用户名: 密码: 验证码:
海南桉树人工林生态系统生物量和碳储量时空格局
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国人工林生物量和碳储量不断增加,在全球碳循环中发挥越来越重要的作用。桉树(Eucalypt)是我国华南地点主要人工林树种,我国已成为世界上桉树种植面积第三大国家。因此,开展桉树人工林生物量和碳储量研究可以了解我国桉树人工林在应对全球气候变化中起到的积极作用。已有的关于我国桉树人工林生物量和碳储量的研究往往局限于单一地理区域,缺乏跨区域的联合和对比研究。从生态系统水平对海南桉树人工林生物量、碳储量及其分布格局的研究未见报道。
     本文以海南北部湿润区、中部山地区、东南部高湿润区、西部半湿润半干旱区桉树人工林为试验对象,采用“年代序列”的方法,从生态系统层面对连续年龄序列桉树人工林生态系统生物量、碳储量及其分布格局进行研究,为开展人工林生物量、碳储量核算提供理论指导,同时为促进森林固碳提供基础资料。主要研究结果如下:
     (1)采用胸径、树高作为独立自变量,模型拟合精度及显著度因组分而不同。胸径与树高联合作为自变量出现了过度拟合现象。但从测量精确性及难易程度来看,多数情况下,胸径测量精度相对较高,而树高受郁闭度、地形的影响较大,在很大程度上降低其精度。因此选用以胸径为自变量的异速生长模型来估算桉树人工林乔木层生物量。
     (2)四个地点桉树生物量随林龄而增大。琼中1~6年生桉树生物量分别为2.32~114.18t·hm~(-2),临高为3.12~93.73t·hm~(-2),儋州为1.40~86.98t·hm~(-2),万琼为5.00~87.44t·hm~(-2)。琼中、临高、儋州和万琼各林龄桉树平均生物量分别为57.68、51.81、37.71t·hm~(-2)和49.21t·hm~(-2)。桉树林地上部生物量大于地下部,树干生物量占地上部生物量的比例最大。
     (3)林下植被生物量随林龄增大而上升。琼中1~6年生桉树林下植被生物量为1.57~7.48t·hm~(-2),临高为0.27~7.28t·hm~(-2),儋州为1.01~6.50t·hm~(-2),万琼为0.45~4.23t·hm~(-2)。四个地点1~6年生桉树林下草本层生物量大于灌木层,随林龄增大,草本层生物量所占比例逐渐下降,而灌木层逐渐上升。
     (4)四个地点1~6年生桉树凋落物现存量随林龄增大呈先升高后下降变化,1年生最小,峰值出现在4或5年生。琼中1~6年生桉树凋落物现存量范围为0.97~8.47t·hm~(-2),临高为1.13~6.73t·hm~(-2),儋州为1.31~17.08t·hm~(-2),万琼0.64~16.47t·hm~(-2)。随林龄增大,未分解凋落物现存量呈降低趋势,半全分解凋落物现存量呈增加趋势。
     (5)四个地点0~100cm土层土壤碳储量随林龄增大而增加。琼中1~6年生桉树林0-100cm土层碳储量范围为67.55~233.51t·hm~(-2),临高为63.58~148.41t·hm~(-2),儋州为39.75~76.39t·hm~(-2),万琼为36.91~62.45t·hm~(-2)。土壤碳储量随土层深度增加而降低,琼中从0~(-2)0土层的63.50t·hm~(-2)降到80-100cm土壤的8.96t·hm~(-2),临高的由34.98t·hm~(-2)减小到9.38t·hm~(-2),儋州的由17.48t·hm~(-2)减少到7.73t·hm~(-2),万琼的由13.94t·hm~(-2)下降到6.66t·hm~(-2)。
     (6)四个地点桉树人工林生态系统碳储量范围为40.77~294.18t·hm~(-2)。琼中1~6年生桉树人工林生态系统碳储量为69.84~294.18t·hm~(-2),临高为65.77~200.77t·hm~(-2),儋州为41.48~128.16t·hm~(-2),万琼为40.77~113.28t·hm~(-2)。桉树人工林生态系统碳储量集中在土壤层和乔木层。随林龄增加,土壤层碳储量所占的比例下降,植被层的比例上升。
     (7)随林龄增大,桉树人工林生态系统碳储量积累速率逐渐减小。四个地点乔木层年净固碳量大小依次是琼中,临高,万琼和儋州。四个地点桉树人工林碳素年净固定量相当,介于10.34~11.80t·hm~(-2)·yr-1之间。琼中、临高、儋州、万琼等4个地点桉树人工林年吸收CO2分别为38.28、38.68、37.96和43.27t·hm~(-2)。
Biomass and carbon storage of tree plantations in China have been increased continuallyin recent decades, and play a more and more significant role in the global atmospheric carboncycle. Eucalypt is the main plantation species in southern China, and total eucalypt plantationarea in China is the third in the world. Therefore, studying biomass and carbon storage ofeucalypt plantations in China will be very helpful to understand its important role in mitigatingglobal climate change. Only isolated studies were reported until now to characterize biomassand carbon pools of the above-ground components of eucalypt plantations in China, and studieswith the spatial and temporal heterogeneity of carbon storage in eucalypt plantations are scarce.Moreover, there is no study to quantify the amount and distribution of biomass and carbonstorage of eucalypt plantation ecosystems in Hainan province.
