用户名: 密码: 验证码:
云制造模式下大型装备成套服务运作协同与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪,云、物联网和协同己被确定为重塑全球化制造企业的关键技术和发展趋势。云制造是云计算在制造业的发展与应用,被看做提升我国制造业竞争力和创新能力的新技术,是我国大型装备制造业转型和发展的主要趋势。云制造模式下大型装备成套服务(LECS)运作管理问题与传统制造模式相比,具有复杂性、分布性、目标性、网络性、动态性和不确定性等特征。其中,分布性和网络性是云制造区别传统模式的最典型的特征。分布性使资源具有独立性和自治性,容易发生利益冲突,需要一定的规范、程序和手段进行行为约束和激励。网络性是资源整合、共享与协作的基础,是制造与服务融合的保障,也是管理现代化的深刻体现。因此,对云制造模式下运作管理协同优化的研究要将传统理论方法与现代技术手段相结合,实施管理创新。充分利用云制造服务平台进行集中、高效、实时的协同管理,制订协调各种关系、平衡自治性、消除冲突的协同机制。协同是基本,优化是根本。在强调运作协同的同时,更要追求运作过程优化的目标。对服务过程的资源配置和计划控制进行优化决策,注重协同效应,实现多层次多项目多目标的协同优化。因此,对云制造模式下LECS运作协同与优化的管理创新研究具有重要意义和挑战性。
     区别于传统的局部研究视角,针对云制造模式下LECS运作协同和优化新问题,进行了较为系统的、完整的研究。将实证研究、模型研究、算法研究和模拟研究相结合,以云制造、协同管理、博弈论和精益生产运等为理论基础,注重协同效应,从系统、控制、组织、执行四个层次研究支撑和实现云制造模式的LECS运作协同与优化理论方法体系。具体研究内容包括:
     1.云制造模式下LECS运作协同与优化问题分析:为了给后续研究提供宏观指导,定义了LECS的概念,论述了LECS的必要性和可行性,探索了LECS的云制造应用模式。进而分析了LECS运作管理的特征和协同优化需求,提出了运作协同与优化需要解决的关键问题。
     2.云制造模式下LECS的运作协同逻辑框架:系统层次,采用TAEMS分解了任务,分析了协同关系、协同机理、协同问题和协同目标,提出了五维度序参量的协同管理思路,建立了基于云制造平台的LECS协同逻辑框架,辨析了协同逻辑关系。
     3.基于多维度序参量的LECS运作复合协同机制体系:控制层次,为了实现相应的协同目标,基于协同管理五个维度序参量,设计了全方位协同的机制,建立了复合协同机制体系。
     4.基于合作博弈的LECS联邦资源配置协同优化方法:组织层次,分析了个体理性和整体理性,提出了运作成本是合作博弈的核心问题,建立了协同个体利益与集体利益最大化的合作博弈模型,采用增广拉格朗日松弛法探索了合作博弈均衡解法,并通过了实例验证。
     5.基于精益思想的LECS运作计划控制协同优化方法:执行层次,将精益思想融入运作计划与控制过程中,分析了运作计划控制的具体影响因素和结构,辨析了质量-工期-成本三目标之间的关系,引入田口质量损失函数,建立了基于成本费用关系的质量-成本-工期协同模型。构建了计划控制多层次、多项目、多目标的协同优化模型。结合实际需求,对模型进行了优化处理,设计了仿真+遗传算法,并通过实例验证了模型和算法的有效性。
     研究的创新之处在于:
     1.设计了全方位协同的LECS复合协同机制体系
     基于协同管理序参量即组织协同、过程协同、信息协同、资源协同和目标协同五个维度,设计了实现全方位协同目标的复合协同机制体系,有助于消除运作中的冲突,减少内耗,充分发挥各自的效能,提高整体协同效应。
     2.创建了协同个体利益与集体利益的LECS联邦资源合作博弈模型
     组合优超与资源贡献率方法建立了协同个体利益与集体利益最大化的合作博弈模型,既实现个体的优超又达到整体的核心,保证了合作的稳定性。为实现云制造环境下LECS资源协同目标提供了理论方法。
     3.建立了多层次、多项目、多目标的LECS运作计划控制协同优化模型
     引入田口质量损失函数,提出了基于成本费用关系的质量-成本-工期三目标协同思路,建立了计划控制多层次、多项目、多目标的协同优化模型。并对模型进行了优化处理,增强了模型的可操作性和实用性。为实现云制造模式下LECS运作过程整体协同优化奠定了理论基础。
     本文系统地建立了支撑和实现云制造模式的LECS运作协同与优化理论方法体系。研究结果表明,提出的协同逻辑框架具有宏观指导意义,设计的复合协同机制体系实现了全方位协同目标,建立的协同优化模型和算法通过实例验证具有有效性和实用性。系统地实现了对资源的选择和优化配置、服务过程的计划控制等集中协同管理,保证了制造资源服务的无缝、稳定、绿色、环保、高品质地进行,达到了LECS整体协同与优化的效应,提高了LECS项目的整体效率和效益。为大型装备企业从制造商向服务集成商转型提供了理论依据和科学方法。
In the21st century, the collaboration of cloud applications and the Internet of things (IOT) has been identified as the key technology and development trend for remodelling global manufacturing enterprises. Cloud manufacturing is a cloud computing application in the manufacturing industry, regarded as new technology of promoting manufacturing industry competitiveness and innovation ability. It is the main trend of the large equipment manufacturing industry transformation and development in China. Operation management of large equipment complete services (LECS) in cloud manufacturing has complexity, distributivity, target, network, dynamic, and uncertainty, compared with the traditional manufacturing model. Among them, the distributivity and network form are the most typical features of the cloud manufacturing different from the traditional model. The distributivity makes resources be independence and autonomy, and prone to conflicts of interest. So some specifications, procedures and methods are required for behavior constraints and incentives. Network form is the basis of resource integration, sharing and collaboration, and it is the guarantee of manufacturing and service integration, and it is also embodiment of management modernization. Therefore, the collaborative and optimization of operation management under cloud manufacturing mode needs to combine traditional theory with modern technology, so as to implement management innovation. The collaborative management with centralized, high efficient and real-time will be realized by cloud manufacturing service platform. The coordination mechanism need to be formulated to coordinate various relations, balance autonomy, and eliminate conflict. Synergy is basic, and optimization is essential. With emphasis on the operation synergy, we must attach importance to the operation optimization. Resources allocation and planning control of the process of service must be optimization decisions, focused on synergies of multi-level multi-project multi-objective collaborative optimization. Therefore, the study of management innovation is of great significance and challenge, which is coordination and optimization of LECS under cloud manufacturing mode.
