叶片解剖结构的对比观察[J].四川林业科技.2003,24(1):64-67.
    [104]解思敏,杜根盛.新红星苹果叶片解剖构造与光合特性的研究[J].山西农业大学学报:自然科学版.1993,13(1):9-12.
    [105]张仙平,颜利荣,陈丹霞,黄雪燕,陈伟立,王涛.大棚栽培条件下翠冠梨的果实生长发育规律[J].安徽农学通报.2007,13(22):27-28.
    [106]刘光崧.土壤理化分析与剖面描述[M].北京:中国标准出版社.1996:121-265.
    [107]鲍士旦.土壤农化分析[M].北京:中国农业出版社.2000:14-24,39-114.
    [108]汪良驹,姜卫兵,高光林,韩浩章,邝易玲,梁声琴.幼年梨树品种光合作用的研究[J].园艺学报.2005,32(04):571-577.
    [109]柏军华,王克如,初振东,陈兵,李少昆.叶面积测定方法的比较研究[J].石河子大学学报(白然科学版).2005,23(2):216-218.
    [110]苏云松,郭华春,杨雪兰.马铃薯叶片气孔观察方法的比较研究[J].中国马铃薯.2009,23(1):37-39.
    [111]王灶安.植物显微技术[M].北京:农业出版社.1992:
    [112]杨捷频.常规石蜡切片方法的改良[J].生物学杂志.2006,23(1):45-46.
    [113]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社.2000:
    [114]王勋陵,王静.植物形态结构与环境[M].兰州:兰州大学出版社.1989:
    [115]战吉宬,黄卫东,王秀芹,王利军.弱光下生长的葡萄叶片蒸腾速率和气孔结构的变化[J].植物生态学报.2005,29(1):26-31.
    [116]姚允聪,王绍辉,孔云.弱光条件下桃叶片结构及光合特性与叶绿体超微结构变化[J].中国农业科学.2007,40(4):855-863.
    [117]姚全胜,雷新涛,王一承,罗文扬,冯文星.不同土壤水分含量对杧果盆栽幼苗光合作用、蒸腾和气孔导度的影响[J].果树学报.2006,23(2):223-226.
    [118]袁惠君,宋占午丁兰,杨红,粱桂霞,王莱.人参果试管苗与移栽成活苗气孔行为的比较[J].西北师范大学学报(自然科学版).2001,37(4):89-92.
    [119]李小燕,李连国,刘志华,赵录仓.葡萄叶片气孔的研究Ⅱ—气孔与葡萄生态适应性[J].内蒙古农牧学院学报.1992,13(04):69-73.
    [120]王仲春,黄镇,罗新书.儿种果树蒸腾强度和气孔扩散阻力的日变化与抗旱性的关系[J].山东农业大学学报.1988,19(1):39-46.
    [121]齐华,于贵瑞,刘允芬,王建林.柑橘叶片气孔导度的环境响应模型研究[J].中国生态农业学报.2004,12(4):43-48.
    [122]梁美霞,戴洪义,葛红娟.组培和大田条件下苹果叶片结构和表皮特征的比较[J].果树学报.2009,26(6):781-785.
    [123]胡喜来,王娜,张惠梅,李静.温室栽培下凯特杏叶片结构和光合特性研究[J].河南农业大学学报.2010,44(4):411-415.
    [124]韩凯.梨果实生物活性物质含量与大棚梨生长发育特性的研究[D].南京:南京农业大学.2009.
    [125]D. M. Hodges, J. M. DeLong, C. F. Forney, R. K. Prange. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds[J]. Planta.1999,207 (4):604-611.
    [126]陈香波,田旗,张丽萍,金荷仙,张启翔.不同透光率和土壤含水量对夏蜡梅枝条生长量及叶片部分生理指标的影响[J].植物资源与环境学报.2010,19(4):70-77.
    [127]蒋明义,郭绍川.氧化胁迫下稻苗体内积累的脯氨酸的抗氧化作用[J].植物生理学报.1997,23(4):347-352.
    [128]N. SMIRNOFF. The role of active oxygen in the response of plants to water deficit and desiccation[J]. New Phytologist.1993,125 (1):27-58.