     Field experiments were conducted at northern wet area, middle mountainous area,southeastern high wet area, west Semi-humid semiarid area in Hainan, China. Chronosequenceapproach was employed to select a series of different age stands which represented the variousdevelopment stages of an individual stand. An age series of6stands (aged1,2,3,4,5and6years) were selected to study temporal and spatial biomass and carbon storage patterns ineucalypt plantation ecosystems at the four sites. The results can provide an academic referencefor budget of biomass and carbon storage of plantations, and valuable information for decisionmakers in forestry carbon sequestration programs. The main results of this thesis study asfollows:
     (1) Dry weights of tree components (stemwood, stembark, branches, foliage, stump androots) and above-ground biomass, below-ground biomass and total biomass of eucalypt trees inHainan were estimated as a function of diameter at breast height (DBH), tree height (H),standage and a combination of these three factors. The regression models were found to be bettermodels when DBH or H was used as the single predictor, based on R2, p-values, AIC, andresiduals. However, the advantage of such models based solely on DBH as an independent variable was that they were practically easy to construct and did not require time-consumingheight measurements in the field so that the inventory of total and component biomass wereeffective, while still being sufficiently accurate. Therefore, a complete set of equations usedDBH as the only one explanatory variable were employed to predict the individual biomass ofeach tree and the results of these equations were then pooled to obtain the total and componentbiomass per area.
     (2) Total biomass of eucalypt plantations increased along the age series at four sites. Totalbiomass increased from2.32t·hm~(-2) at a stand age of1year to114.18t·hm~(-2)at6years atQiongzhong, varied from3.12to93.73t·hm~(-2)at Lingao, ranged from1.40to86.98t·hm~(-2)atDanzhou and rose from5.00to87.4486.98t·hm~(-2)at Wanqiong. Above-ground biomass wassignificantly higher than the below-ground biomass in all plantations. Regarding componentcontribution to stand biomass, clearly, the most important component of biomass yield in anage-sequence of eucalypt plantations was the stemwood.
     (3) This study revealed an increasing trend in undergrowth biomass with stand age series.Undergrowth biomass at Qiongzhong ranged from1.57t·hm~(-2)at1-year-old to7.48t·hm~(-2)at6-year-old. Similar trends were found from0.27to7.28t·hm~(-2)for Lingao, from1.01to6.50t·hm~(-2)for Danzhou and from0.45to4.23t·hm~(-2)for Wanqiong. In this study, herb biomass washigher than the shrub biomass along a chronosequence. While the proportions of herb biomassin the undergrowth biomass decreased progressively with stand age, but those of shrub biomassincreased.
     (4) Litterfall observed in eucalypt plantations from four sites ascended firstly and thendeclined later from1-year-old to6-year-old, and the lowest at an age of1year, the highest atan age of4or5years. The corresponding trend for eucalypt plantations at Qiongzhong variedfrom0.97to8.47t·hm~(-2), from1.13to6.73t·hm~(-2)at Lingao, from1.31to17.08t·hm~(-2)atDanzhou and from0.64to16.47t·hm~(-2)at Wanqiong. Litterfall allocated a higher proportion ofbiomass in the undecomposed litterfall compared to that in semi-decomposed and decomposedlitterfall in the early growing period, but was opposite in the last the proportion.
     (5) There was an increasing in soil carbon storage of eucalypt plantations at0~100cmsoil layer with stand age. Soil carbon storage at Qionzhong varied from67.55to233.51t·hm~(-2)according to the age gradient,63.58to148.41t·hm~(-2)at Lingao,39.75to76.39t·hm~(-2)atDanzhou and36.91to62.45t·hm~(-2)at Wanqiong. In all eucalypt plantations there was a declinein soil carbon storage from0~20cm soil layer to80~100cm soil layer, and the ranges offour sites were63.50to8.96t·hm~(-2),34.98to9.38t·hm~(-2),17.48to7.73t·hm~(-2)and13.94to6.66t·hm~(-2), respectively.
     (6) Carbon storage of eucalypt plantations at four sites in Hainan varied from40.77to294.18t·hm~(-2), and it increased from69.84t·hm~(-2)at1year of age to294.18t·hm~(-2)at6years ofage for Qiongzhong, from65.77to200.77t·hm~(-2)for Lingao, from41.48to128.16t·hm~(-2)forDanzhou and from40.77to113.28t·hm~(-2)for Wanqiong. At all eucalypt plantation ecosystems,carbon storage was more concentrated in soil and trees. When tree age increased, theproportion of carbon storage allocated to the soil decreased, whereas the proportion allocated totrees increased.
     (7) Carbon accumulation rate of eucalypt plantation ecosystems was decreased with age.Annual net carbon sequestration of arbor layer generally graded in the fallowing order:Qiongzhong>Lingao>Wanqiong>Danzhou. Annual net carbon sequestration of eucalyptplantations at four sites was similar, ranging from10.34t·hm~(-2)·yr-1to11.80t·hm~(-2)·yr-1.Eucalypt plantations sequencing carbon dioxide from atmosphere reached38.28t·hm~(-2)·yr-1forQiongzhong,38.68t·hm~(-2)·yr-1for Lingao,37.96t·hm~(-2)·yr-1for Danzhou and43.27t·hm~(-2)·yr-1for Wanqiong.