     Different from traditional and local research perspectives, the new problems of LECS operation coordination and optimization under cloud manufacturing mode were made a systematic and complete research. Integrating empirical study, model, algorithm and simulation, the theory and method system of operation coordination and optimization of LECS had been researched based on cloud manufacturing, collaborative management, game theory and lean production, which supports and implements the cloud manufacturing mode. The study includes four levels of system, control, organization and execution, paying attention to the coordination effect. Specific contents of research are as follows:
     1. Analysis of LECS coordination and optimization under cloud manufacturing mode:in order to provide macro guidance for further research, the concept of the LECS was defined, the necessity and feasibility of the LECS was discussed, and model of cloud manufacturing application of LECS was explored. Then features of the operation management and collaborative optimization requirements of LECS were analyzed, and the key problems of operation coordination and optimization need to be solved, were proposed.
     2. Synergy logic framework of LECS under cloud manufacturing mode:in system level, adopting TAEMS to decompose the task, cooperative relations, coordination mechanism, coordination problem and cooperative target were analyzed. The collaborative management idea was put forward with the order parameter of the five dimensions. The LECS collaboration logic was set up based on cloud manufacturing platform framework, and the logical relationship was analyzed together.
     3. Composite synergy mechanism of LECS based on the multidimensional order parameter:in control level, in order to achieve the corresponding goal together, the comprehensive coordination mechanisms were designed, based on the five dimensions of the order parameter in the collaborative management. The composite synergy mechanism system was established.
     4. Federal resources allocation collaborative optimization methods of LECS based on cooperative game:in organization level, the individual and overall rationality was analyzed, and the operation cost was proposed as the core of cooperative game. The cooperation game model of coordination was established combining individual interests with collective interests. The augmented Lagrangian relaxation method was adopted to explore the cooperative game equilibrium solutions. The effectiveness of the model and algorithm was verified through an example.
     5. Operation plan and control collaborative optimization method of LECS based on lean thinking:in execution level, blending lean thinking in operation planning and control process, the concrete structure and influencing factors of operation plan and control were analyzed, and the relationship among the three goals of quality-duration-cost was also analyzed. The coordination model of quality-duration-cost was established introducing Taguchi quality loss function based on the cost. The multi-level multi-projects multi-objective coordination optimization model of the plan and control was built. Connecting with the actual demand, the optimizing the model, simulation+the genetic algorithm was designed, and effectiveness is verified by case study.
     The innovations are as follows:
     1. Designed composite synergy mechanism system for the LECS to comprehensive coordination.
     Based on the order parameters of collaborative management which were five dimensions of organization collaboration, coordination, information coordination process, resource coordination, the compound synergy mechanism system was designed to achieve all-round coordination. It helps to eliminate conflict in the operation, reduce the internal friction, give full play to their effectiveness, and improve the overall synergy effect.
     2. Created a cooperation game model for the LECS federal resources to coordinate individual and collective interests.
     The cooperation game model which can realize individual and collective interests maximize was established with superior and resource contribution rate. It can both realize individual superior and overall core, and ensure the stability of cooperation. It provided a theoretical method for LECS under cloud manufacturing to achieve resource synergy goals.
     3. Set up a multi-level, multiple projects, multi-objects coordinated optimization model of the plan and control for LECS.
     Introducing Taguchi quality loss function, a collaborative model of three targets was proposed based on the relationship among quality, duration and cost. The multi-level, multiple project and multi-objective coordination optimization model of planning control was established. The model was processed and optimized to enhance operability and practicability. This laid a foundation for the LECS under the cloud manufacturing mode to realize collaborative optimization overall.
     In this paper, a set of theory method system of coordination and optimization was systematically established to support and implement LECS'cloud manufacturing mode. The research results show that the collaborative logic framework proposed is macro guidance significance; the composite synergy mechanism system designed realizes all-round cooperative target; the collaborative optimization model and algorithm established have validity and practicability through the instance verified. It systematically realized the collaborative management of resources choice and optimizing configuration, the plan and control in the process of service, and so on. It can ensure stability of manufacturing resource service seamless, green, environmental protection, and high quality. It achieves optimization effect of the system overall coordination. The efficiency and effectiveness of LECS project will be raised. The study also provides a theoretical basis and scientific method for large equipment enterprise from manufacturer to a service integrator transformation.
引文
[1]Xun Xu. From cloud computing to cloud manufacturing[J]. Robotics and Computer-Integrated Manufacturing,2012,28:p.75-86.
    [2]Brian Hayes. Cloud Computing[J]. Communications of the Acm,2008,51:p.9-11.
    [3]Qi Hao, Weiming Shen, Lihui Wang. Towards a cooperative distributed manufacturing management framework[J]. Computers in Industry.2005,56(1):p.71-84.
    [4]本刊编辑部,云制造中国创造新模式——促进敏捷化、服务化、绿色化和智能化[J].中国制造业信息化,2011.(8):p.14-15.
    [5]李伯虎,张霖,王时龙等.云制造面向服务的网络化制造新模式[J].计算机集成制造系统,2010.16(1):p.1-16.