    [129]薛仿正,温鹏飞,柴凯,王鹏飞,杜俊杰.设施栽培欧李光合特性的研究[J].安徽农业科学.2006,34(23):6100-6101.
    [130]温鹏飞.设施栽培油桃光合特性的研究[J].内蒙古农业大学学报(白然科学版).2007,28(3):195-197.
    [131]王涛,王海琴,林媚,冯先桔,黄雪燕,陈丹霞.大棚栽培对翠冠梨果实碳水化合物积累的影响[J].浙江农业学报.2008,20(4):236-239.
    [132]P. A. McAtee, I. C. Hallett, J. W. Johnston, R. J. Schaffer. A rapid method of fruit cell isolation for cell size and shape measurements[J]. Plant Methods.2009,5 (5):1-7.
    [133]E. A. Ainsworth, K. M. Gillespie. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent[J]. Nature Protocols.2007,2 (4):875-877.
    [134]I. F. F. Benzie, J. Strain. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power":the FRAP assay[J]. Analytical biochemistry.1996,239 (1):70-76.
    [135]姚改芳,张绍铃,曹玉芬,刘军,吴俊,袁江,张虎平,肖长城.不同栽培种梨果实中可溶性糖组分及含量特征[J].中国农业科学.2010,43(20):4229-4237.
    [136]龙淑珍.荔枝可滴定酸与维生素C的测定及其相关性[J].广西农业科学.2002,(4):188-189.
    [137]鞠志国.酚类物质与梨果实品质的研究进展[J].莱阳农学院学报.1988,5(3)59-65.
    [138]王涛,黄雪燕,陈丹霞,金伟,陈伟立.大棚翠冠梨果实发育及主要营养成分变化的研究[J].中国南方果树.2007,36(5):65-66.
    [139]H. G. Koji UCHINO, Masayuki FUKUSHIMA and Chiaki OOGAKI. Fruit growth and physiological behavior of 'Kosui' Japanese pear in the plastic house[J]. Japan,Soc.Hort.Sci.1989, 58 (3):499-506.
    [140]骆军,钱培华,金凤雷,金江华,费立斌:连栋大棚梨的栽培技术研究[A].张玉星,李振茹.梨科研与生产进展[C].北京:中国农业出版社;2006:327-331.
    [141]鞠志国.采期对莱阳茌梨酚类物质代谢和组织褐变的影响[J].中国农业科学.1991,24(2):63-68.
    [142]张燕,张国强,张鹏飞,张进,范宏伟.酚类物质与果树组织培养、果实品质及抗逆性的关系[J].河北林果研究.2006,21(3):311-315.
    [143]H. F. Liu, M. Genard, S. Guichard, N. Bertin. Model-assisted analysis of tomato fruit growth in relation to carbon and water fluxes[J]. Journal of Experimental Botany.2007,58 (13):3567-3580.
    [144]P. C. Struik, X. Yin, P. Visser. Complex quality traits:now time to model[J]. Trends in Plant Science.2005,10 (11):513-516.
    [145]M. Vazquez-Cruz, I. Torres-Pacheco, R. Miranda-Lopez, O. Cornejo-Perez, A. Roque, R. R. T. Osornio-R os, R. Guevara-Gonzalez. Potential of mathematical modeling in fruit quality[J]. African Journal of Biotechnology.2010,9 (3):260-267.
    [146]C. Gibert, F. Lescourret, M. Genard, G Vercambre, A. Perez Pastor. Modeling the effect of fruit growth on surface conductance to water vapour diffusion[J]. Annals of Botany.2005,95 (4): 673-683.
    [147]M. Beyer, S. Lau, M. Knoche. Studies on water transport through the sweet cherry fruit surface:IX. Comparing permeability in water uptake and transpiration[J]. Planta.2004,220 (3):474-485.
    [148]刘建福,倪书邦,贺熙勇,陈国云,陶丽,肖高中,陈丽兰.空气湿度对澳洲坚果开花座果和果实生长的影响[J].热带农业科技.2003,26(1):1-4.
    [149]辛惠卿,霍俊伟.环境胁迫对果树光合作用的影响[J].东北农业大学学报.2008,39(9):130-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700