引文
鲍显诚,陈灵芝,陈清朗,等.(1984)栓皮栎林的生物量.植物生态学与地植物学丛刊8:313-320
    曹军,张镱锂,刘燕华(2002)近20年海南岛森林生态系统碳储量变化.地理研究21:551-560
    陈光水,杨玉盛,钱伟,等.(2005)格氏栲和杉木人工林地下碳分配.生态学报25:2824-2829
    陈文军,秦武明,韦建晓,等.(2007)三种速生人工林凋落物的持水性能.广西科学14:177-179
    程堂仁,冯菁,马钦彦,等.(2008)甘肃小陇山森林植被碳库及其分配特征.生态学报28:33-44
    程堂仁,马钦彦,冯仲科,等.(2007)甘肃小陇山森林生物量研究.北京林业大学学报29:31-36
    崔浪军,梁宗锁,韩蕊莲(2003)沙棘-杨树混交林生物量,林地土壤特性及其根系分布特征研究林业科学39:1-7
    代力民,徐振邦,杨丽韫,等.(1999)红松阔叶林倒木贮量动态的研究.应用生态学报10:513-517
    邓华平,李树战,何明山,等.(2011)豫南不同年龄杉木林生态系统碳贮量及其空间动态特征.中南林业科技大学学报:自然科学版31:83-90
    丁贵杰(2003)马尾松人工林生物量和生产力研究Ⅰ.不同造林密度生物量及密度效应.福建林学院学报23:34-38
    丁贵杰,王鹏程(2002)马尾松人工林生物量及生产力变化规律研究Ⅱ.不同林龄生物量及生产力.林业科学研究15:54-60
    董林水,陈礼光,郑郁善,等.(2001)木荷马尾松混交林生物量与生产力的研究.江西农业大学学报23:244-247
    杜红梅,王超,高红真(2009)华北落叶松人工林碳汇功能的研究.中国生态农业学报17:756-759
    段文霞,朱波,刘锐,等.(2007)人工柳杉林生物量及其土壤碳动态分析.北京林业大学学报29:55-59
    方代有,朱东伟,杨富权(2005)封禁措施对窿缘桉水土保持林群落结构的影响.中国水土保持科学3:119-123
    方晰,田大伦,项文化(2002)速生阶段杉木人工林碳素密度,贮量和分布.林业科学38:14-19
    冯宗炜,陈楚莹,张家武,等.(1982)湖南会同地点马尾松林生物量的测定.林业科学18:127-134
    冯宗炜,王效科,欧阳志云(1999b)海南省桉树林分布及浆纸林生态区划.土壤与环境8:168-173
    冯宗炜,王效科,吴刚(1999a)中国森林生态系统的生物量和生产力.科学出版社
    广东省植物研究所(1976)广东植被.科学出版社,北京
    何斌,黄寿先,招礼军,等.(2009)秃杉人工林生态系统碳素积累的动态特征.林业科学45:151-157
    何宗明,李丽红,王义祥,等.(2003)33年生福建柏人工林碳库与碳吸存.山地学报21:298-303
    黄承标,杨钙仁,魏国余,等.(2011)桉树林地枯枝落叶层的水文特性及养分贮量.福建林学院学报31:289-294
    黄从德,张健,杨万勤,等.(2007)四川森林植被碳储量的时空变化.应用生态学报18:2687-2692
    黄世能,郑海水,何克军(1991)桉树薪炭林混交试验——Ⅱ.林分生物量和能量分配的研究.林业科学研究4:545-549
    贾开心,郑征,张一平(2008)西双版纳橡胶林生物量随海拔梯度的变化.生态学杂志25:1028-1032
    康冰,刘世荣,蔡道雄,等.(2009)南亚热带杉木生态系统生物量和碳素积累及其空间分布特征.林业科学45:147-153
    康冰,刘世荣,张广军,等.(2006)广西大青山南亚热带马尾松,杉木混交林生态系统碳素积累和分配特征.生态学报26:1320-1329
    雷丕锋,项文化,田大伦,等.(2004)樟树人工林生态系统碳素贮量与分布研究.生态学杂志23:25-30
    李海防,杨章旗,韦理电,等.(2011)广西华山林场5种典型人工林水文功能评价.安徽农业大学学报38:170-175
    李海涛,王姗娜,高鲁鹏,等.(2007)赣中亚热带森林植被碳储量.生态学报27:693-704
    李铭红,于明坚(1996)青冈常绿阔叶林的碳素动态.生态学报16:645-651
    李平,郑阿宝,阮宏华,等.(2011)苏南丘陵不同林龄杉木林土壤活性有机碳变化特征.生态学杂志30:778-783
    李平衡,王权,任海(2009)马占相思人工林生态系统的碳格局及其动态模拟.热带亚热带植物学报17:494-501
    李清玲(2010)海南桉树产业发展对策研究.广西热带农业3:51-54
    李文华(1978)森林生物生产量的概念及其研究的基本途径.自然资源1:71-92
    李文华,邓坤枚,李飞(1981)长白山主要生态系统生物量生产量的研究.森林生态系统研究2:24-34
    李文华,李飞(1996)中国森林资源研究.中国林业出版社,北京
    李轩然,刘琪璟,陈永瑞,等.(2006)千烟洲人工林主要树种地上生物量的估算.应用生态学报17:1382-1388
    李燕燕,樊后保,刘文飞,等.(2011)不同林龄尾巨桉人工林生态系统生物量的研究.北京林业大学学报33:28-32
    李意德,吴仲民,曾庆波(1998)尖峰岭热带山地雨林生态系统碳平衡的初步研究.生态学报18:371-378