    [6]徐云,肖田元,粱策.网络化制造平台集成及制造网格研究[J].计算机集成制造系统,2006,12(11):p.1838-1 847.
    [7]张瑾,戴猷元.制造服务化与膜技术应用[J].膜科学与技术,2011,31(6):p.90-04.
    [8]杨叔子,史铁林.和谐制造:制造走向制造与服务一体化[J].江苏大学学报(自然科学版),2009.30(3):p.217-222.
    [9]C Shukla, M Vazquez, F Frank Chen. Virtual manufacturing:An overview[J]. Computers & Industrial Engineering,1996,31(1-2):p.79-82.
    [10]Qiong Liu, Yong Jiang Shi. Gird manufacturing:a new solution for cross-enterprise collaboration. Int J Adv Manuf Technol,2008,36:205-212.
    [11]K. Preiss. Agile manufacturing[J]. Computer-Aided Design,1994,26(2):p.83-84.
    [12]Yusuf Y.Y, Sarhadi M, Gunasekaran A. Agile manufacturing:the drivers,concepts and attributes[J]. International Journal of Production Economics,1999,62(1-2):p.33-43.
    [13]Ulieru, Mihaela, Norrie,et al. A multi-resolution collaborative architecture for Web-centric global manuhcturing[J]. Information Sciences,2000,127(1/2):p.3-21.
    [14]NEWMAN S.T, NASSEHI A, XU X.W, et al. Strategic advantages of interoperability for global manufacturing using CNC technology[J]. Robotics and computer_Integrated Manufacturing,2008,24(6):p.699-708.
    [15]Zhang Meihua, Li Aiping, Xu Liyun. Integrated Modeling and Information Interaction Mechanism of Collaborative Production Information[C]. Innovation Management and Industrial Engineering,2008.
    [16]Zbigniew Adamczyk, Krzysztof Kociolek. CAD/CAM technological environment creation as an interactive application on the Web [J]. Journal of Materials Processing Technology, 2001,109(3):p.222-228.
    [17]M Mahesh, SK Ong, AYC Nee, et al. Towards a generic distributed and collaborative digital manufacturing[J]. Robotics and Computer-Integrated Manufacturing,2007,23(3):p. 267-275.
    [18]Mitra S.S.S. Smart manufacturing with cloud computing [EB/OL]. /http://www.sramanamitra.com,2011.
    [19]BH Li, L Zhang, SL Wang, et al. Cloud manufacturing:a new service-oriented networked manufacturing model[C]. Computer Integrated Manufacturing Systems CIMS 2010,16(1): p.1-7.
    [20]李强,秦波,包柏峰.基于云制造的模具协同制造模式探讨[J].锻压技术,2011,36(3):p.140-143.
    [21]陶飞,张霖,郭华等.云制造特征及云服务组合关键问题研究[J].计算机集成制造系统,2011,17(3):p.477-486.
    [22]尹超,黄必清,刘飞等.中小企业云制造服务平台共性关键技术体系[J]..计算机集成制造系统,2011,17(3):p.496-503.
    [23]梁策,肖田元,张林骀,et al.基于联邦模式的网络化制造系统集成体系结构研究[J].计算机集成制造系统,2007,13(8):p.1552-1558.
    [24]杨颖.异地协同制造的组织模式与运行机制研究[D].石家庄:河北科技大学,2010.
    [25]赫尔曼.哈肯(德国),凌复华译.协同学一大自然构成的奥秘.上海:上海译文出版社,2001.
    [26]张浩.基于混沌理论与协同学的企业战略协同机制优化研究[D].哈尔滨:哈尔滨工程大学,2009.
    [27]王黎明,冯潼能.协同制造技术在大型飞机研发中的应用[J].航空制造技术,2008(1):p.56-59.
    [28]Liu Min, Yan Jun-Wei, Bai Li. The Inter-operating mechanism of the alliance-collaboration-oriented dynamic grid workflow[C]. International Conference on Integration technology, IEEE Computer Society:Shenzhen,2007:p.301-306.
    [29]Shimon Y Nof. Next generation of production research:Wisdom, collaboration, and society. International Journal of Production Economics,1999,60-61:p.29-34.
    [30]Anussornnitisarn P., Shimon Y Nof, Opher Etzion. Decentralized control of cooperative and autonomous agents for solving the distributed resource allocation problem[J]. International Journal of Production Economics,2005,98(2):p.114-128.
    [31]Claudia-Melania Chituc, Shimon Y Nof. The Join/Leave/Remain (JLR) decision in collaborative networked organizations[J]. Computers & amp; Industrial Engineering,2007, 53(1):p.173-195.
    [32]SW Yoon, Shimon Y Nof. Affiliation/dissociation decision models in demand and capacity sharing collaborative network[J]. International Journal of Production Economics, 2011,130(2):p.135-143.
    [33]Hoo Sang Ko, Shimon Y Nof. Design and application of task administration protocols for collaborative production and service systems[J]. International Journal of Production Economics,2012,135(1):p.177-189.
    [34]Yaozhong Wu, Christoph H. Loch, Ludo Van der Heyden. Model of fair process and its limits[J]. Manufacturing Service and Operations Managemen,2008,10:p.637-653.
    [35]董红召,陈鹰,杨灿军等.行业企业联盟CSCW信息平台中的分形网络协作.计算机辅助设计与图形学学报,2003,15(9):p.1160-1166.
    [36]Satwik Seshasai, Amar Gupta, Ashwani Kumar. An integrated and collaborative framework for business design:A knowledge engineering approach[J]. Data & Knowledge Engineering, 2005,52 (1 p.1.
    [37]Mike Danilovic, Mats Winroth. A tentative framework for analyzing integration in collaborative manufacturing network settings:a case study[J]. Engineering Technology Management,2005, (22) (141).