    李意德,张振才(1992)尖峰岭热带山地雨林生物量的初步研究.植物生态学与地植物学学报16:293-300
    梁宏温,罗宏,温远光,等.(2010)桉树林取代马尾松林对森林生态系统碳贮量的影响.江西农业大学学报32:1168-1174
    梁宏温,温远光,温琳华,等.(2009)连栽对尾巨桉短周期人工林碳贮量的影响.生态学报29:4242-4250
    林希昊,陈秋波,华元刚,等.(2011)不同树龄橡胶林土壤水分和细根生物量.应用生态学报22:331-336
    林希昊,王真辉,陈秋波,等.(2008)不同树龄橡胶林细根生物量的垂直分布和年内动态.生态学报28:4128-4135
    刘春江(1987)北京西山地点人工油松栓皮栎混交林生物量和营养元素循环的研究.北京林业大学学报9:1-10
    刘恩,王晖,刘世荣(2012)南亚热带不同林龄红锥人工林碳贮量与碳固定特征.应用生态学报23:335-340
    刘广全,土小宁,赵士洞,等.(2001)秦岭松栎林带生物量及其营养元素分布特征.林业科学37:28-36
    刘国华,傅伯杰,方精云(2000)中国森林碳动态及其对全球碳平衡的贡献.生态学报20:733-740
    刘加珍,陈亚宁,李卫红,等.(2004)塔里木河下游植物群落分布与衰退演替趋势分析.生态学报24:379-383
    刘平,秦晶,刘建昌,等.(2011)桉树人工林物种多样性变化特征.生态学报31:2227-2235
    刘文飞,樊后保,高春芬,等.(2009)连续年龄序列桉树人工林凋落物量及养分通量.生态学杂志28:1928-1934
    刘洋,张健,冯茂松(2006)巨桉人工林凋落物数量,养分归还量及分解动态.林业科学42:1-10
    吕月保(2004)桉树林下植被与桉树生长的相关性及除草剂在桉树营林生产中的应用初报.桉树科技:50-52
    罗云建,张小全,王效科,等.(2009a)森林生物量的估算方法及其研究进展.林业科学45:129-134
    罗云建,张小全,王效科,等.(2009b)华北落叶松人工林生物量及其分配模式.北京林业大学学报31:13-18
    马明东,江洪,刘跃建(2008)楠木人工林生态系统生物量、碳含量、碳贮量及其分布林业科学44:34-39
    马荣华,黄杏元(2001)海南生态环境现状评价与变化分析.南京大学学报:自然科学版37:269-274
    马炜,孙玉军,郭孝玉,等.(2010)不同林龄长白落叶松人工林碳储量.生态学报30:4659-4667
    梅莉,王政权,韩有志,等.(2006)水曲柳根系生物量,比根长和根长密度的分布格局.应用生态学报17:1-4
    梅莉,张卓文,谷加存,等.(2009)水曲柳和落叶松人工林乔木层碳,氮储量及分配.应用生态学报20:1791-1796
    孟超(2011)城市香樟地上生物量研究.北京林业大学,北京
    孟磊,丁维新,蔡祖聪,等.(2005)长期定量施肥对土壤有机碳储量和土壤呼吸影响.地球科学进展20:687-692
    孟宪宇(2006)测树学(第3版).中国林业出版社,北京
    潘根兴(1999)中国土壤有机碳和无机碳库量研究.科技通报15:330-332
    潘辉,张金文,林顺德,等.(2003)不同间伐强度对巨尾桉林分生产力的影响研究.林业科学39:106-111
    潘维俦,田大伦,高正衡(1978)杉木人工林生态系统中的生物产量及其生产力的研究.中南林业科技2:2-14
    彭龙福(2003)35年生楠木人工林生物量及生产力的研究.福建林学院学报23:128-131
    任海,彭少麟,向言词(2000)鹤山马占相思人工林的生物量和净初级生产力.植物生态学报24:18-21
    盛炜彤,薛秀康(1992)福建柏,杉木及其混交林生长与生态效应研究.林业科学28:397-404
    石培礼,杨修,钟章成(1997)恺柏混交林种群生物量动态与密度调节应用生态学报8:341-346
    时忠杰,张宁南,何常清,等.(2010)桉树人工林冠层,凋落物及土壤水文生态效应.生态学报30:1932-1939
    史军,刘纪远,高志强,等.(2004)造林对陆地碳汇影响的研究进展.地理科学进展23:58-67
    宋清海,张一平(2010)西双版纳地点人工橡胶林生物量,固碳现状及潜力.生态学杂志29:1887-1891
    孙玉军,张俊,韩爱惠,等.(2007)兴安落叶松幼中龄林的生物量与碳汇功能.生态学报27:1756-1762
    孙志虎,王庆成(2005)采用地统计学方法对水曲柳人工纯林表层根量的估计.生态学报25:923-930
    唐建维,庞家平,陈明勇,等.(2009)西双版纳橡胶林的生物量及其模型.生态学杂志28:1942-1948
    唐建维,张建候,宋启示,等.(2003)西双版纳热带人工雨林生物量及净第一性生产力的研究.应用生态学报14:1-6
    唐罗忠,黄宝龙,户田浩人,等.(2004)江苏省里下河地点杨树人工林的碳储量及其动态.南京林业大学学报:自然科学版28:1-6
    唐启义,冯明光(2010)实用统计分析及其DPS数据处理系统.北京:科学出版社.
    陶玉华,冯金朝,马麟英,等.(2012)广西罗城马尾松,杉木,桉树人工林碳储量及其动态变化.生态环境学报20:1608-1613
    田大伦,方晰(2004)湖南会同杉木人工林生态系统的碳素含量.中南林学院学报24:1-5
    田大伦,方晰,项文化(2004a)湖南会同杉木人工林生态系统碳素密度.生态学报24:2382-2386
    田大伦,项文化,闫文德(2004b)马尾松与湿地松人工林生物量动态及养分循环特征.生态学报24:2207-2210
    涂洁,刘琪,简敏菲(2008)千烟洲湿地松中幼林树冠生物量及生长量分析.浙江林学院学报25:206-210
    汪企明,石有光(1990)江苏省湿地松人工林生物量的初步研究.植物生态学报14:1-12
    王兵,魏文俊(2007)江西省森林碳储量与碳密度研究.江西科学25:681-687
    王春梅,邵彬,王汝南(2010)东北地点两种主要造林树种生态系统固碳潜力.生态学报30:1764-1772
    王舒凤,陈雄(2001)木麻黄湿地松混交林生物量研究.福建林学院学报21:153-156
    王效科,冯宗炜,欧阳志云(2001)中国森林生态系统的植物碳储量和碳密度研究.应用生态学报12:13-16
    王雪军,黄国胜,孙玉军,等.(2008)近20年辽宁省森林碳储量及其动态变化.生态学报28:4757-4764
    王祖华,刘红梅,关庆伟,等.(2011)南京城市森林生态系统的碳储量和碳密度.南京林业大学学报(自然科学版)35:18-22
    韦善华,郑白,刘德杰,等.(2000)尾叶桉人工林生物量和生产力的研究.热带亚热带植物学报8:123-127
    尉海东,刘爱琴,马祥庆,等.(2006)连栽对杉木人工林碳贮量的影响研究.中国生态农业学报14:36-39
    尉海东,马祥庆(2006)中亚热带不同发育阶段杉木人工林生态系统碳贮量研究.江西农业大学学报28:239-243
    尉海东,马祥庆(2007)不同发育阶段马尾松人工林生态系统碳贮量研究.西北农林科技大学学报:自然科学版35:171-174
    温远光,陈放,刘世荣,等.(2008)广西桉树人工林物种多样性与生物量关系.林业科学44:14-19
    吴德邻,邢福武,李泽贤(1994)海南及广东沿海岛屿植物名录.科学出版杜
    吴钿,刘新田,杨新华(2003)雷州半岛桉树人工林林下植物多样性研究.林业科技28:10-13
    肖春波,王海,范凯峰,等.(2010)崇明岛不同年龄水杉人工林生态系统碳储量的特点及估测.上海交通大学学报(农业科学版)28:30-35
    肖复明,范少辉,汪思龙,等.(2007)毛竹,杉木人工林生态系统碳贮量及其分配特征.生态学报27:2794-2801
    肖荣波,欧阳志云,韩艺师,等.(2004)海南岛生态安全评价.自然资源学报19:769-775
    肖兴翠,李志辉,唐作钧,等.(2011)林分密度对湿地松生物量及生产力的影响.中南林业科技大学学报:自然科学版31:123-129
    徐大平,何其轩(1997)巨尾桉人工林地上部分净生产力及养分循环的研究.林业科学研究10:365-372
    徐大平,杨曾奖(1998)马占相思中龄林地上部分生物量及养分循环的研究.林业科学研究11:592-598
    徐大平,曾育田(1994)尾叶桉幼林地上部分生物量及养分循环的研究.林业科学研究7:600-605
    许乃政,张桃林,王兴祥,等.(2010)长江三角洲地点土壤有机碳库研究.长江流域资源与环境19:790-796
    薛立,何跃君,屈明,等.(2005)华南典型人工林凋落物的持水特性.植物生态学报29:415-421
    闫平,冯晓川(2006)原始阔叶红松林碳素储量及空间分布.东北林业大学学报34:23-25
    杨波,薛跃规,唐小飞,等.(2009)外来入侵植物飞机草在中国的适生区预测.植物保护35:70-73
    杨同辉,宋坤,达良俊,等.(2010)中国东部木荷-米槠林的生物量和地上净初级生产力.中国科学:生命科学:610-619
    杨玉坡(2010)全球气候变化与森林碳汇作用.四川林业科技:14-17
    杨玉盛,陈光水,林鹏,等.(2003)格氏栲天然林与人工林细根生物量,季节动态及净生产力.生态学报23:1719-1730
    杨玉盛,陈光水,王义祥,等.(2006)格氏栲人工林和杉木人工林碳库及分配.林业科学42:43-47
    杨玉盛,陈光水,王义祥,等.(2007)格氏栲人工林和杉木人工林碳吸存与碳平衡.林业科学43:113-117
    杨宗武,谭芳林,肖祥希,等.(2000)福建柏人工林生物量的研究.林业科学36:120-124
    姚茂和,盛炜彤,熊有强(1991)林下植被对杉木林地力影响的研究.林业科学研究4:246-252
    姚迎九,康文星(2003)18年生樟树人工林生物量的结构与分布.中南林学院学报23:1-5
    叶绍明,龙滔,蓝金宣,等.(2010b)尾叶桉与马占相思人工复层林碳储量及分布特征研究.江西农业大学学报32:735-742
    叶绍明,温远光,杨梅,等.(2010a)连栽桉树人工林生产力和植物多样性及其相关性分析.西北植物学报30:1458-1467
    叶绍明,郑小贤,杨梅,等.(2008)尾叶桉与马占相思人工复层林生物量及生产力研究.北京林业大学学报30:37-43
    易丹辉(2001)统计预测:方法与应用.中国统计出版社,北京
    易志军,吴晓芙,胡曰利,等.(2002)刚果12号W5桉枝,叶凋落物产生的相关因素研究.中南林学院学报22:22-25
    殷鸣放,赵林,陈晓非,等.(2008)长白落叶松与日本落叶松的碳储量成熟龄.应用生态学报19:2567-2571
    于振良,周玉荣,赵士洞(2000)我国主要森林生态系统碳贮量和碳平衡.植物生态学报24:518-522
    袁渭阳,李贤伟,张健,等.(2009)不同年龄巨枝人工林枯落物和细根碳储量研究.林业科学研究22:385-389
    曾小平,蔡锡安,赵平,等.(2009)南亚热带丘陵3种人工林群落的生物量及净初级生产力.北京林业大学学报30:148-152
    詹鸿振,刘传照(1990)阔叶红松林的生物量和营养元素含量的研究.林业科学26:80-85
    张国庆,黄从德,郭恒,等.(2008)不同密度马尾松人工林生态系统碳储量空间分布格局.浙江林业科技27:10-14
    张洪江,程金花,余新晓,等.(2003)贡嘎山冷杉纯林枯落物储量及其持水特性.林业科学39:147-151
    张琼,洪伟,吴承祯,等.(2006)不同桉树人工林生物量与生产力的比较分析.福建林学院学报26:218-223
    张群,范少辉,刘广路,等.(2008)长江滩地I-72杨人工林生物量和生产力研究.林业科学研究21:542-547
    张武贵,谢伟东,蒋桂雄,等.(2011)石漠化地点核桃幼林年龄序列上碳储量的研究.中南林业科技大学学报:自然科学版31:96-101
    张小全,侯振宏(2003)森林、造林、再造林和毁林的定义与碳计量问题.林业科学39:145-152
    张小全,李怒云,武曙红(2005)中国实施清洁发展机制造林和再造林项目的可行性和潜力.林业科学41:139-143
    张修玉,许振成,曾凡棠,等.(2011)珠江三角洲森林生态系统碳密度分配及其储量动态特征.中国环境科学31:69-77
    钟慕尧,黄树才,杨民胜,等.(2005)不同林龄桉树人工林森林空间结构差异研究.广东林业科技21:1-4
    周群英,陈少雄,韩斐扬,等.(2010)不同林龄尾细桉人工林的生物量和能量分配.应用生态学报21:l6-22
    周玉荣,于振良,赵士洞(2000)我国主要森林生态系统碳贮量和碳平衡.植物生态学报24:518-522
    周再知,郑海水(1995)橡胶树生物量估测的数学模型.林业科学研究8:624-629
    周再知,郑海水(1997)橡胶—砂仁复合系统生物产量,营养元素空间格局的研究.生态学报17:225-233
    朱胜英,周彪,毛子军,等.(2006)帽儿山林区种林分细根生物量的时空动态.林业科学42:13-19