    [38]Johansen K, Comstock M, Winroth M. Coordination in collaborative manufacturing mega-networks a case study[J]. Journal of Engineering and Technology Management,2005, 22 (3) p.226.
    [39]Ibrahim Cil, Oguzhan Alpturk, Harun R Yazgan. A new collaborative system framework based on a multiple perspective approach:InteliTea[J]. Decision Support Systems,2005, 39(4) p.619.
    [40]Fu-Shiung Hsieh, Chih Yi Chiang. Collaborative composition of processes in holonic manufacturing systems[J]. Computers in Industry,2011,62(1):p.51-64.
    [41]Mark S Fox, Shimon Y Nof, Andrew B Whinston. Collaborative integration[J]. International Journal of Production Economics,1995,38(1):p.1.
    [42]Steven K C Lo. A collaborative multi-agent message transmission mechanism in intelligent transportation system-A smart freeway example[J]. Information Sciences,2012,184:p. 246-265.
    [43]Hasan Selim, Ceyhun Araz, Irem Ozkarahan. Collaborative production distribution planning in supply chain:A fuzzy goal programming approach[J]. Transportation Research Part E: Logistics and Transportation Review,2008,44(3):p.396-419.
    [44]Guoquan Zhang,Jennifer Shang,Wenli Li. Collaborative production planning of supply chain under price and demand uncertainty[J]. European Journal of Operational Research, 2011,215(3):p.590-603.
    [45]吴家菊,唐定勇,席传裕.基于Web服务的协同制造研究[J].计算机工程与设计,2007,28(22):p.5490-5497.
    [46]江资斌.基于多智能体的虚拟企业协同生产高级计划研究[D],长沙:中南大学,2006.
    [47]贾启君.基于系统动力学的复杂供应链系统协同策略建模分析研究[D],天津:天津大学,2008.
    [48]姚倡锋,张定华,卜昆等.复杂零件协同制造任务信息模型及建模方法[J].计算机集成制造系统,200935(1):p.47-52.
    [49]张瀚林.分布决策环境下基于协商的供应链协同计划模型与方法[D].北京:北京工业大学,2010.
    [50]V Lesser, K Decker, T Wagner, et al. Evolution of the GPGP/TAEMS Domain-Independent Coordination Framework[J]. AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS,2004,9:p.87-143.
    [51]Randall Davis, Reid G. Smith. Negotiation as a metaphor for distributed problem solving[J]. Artificial intelligence,1983,20(1):p.63-109.
    [52]Corkill Daniel. A framework for organizational self-design in distributed problem solving networks[D]. Univ. Massachusetts,1983.
    [53]Durfee E.H., Lesser V.R. Partial global planning:a coordination framework for distributed hypothesis formation[J]. IEEE transactions on system man and cybernetics,1991,21(5):p. 1167-1183.
    [54]PauloLeita'o. Agent-based distributed manufacturing control:A state-of-the-art survey[J]. Engineering Applications of Artificial Intelligence,2009.22(7):p.979-991.
    [55]Shen Weiming, Hao Qi, Yoon Hyun Joong, et al. Applications of agent-based systems in intelligent manufacturing:An updated review[J]. Advanced Engineering Informatics,2006. 20(4):p.415-431.
    [56]Smith Reid G. Contract net protocol:high-level communication and control in a distributed problem solver[J]. IEEE transactions on computers,1980,C-29(12):p.1104-1113.
    [57]Smith Reid G.,Davis Randall. Frameworks for cooperation in distributed problem solving[J]. IEEE transactions on systems, man and cybernetics,1981, SMC-11(1)::p.61-70.
    [58]N.R.Jennings. Coordination Techniques for Distributed Artificial Intelligence[J]. Foundations of Distributed Artificial Intelligence,1996:p.187-210.
    [59]Durfee Edmund, L.V., Corkill Daniel. Trends in cooperative distributed problem solving[J]. IEEE transactions on knowledge and data engineering,1989,1(1):p.63-83.
    [60]曾波,杨建军,韦文斌等.一种适用的Multi-Agent System协同框架及其应用[J].航空计算技术,2000,30(4):p.44-48.
    [61]赵振宇,卢广山,廖沫等.基于DTC和GPGP的多UCAV任务规划方法[J].北京航空航天大学学报,2011,37(3):p.306-310.
    [62]陈建军,杨振山.一种基于GPGP的多智能体协同框架[J].计算机应用研究,2004:p.94-96.
    [63]马礼,慈林林.葛根焰.多Agent系统中GPGP的协调机制研究[J].计算机工程与设计,2006,27(1):p.33-36.
    [64]张方于,陈学广,迟嘉昱.一种改进的GPGP协调机制[J].华中科技大学学报(自然科学版),2004,32(7):p.34-36.
    [65]单泪源,蔡自兴,高阳.一种多级分布式制造系统的多智能体协同生产机制[J].控制与决策,2001,16:p.410-414.
    [66]蒋志强,张征宇,丁玉成.分散网络化制造企业协同生产管理研究[J].航空工程与维修,2002,4:p.38-40.
    [67]孙永军,郑水英,潘晓弘.协同生产管理中生产资源集成化建模方法[J].中国机械工程,2003,24:p.2101-2108.
    [68]杨炳儒,李晋宏,宋威.面向复杂系统的知识发现过程模型KD(D&K)及其应用[J].自动化学报,2007,33(2):p.151-155.
    [69]李宗诚.复杂系统完备因子协同学主导分析基础[J].动力学与控制学报,2008,6(1):p.26-31.
    [70]马鑫,梁艳春.基于GPGP协同机制的多Agent车间调度方法研究[J].计算机研究与发展,2008,45(3):p.479-486.
    [71]张美华,李爱平,徐立云.协同生产计划调度系统及其关键技术[J].同济大学学报(自然科学版),2008,36(11):p.1574-1578.
    [72]王立.基于敏捷制造的供应链协同机制的评价研究[D].武汉:武汉科技大学,2011.