    邹春静,卜军,徐文铎(1995)长白松人工林群落生物量和生产力的研究.应用生态学报6:123-127
    邹文魁(2008)马尾松,木荷混交林生物量结构研究.北华大学学报:自然科学版9:161-164
    Aber JD, Federer CA (1992) A generalized, lumped-parameter model of photosynthesis, evapotranspirationand net primary production in temperate and boreal forest ecosystems. Oecologia92:463-474
    Aber JD, Reich PB, Goulden ML (1996) Extrapolating leaf CO2exchange to the canopy: a generalizedmodel of forest photosynthesis compared with measurements by eddy correlation. Oecologia106:257-265
    Achten WMJ, Maes W, Reubens B, et al.(2010) Biomass production and allocation in Jatropha curcas L.seedlings under different levels of drought stress. Biomass and Bioenergy34:667-676
    Albrektson A (1984) Sapwood basal area and needle mass of Scots pine (Pinus sylvestris L.) trees in centralSweden. Forestry57:35-43
    Alvarez E, Duque A, Saldarriaga J, et al.(2012) Tree above-ground biomass allometries for carbon stocksestimation in the natural forests of Colombia. Forest Ecology and Management267:297-308
    Antonio N, Tome M, Tome J, et al.(2007) Effect of tree, stand, and site variables on the allometry ofEucalyptus globulus tree biomass. Canadian Journal of Forest Research37:895-906
    Araújo TM, Higuchi N, Andrade de Carvalho Júnior J (1999) Comparison of formulae for biomass contentdetermination in a tropical rain forest site in the state of Pará, Brazil. Forest Ecology and Management117:43-52
    Baker TR, Phillips OL, Malhi Y, et al.(2004) Variation in wood density determines spatial patternsinAmazonian forest biomass. Global Change Biology10:545-562
    Baldwin IT, Halitschke R, Kessler A, et al.(2001) Merging molecular and ecological approaches inplant–insect interactions. Current Opinion in Plant Biology4:351-358
    Bartelink H (1996) Allometric relationships on biomass and needle area of Douglas-fir. Forest Ecology andManagement86:193-203
    Bartelink H (1997) Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L). Annalsof forest science54:39-50
    Barton CVM, Montagu KD (2006) Effect of spacing and water availability on root: shoot ratio in Eucalyptuscamaldulensis. Forest Ecology and Management221:52-62
    Battaglia M, Sands P (1998) Process-based forest productivity models and their application in forestmanagement. Forest Ecology and Management102:13-32
    Battaglia M, Sands P, White D, et al.(2004) CABALA: a linked carbon, water and nitrogen model of forestgrowth for silvicultural decision support. Forest Ecology and Management193:251-282
    Berninger F, Nikinmaa E (1997) Implications of varying pipe model relationships on Scots pine growth indifferent climates. Functional Ecology11:146-156
    Berthrong ST, Jobbágy EG, Jackson RB (2009) A global meta-analysis of soil exchangeable cations, pH,carbon, and nitrogen with afforestation. Ecological Applications19:2228-2241
    Besar NA, Knoblauch C, Pfeiffer EM (2011) Carbon Sequestration in Coastal Soils under Different LandUse in Schleswig-Holstein, Northern Germany. Environment and Natural Resources Research1:53-62
    Bhat K, Bhat K, Dhamodaran T (1990) Wood density and fiber length of Eucalyptus grandis grown in Kerala,India. Wood and fiber science22:54-61
    Bickelhaupt D, Leaf A, Richards N (1973) Effect of branching habit on above-ground dry weight estimatesof Acer saccharum stands. IUFRO biomass studies: Nancy, France and Vancouver, British Columbia,Canada. University of Maine, College of Life Sciences and Agriculture, Orono, Maine, USA:219-230
    Binkley D (2005) How nitrogen-fixing trees change soil carbon. Tree species effects on soils: implicationsfor global change:155-164
    Blujdea V, Pilli R, Dutca I, et al.(2012) Allometric biomass equations for young broadleaved trees inplantations in Romania. Forest Ecology and Management264:172-184
    Boyden S, Binkley D, Senock R (2005) Competition and facilitation between Eucalyptus and nitrogen-fixingFalcataria in relation to soil fertility. Ecology86:992-1001
    Bradford JB, Kastendick DN (2010) Age-related patterns of forest complexity and carbon storage in pine andaspenbirch ecosystems of northern Minnesota, USA. Canadian Journal of Forest Research40:401-409
    Brown IF, Martinelli LA, Thomas WW, et al.(1995) Uncertainty in the biomass of Amazonian forests: anexample from Rondonia, Brazil. Forest Ecology and Management75:175-189
    Brown S (2002) Measuring carbon in forests: current status and future challenges. Environmental Pollution116:363-372
    Brown S, Hall CAS, Knabe W, et al.(1993) Tropical forests: their past, present, and potential future role inthe terrestrial carbon budget. Water, Air,&Soil Pollution70:71-94
    Brown S, Pearson T, Walker SM, et al.(2005) Methods Manual for Measuring Terrestrial Carbon. WinrockInternational,1-109
    Carbon BA, Bartle G, Murray A, et al.(1980) The distribution of root length, and the limits to flow of soilwater to roots in a dry sclerophyll forest. Forest Science26:656-664
    Causton D (1985) Biometrical, structural and physiological relationships among tree parts. Attributes of treesas crop plants. Edited by MGR Cannel and JE Jackson. Titus Wilson&Son Ltd.. Cumbria, GreatBritain:137-159
    Chambers JQ, Santos J, Ribeiro RJ, et al.(2001) Tree damage, allometric relationships, and above-groundnet primary production in central Amazon forest. Forest Ecology and Management152:73-84
    Chave J, Andalo C, Brown S, et al.(2005) Tree allometry and improved estimation of carbon stocks andbalance in tropical forests. Oecologia145:87-99
    Chave J, Muller-Landau HC, Baker TR, et al.(2006) Regional and phylogenetic variation of wood densityacross2456neotropical tree species. Ecological Applications16:2356-2367
    Chen H (1998) Biomass and nutrient distribution in a Chinese-fir plantation chronosequence in SouthwestHunan, China. Forest Ecology and Management105:209-216
    Constable J, Friend A (2000) Suitability of process-based tree growth models for addressing tree response toclimate change. Environmental Pollution110:47-59
    Crow TR, Buckley DS, Nauertz EA, et al.(2002) Effects of management on the composition and structure ofnorthern hardwood forests in Upper Michigan. Forest Science48:129-145
    Das D, Chaturvedi O, Jabeen N, et al.(2011) Predictive models for dry weight estimation of above andbelow ground biomass components of Populus deltoides in India: Development and comparativediagnosis. Biomass and Bioenergy35:1145-1152
    De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration incontrasting biomes. Ecology Letters11:516-531
    Decocq G, Aubert M, Dupont F, et al.(2004) Plant diversity in a managed temperate deciduous forest:understorey response to two silvicultural systems. Journal of Applied Ecology41:1065-1079
    Del Galdo I, Six J, Peressotti A, et al.(2003) Assessing the impact of land-use change on soil Csequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. GlobalChange Biology9:1204-1213
    DeLuca TH, Boisvenue C (2012) Boreal forest soil carbon: distribution, function and modelling. Forestry85:1-24
    Delucia EH, Maherali H, Carey EV (2000) Climate‐driven changes in biomass allocation in pines. GlobalChange Biology6:587-593