    [73]李丽.复杂多项目招标代理机制设计及应用研究[D].青岛:中国海洋大,2010.
    [74]夏林丽,张著洪.多模式项目资源配置及其免疫优化决策[J].贵州大学学报(自然科学版),2010,27(4)p.57-62.
    [75]黄小荣.光电子企业多项目资源配置优化与评价方法研究[D].武汉:武汉理工大学,2011.
    [76]唐进岭,张著洪.多项目多任务选择动态规划及其智能决策[J].计算机技术与发展,2012,22(9):p.75-79.
    [77]Jih-Jeng Huang, Chin-Yi Chen, Hsiang-Hsi Liu, et al. A multiobjective programming model for partner selection-perspectives of objective synergies and resource allocations[J]. Expert Systems with Applications,2010,37:p.3530-3536.
    [78]胡周君,胡志刚,丁长松,基于博弈论健壮性增强的资源分配模型[J].系统工程理论与实践,2009,29(8):p.102-110.
    [79]Lilan Liu, Zhisong Shu, Xiaomei Hu, et al. Resource allocation and network evolution considering economics and robustness in manufacturing grid[J]. The International Journal of Advanced Manufacturing Technology,2011,57:p.393-410.
    [80]陶飞.制造网格资源服务优化配置理论与应用研究[D].武汉:武汉理工大学,2008.
    [81]Kung-Jeng Wang, M.-J. Chen. Cooperative capacity planning and resource allocation by mutual outsourcing using ant algorithm in a decentralized supply chain[J]. Expert Systems with Applications 2009,36 p.2831-2842.
    [82]田煜,陈敬良工程招投标的博弈论分析[J].中国发展进程中的管理科学与工程(卷Ⅱ),2008:p.987-992.
    [83]盛亚,张志刚.复杂产品系统创新的项目招投标博弈模型构建与分析[J].科技进步与对策,2011,28(19):p.10-15.
    [84]赵鹏.基于博弈论思想的云制造资源调度策略研究[D].桂林:桂林理工大学,2011.
    [85]Kuster J, Jannach D. Approaches to Efficient Resource-Constrained Project Rescheduling[M]. Amsterdam:Stairs,2006(142):208-219.
    [86]Hartmann S, Briskorn Dirk.A survey of variants and extensions of the resource-constrained project scheduling problem[J]. European Journal of Operational Research,2010 (1):1-14
    [87]WY Zhang, S Zhang, M Cai, et al. A new manufacturing resource allocation method for supply chain optimization using extended genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology,2011,53:p.1247-1260.
    [88]Mike Mesterton-Gibbons, Sergey Gavrilets, Janko Gravner, et al. Models of coalition or alliance formation[J]. Journal of Theoretical Biology,2011,274(1):p.187-204.
    [89]Jih-Jeng Huang, CY Chen, Hsiang-Hsi Liu, et al. A multiobjective programming model for partner selection-perspectives of objective synergies and resource allocations[J]. Expert Systems with Applications,2009:p.1-7.
    [90]MA Khan, AC Toker, F Sivrikaya, et al. Cooperation-based resource allocation and call admission for wireless network operators[J]. Telecommunication Systems,2012,51(1):p. 29-41.
    [91]Yong Zeng, Lingyu Wang. Secure collaboration in design and supply chain management^]. Computers in Industry,2012,63(6):p.543-544.
    [92]O. Kwon, G.P. Im, K.C. Lee. An agent-based web service approach for supply chain collaboration[J]. Scientia Iranica,2011,18(6):p.1545-1552.
    [93]Usha Ramanathan. Aligning supply chain collaboration using Analytic Hierarchy Process[J]. Omega,2013,41(2):p.431-440.
    [94]Xumei Yuan, Ling Shen, Jalal Ashayeri. Dynamic simulation assessment of collaboration strategies to manage demand gap in high-tech product diffusion[J]. Robotics and Computer-Integrated Manufacturing,2010,26(6):p.647-657.
    [95]项闯.施工企业工程项目协同管理系统研究[D].杭州:浙江大学,2010.
    [96]乐新军,余立中.大型集群工程项目协同管理模式创新研究[J].工程管理学报,2011,25(1):p.56-60.
    [97]S Voβ, DL Woodruff. Introduction to computational optimization models for production planning in a supply chain[M]. New York.:Berlin:Springer,2003.
    [98]JR Birge, F Louveaux. Introduction to stochastic programming[M]. New York:Springer, 1997.
    [99]V Kumar, B Maheshwari, U Kumar. ERP systems implementation:best practices in Canadian government organizations[J]. Government Information Quarterly,2002,19(2):p. 147-172.
    [100]AK Poulymenakou, SA Borotis. Adoption of Enterprise Resource Planning Systems in Greece Advances in Informatics.[J], Springer Berlin/Heidelberg.2005:p.559-570.
    [101]L Ge, S Voβ. ERP application in China:An overview[J]. International Journal of Production Economics,2009,122(1):p.501-507.
    [102]CC Wei, PH Liu, YC Tsai. Resource-constrained project management using enhanced theory of constraint[J]. International Journal of Project Management,2002,20(7):p. 561-567.
    [103]Rui Zhang, Cheng Wu. Bottleneck identification procedures for the job shop scheduling problem with applications to genetic algorithms[J]. International Journal of Advanced Manufacturing Technology,2009,.42(11-12):p.1153-1164.
    [104]D Trentesaux. Distributed control of production systems[J]. Engineering Applications of Artificial Intelligence,2009,22:p.971-978.
    [105]SS Panwalkar, W Iskander. A Survey of Scheduling Rules[J]. Operations Research,1997, 25(1):p.45-61.
    [106]D Xue, J Sun, DH Norrie. An intelligent optimal production scheduling approach using constraint-based search and agent-based collaboration[J]. Computers in Industry,2001, 46(2):p.209-231.
    [107]W Shen, L Wang, Q Hao. Agent-based distributed manufacturing process planning and scheduling:a state-of-the-art survey[J]. Systems, Man, and Cybernetics Part C:Applications and Reviews, IEEE Transactions on,2006,36 (4):p.563-577
    [108]NK Shah, MG Ierapetritou. Integrated production planning and scheduling optimization of multisite, multiproduct process industry[J]. Computers & Chemical Engineering,2012, 37(10):214-226.
    [109]RM de Brito Alves, CAO do Nascimento. Integration of Production Planning and Scheduling[J], Computer Aided Chemical Engineering,2009, p.117-118.
    [110]CT Maravelias, C Sung. Integration of production planning and scheduling:Overview, challenges and opportunities[J]. Computers & amp; Chemical Engineering,2009,33(12):p. 1919-1930.
    [111]张晓东.生产计划与调度的集成优化[D].南京:东南大学,2004.
    [112]Xiao-ying YANG, Xue WANG, Guo-hong Shi. Integrated Optimization of Production Planning for Large and Complex Discrete Manufacturing System[C], The 3rd International Asia Conference on Industrial Engineering and Management Innovation (IEMI2012) Beijing.2012, p.161-165.
    [113]N Sugimura, R Hino, T Moriwaki. Integrated process planning and scheduling in Holonic manufacturing systems[C]. IEEE international symposium on assembly and task planning soft research park,2001.
    [114]Das, B.P., J.G. Rickard, et al. An investigation on integration of aggregate production planning, master production scheduling and short-term production scheudling of batch process operations through a common data model[J]. Computers & Chemical Engineering, 2000,24(2-7):p.1625-1631.
    [115]Zukui Li, Marianthi G. Ierapetritou. Production planning and scheduling integration through augmented Lagrangian optimization[J], Computers & Chemical Engineering,2009,34(6):p. 996-1006.
    [116]T Kis, A Kovacs. A cutting plane approach for integrated planning and scheduling[J]. Computers & Operations Research,2012,39(2):p.320-327.
    [117]YW Guo, WD Li, AR Mileham, et al. Applications of particle swarm optimisation in integrated process planning and scheduling[J]. Robotics and Computer-Integrated Manufacturing,2009,25(2):p.280-288.
    [118]D Trentesaux. Distributed control of production systems[J]. Engineering Applications of Artificial Intelligence,2009,22(7):p.971-978.
    [119]Terrazas-Moreno S., I.E. Grossmann. A multiscale decomposition method for the optimal planning and scheduling of multi-site continuous multiproduct plants[J]. Chemical Engineering Science,2011,66(19):p.4307-4318.
    [120]R.A. Aliev, B. Fazlollahi, B.G. Guirimov, et al. Fuzzy-genetic approach to aggregate production distribution planning in supply chain management[J]. Information Sciences, 2007,177(20):p.4241-4255.
    [121]Daoud, M.I., N. Kharma. A hybrid heuristic-genetic algorithm for task scheduling in heterogeneous processor networks[J]. Journal of Parallel and Distributed Computing, 2011,71(11):p.1518-1531.
    [122]C Luo, G Rong. A Strategy for the Integration of Production Planning and Scheduling in Refineries under Uncertainty[J]. Chinese Journal of Chemical Engineering,2009,17(1):p. 113-127.
    [123]YP Cai, GH Huang, ZF Yang. Identification of optimal strategies for energy management systems planning under multiple uncertainties[J]. Applied Energy,2009,86(4):p.480-495.
    [124]C Wei, Y Li, X Cai. Robust optimal policies of production and inventory with uncertain returns and demand[J]. International Journal of Production Economics,2009,134(2):p. 357-367.
    [125]F Enembreck, JP Andre Barthes. Distributed constraint optimization with MULBS:A case study on collaborative meeting scheduling[J]. Journal of Network and Computer Applications,2012,35(1):p.164-175.
    [126]T Nishi, M Konishi, M Ago. A distributed decision making system for integrated optimization of production scheduling and distribution for aluminum production line[J]. Computers & amp; Chemical Engineering,2007,31(10):p.1205-1221.
    [127]XV Wang, X Xu, E Haemmerle. Distributed interoperable manufacturing platform based on STEP-NC[C]. The 20th International flexible automation and intelligent manufacturing conference, FAIM,2010.
    [128]EL GILLENWATER, S.C., C HWANG. Distributed Manufacturing Support Systems:the Integration of Distributed Group Support Systems with Manufacturing Support Systems[J]. Omega,1995,23(6):p.653-665
    [129]RE Eberts, SY Nof. Distributed planning of collaborative production[J]. The International Journal of Advanced Manufacturing Technology,1993,8(4):p.258-268.
    [130]CE Pereira, L Carro. Distributed real-time embedded systems:Recent advances, future trends and their impact on manufacturing plant control[J]. Annual Reviews in Control,2007, 31(1):p.81-92.
    [131]SMJ Mirzapour Al-E-Hashem, H Malekly. A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty[J]. International Journal of Production Economics,2011,134(1):p.28-42.
    [132]Pierluigi Argoneto, Giovanni Perrone, Paolo Renna. Production planning in production networks:models for medium and short-term planning[M]. London:Springer-Verlag,2008.
    [133]K.G.,Kempf. et.al. Planning Production and Inventories in the Extended Enterprise:A State of the Art Handbook (Volume 1)[M]. International Series in Operations Research & Management Science. London:Springer New York Dordrecht Heidelberg,2011.
    [134]Y Kim, C Yun, SB Park, et al. An integrated model of supply network and production planning for multiple fuel products of multi-site refmeries[J]. Computers & Chemical Engineering,2008,32(11):p.2529-2535.
    [135]H Li, K Womer. Womer. Optimizing the supply chain configuration for make-to-order manufacturing[J], European Journal of Operational Research,2012,221(1):p.118-128.
    [136]张沙清,陈新度,陈庆新等.不确定环境下生产项目调度研究综述与展望[J].计算机应用研究2011,28(3):p.809-813.
    [137]李义华,王忠伟,庞燕.资源约束条件下工期、质量、成本综合均衡优化[J].中南林业科技大学学报,2008,28(6):p.101-105.
    [138]李俊亭,王润孝,杨云涛.关键链多项目整体进度优化[J].计算机集成制造系统,2011,17(8):p.1172-2279.
    [139]孙清超,郭钢.面向多产品协同开发的项目管理研究[J].计算机集成制造系统,2008,14(11):p.2204-2211.
    [140]张美华,李爱平,徐立云.基于Pareto最优的多企业协同计划调度优化[J].中国机械工程,2012,23(5):p.563-569.
    [141]李英杰,陈庆新,陈新度等.协同制造项目进度管理[J].计算机集成制造系统,2007,13(11):p.2145-2153.
    [142]王健.工程项目管理中工期-成本-质量综合均衡优化分析[D].天津:天津大学,2002.
    [143]王健,刘尔烈,骆刚.工程项目管理中工期—成本—质量综合均衡优化[J].系统工程学报,2004,19(2):p.148-153.
    [144]单绘芳,张静文,杨乃定.资源约束的工期一费用一质量综合均衡优化[J]一计算机仿真,2011,28(3):p.254-258.
    [145]尹齐心.工程项目管理多目标综合优化研究D].武汉;华中科技大学,2011.
    [146]张静文,徐渝,何正文.多种费用下具有时间转换约束的工期费用均衡项目调度研究[J].运筹与管理,2009,18(3):p.78-84.
    [147]王卓甫,丁继勇,刘媛等.基于Monte Carlo方法的PERT网络关键路线和最关键活动分析[J].系统工程与电子技术,2012,34(8):p.1646-1651.
    [148]陈友玲,张晓丽,覃承海.基于关键链的多项目计划编制[J].计算机集成制造系统,2009,15(7):p.1336-1341.
    [149]粱冰.基于关键链的复杂产品多项目计划与调度方法研究[D].镇江:江苏科技大学,2012.
    [150]乔立红,考书婷,王超.支持多级网络计划编制的项目过程建模与仿真[J].机械工程学报,2011,47(10):p.152-163.
    [151]王宇静,李永奎.基于系统动力学的大型复杂建设项目计划模型[J].工业工程与管理,2010,15(3):p.87-94.
    [152]吴龙瑛,沈斌,林建平.基于项目计划与协调的网络联盟制造系统[J].同济大学学报(自然科学版),2003,31(12):p.1459-1462.
    [153]程序,吴澄.一种复杂项目调度问题的混合智能算法[J].计算机集成制造系统,2006,12(4):p.585-589.
    [154]彭武良,王成恩.关键链项目调度模型及遗传算法求解[J].系统工程学报,2010,25(1)p.123-131.
    [155]J Ciurana, ML Garcia-Romeu, I Ferrer. A model for integrating process planning and production planning and control in machining processes[J]. Robotics and Computer-Integrated Manufacturing,2008,24(4):p.532-544.
    [156]范文慧,肖田元.基于联邦模式的云制造集成体系架构[J].计算机集成制造系统,201 1,17(3):p.469-476.
    [157]任磊,张霖,张雅彬等.云制造资源虚拟化研究[J].计算机集成制造系统,2011:p.511-518.
    [158]H Haken. Basic Concepts of Synergetics[J]. Applied Physics A,1993. A57:p.111-115.
    [159]王君华.基于系统协同管理的概念模型.[J]经济师,2006:p.212-213
    [160]韩昱.现代造船模式下企业协同采购管理研究[D].镇江:江苏科技大学,2012.
    [161]宋加升.制造企业协同管理模式研究[J].学术交流,2008,175(10):p.87-91.
    [162]Aldas Carlosh, Soibelman Lucio, Hart Jiawei. Automated Classification of Construction Project Documents[J]. Journal of Computing in Civil Engineering,2002(1):p.234-244.
    [163]丁铭华.企业集团资源协同管理概念模型及信息系统体系研究[J].计算机应用与软件,2008,25(12):p.204-206.
    [164]ZG Zacharia, NW Nix, RF Lusch. Capabilities that enhance outcomes of an episodic supply chain collaboration [J]. Journal of Operations Management,2011,29(6):p.591-603.
    [165]A Kanda, SG Deshmukh. Supply chain coordination:Perspectives, empirical studies and research directions [J]. International Journal of Production Economics,2008,115(2):p. 316-335.
    [166]丁铭华.基于自组织的企业集团资源协同管理研究[D].上海:同济大学,2008.
    [167]吴绍艳.基于复杂系统理论的工程项目管理协同机制与方法研究[D].天津:天津大学,2006.
    [168]Y Zeng, L Wang, X Deng, et al. Secure collaboration in global design and supply chain environment:Problem analysis and literature review [J]. Computers in Industry,2012,63(6): p.545-556.
    [169]熊义杰.现代博弈论基础[M].北京:国防工业出版社,2010.
    [170]吴广谋,吕周洋.博弈论基础与应用[M].南京:东南大学出版社,2009)
    [171]李光久.博弈论基础教程[M].北京:化学工业出版社,2008.
    [172]熊启滨,胡放之.合作与非完全合作博弈理论研究综述[J].三峡大学学报(人文社会科学版),2009,31(3):80-83.
    [173]郑士源.合作博弈理论的研究进展一联盟的形成机制及稳定性研究综述[J].上海海事大学学报,2011,32:53-59.
    [174]D Mourtzis. Internet based collaboration in the manufacturing supply chain[J]. CIRP Journal of Manufacturing Science and Technology,2011,4(3):p.296-304.
    [175]Edward M Knod, R.S何祯.运营管理:满足全球顾客需求(第7版).北京:中国人民人学出版社,2007.
    [176]Robert·W·Hall. Attaining manufacturing excellence:Just In Time, Total Quality, Total People Involvement [J]. Burr Ridge, IL:Dow Jonea-Irwin,1987:p.24.
    [177]理.蔡斯等,宋国防等译.生产与运作管理(制造与服务)[M].北京:机械工业出版社,2000.
    [178]Schonberger R.J. Building a Chain of Customers--Linking Business Functions to Create the World Class Company [M]. New York:The Free Press,1990.
    [179]V Lesser, K Decker, T Wagner, et.al. Evolution of the GPGP/TAEMS Domain-Independent Coordination Framework [J]. AUTONOMOUS AGENTS AND MULTI-Agent SYSTEMS, 2004.87.
    [180]赵振宇,廖沫,陈宗基.基于DTC和GPGP的多UCAV任务规划方法[J].北京航空航天大学学报,2011,37(3)(305-310).
    [181]Ilan Kroo, V Manning. Collaborative Optimization:Status and Directions[C]. The 8th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA,2000.
    [182]郭健彬,曾声奎.自适应协同优化方法研究[J].系统工程与电子技术,2009,31(5):p.1108-1112.
    [183]C Chen, Z Sun, W Zhong. The satellite optimization design using collaborative optimization method based on normal cloud model[C]. International Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT),2011.
    [184]PM Zadeh, VV Toropov, AS Wood. Metamodel-based collaborative optimization framework[J]. Structural and Multidisciplinary Optimization,2009,38(2):p.103-115.
    [185]Zhikang Shuai, Wenji Zhu, An Luo, et al. A Dynamic Hybrid Var Compensator and a Two-Level Collaborative Optimization Compensation Method Power Electronics[J], IEEE Transactions on,2009,24(9):p.2091-2100
    [186]RT Maheswaran, CM Rogers, R Sanchez. Human-Agent Collaborative Optimization of Real-Time Distributed Dynamic Multi-Agent Coordination[C]. The ninth international conference on autonomous agents and multiagent systems:Toronto, Canada,2010.
    [187]李响,李为吉.利用协同优化方法实现复杂系统分解并行设计优化[J].宇航学报,2004,25(3):p.300-304.
    [188]王秀丽,李淑慧,陈皓勇等.基于非支配遗传算法及协同进化算法的多目标多区域电网规划[J].中国电机工程学报,2006,26(12):p.12-14.
    [189]张静,李柏林,张卫华等.基于Kriging模型的改进协同优化算法[J].西南交通大学学报,2010,45(4):p.539-543.
    [190]薛锋,王慈光,牟峰.基于信息熵和混沌理论的遗传-蚁群协同优化算法[J].控制与决策,2011,26(1):p.44-48.
    [191]宋保维,温庆国.新型多学科设计优化算法研究[J].计算机仿真,2011,28(8):p.219-221.
    [192]孙林岩.服务型制造理论与实践[M].北京:清华大学出版社,2009.
    [193]邢玉婷,乔芳丽.装备制造业服务化趋势与对策分析[J].沈阳工业大学学报,2011,04(3):216-221.
    [194]杨书群.服务型制造的实践、特点及成因探讨[J].产经评论,2012,3(4):46-55.
    [195]孙林岩,李刚,江志斌等.21世纪的先进制造模式[J].中国机械工程,2007,18(19):p.2307-2312.
    [196]战德臣,赵曦滨,王顺强.面向制造及管理的集团企业云制造服务平台[J].计算机集成制造系统,2011,17(3):487-494.
    [197]赵亚伟,张海盛.基于Agent的协同关系模型研究[J].系统仿真学报,2003,15(11):p.1529-1532.
    [198]D Armbruster. Networks of Interacting Machines-Production Organization in Complex Industrial Systems and Biological Cells[M]. Singapore:World Scientific Publishing Co. Re. Ltd.,2005.
    [199]马亚,刘振奎.博弈论在招投标中的应用[J].价值工程,2010,29(11):p.80-81.
    [200]FS Hsieh. Developing cooperation mechanism for multi-agent systems with Petri nets[J]. Engineering Applications of Artificial Intelligence,2009,22(4-5):p.616-627.
    [201]Z Lieping, C Dafang, Z Yunsheng. Research on Multi-Agent Cooperation Mechanism Based on Game Theory[C].2010 Second Pacific-Asia Con ference on Circuits, Communications and System (PACCS),2010:p.51-54.
    [202]宋光兴,杨肖鸳,张玉青.虚拟企业的合作风险研究[J].软科学,2004,18(3):p.83-86.
    [203]李志洁,程春田,黄飞雪.基于合作博弈的网格资源分配[J].大连理工大学,2007,47(6):p.909-913.
    [204]MA Khan, AC Toker, F Sivrikaya, et al. Cooperation-based resource allocation and call admission for wireless network operators[J]. Telecommun System,2012,51:p.29-41.
    [205]A Mauleon, V Vannetelbosch. Farsightedness and cautiousness in coalition formation games with positive spillovers[J]. Theory Decision,2004,56(3):p.291-324.
    [206]陈国慧,叶文华.基于启发式规则的航空复合材料车间生产排程研究[J].中国制造业信息化,2012,41(7):p.9-11.
    [207]郑波克,杨晓英.转移批量自适应的作业排程优化方法[J].河南科技大学学报自然科学版,2012,33(2):p.17-21.
    [208]李春,葛茂根等.遗传粒子群算法的动态计划与排程问题研究[J].合肥工业大学学报(自然科学版),2010,33(1):p.5-9.
    [209]易军,李太福.求解作业车间调度的变邻域细菌觅食优化算法[J].机械工程学报,2012,48(12):p.178-183.
    [210]何小宇,张粒子.改进的拉格朗日松弛法求解机组组合问题[J].电力系统保护与控制,2010,38(17):p.16-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700