    Dixon RK, Solomon A, Brown S, et al.(1994) Carbon pools and flux of global forest ecosystems. Science263:185-190
    Douglass DH, Christy JR (2009) Limits on CO2Climate Forcing From Recent Temperature Data of Earth.Energy&environment20:177-189
    Eastham J, Rose C, Cameron D, et al.(1990) Tree pasture interactions at a range of tree densities in anagroforestry experiment. I. Rooting patterns. Australian Journal of Agricultural Research41:683-695
    Eggleston H, Buendia L, Miwa K (2006)2006IPCC guidelines for national greenhouse gas inventories.Institute for Global Environmental Strategies [M]. Hayama, Japan. Forestry
    Enquist BJ, Brown JH, West GB (1998) Allometric scaling of plant energetics and population density. Nature395:163-165
    Enquist BJ, Kerkhoff AJ, Stark SC, et al.(2007) A general integrative model for scaling plant growth, carbonflux, and functional trait spectra. Nature449:218-222
    Enquist BJ, Niklas KJ (2001) Invariant scaling relations across tree-dominated communities. Nature410:655-660
    Epron D, Laclau JP, Almeida JCR, et al.(2011) Do changes in carbon allocation account for the growthresponse to potassium and sodium applications in tropical Eucalyptus plantations? Tree physiology31:1-13
    Esprey L, Sands P, Smith C (2004) Understanding3-PG using a sensitivity analysis. Forest Ecology andManagement193:235-250
    Everitt B, Hothorn T (2009) A handbook of statistical analyses using R. Chapman&Hall/CRC
    Fabi o A, Martins M, Cerveira C, et al.(2002) Influence of soil and organic residue management on biomassand biodiversity of understory vegetation in a Eucalyptus globulus Labill. plantation. Forest Ecologyand Management171:87-100
    Fang J, Chen A, Peng C, et al.(2001) Changes in forest biomass carbon storage in China between1949and1998. Science292:2320-2322
    Fang JY, Wang ZM (2001) Forest biomass estimation at regional and global levels, with special reference toChina's forest biomass. Ecological Research16:587-592
    Fang S, Xue J, Tang L (2007) Biomass production and carbon sequestration potential in poplar plantationswith different management patterns. Journal of Environmental Management85:672-679
    Fearnside PM (1999) Forests and global warming mitigation in Brazil: Opportunities in the Brazilian forestsector for responses to global warming under the. Biomass and Bioenergy16:171-189
    Florides GA, Christodoulides P (2009) Global warming and carbon dioxide through sciences. EnvironmentInternational35:390-401
    Francisco-Ortega J, Wang FG, Wang ZS, et al.(2010) Endemic Seed Plant Species from Hainan Island: AChecklist. The Botanical Review76:295-345
    Gan J, Smith C (2006) A comparative analysis of woody biomass and coal for electricity generation undervarious CO2emission reductions and taxes. Biomass and Bioenergy30:296-303
    Garc a-Oliva F, Sveshtarova B, Oliva M (2003) Seasonal effects on soil organic carbon dynamics in atropical deciduous forest ecosystem in western Mexico. J Trop Ecol19:1-11
    Garten Jr CT, Wullschleger SD, Classen AT (2011) Review and model-based analysis of factors influencingsoil carbon sequestration under hybrid poplar. Biomass and Bioenergy35:214-226
    Genet H, Bréda N, Dufrêne E (2010) Age-related variation in carbon allocation at tree and stand scales inbeech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) using a chronosequenceapproach. Tree physiology30:177-192
    Grove T, Malajczuk N (1985) Biomass production by trees and understorey shrubs in an age-series ofEucalyptus diversicolor F. Muell. stands. Forest Ecology and Management11:59-74
    Guo L, Gifford R (2002) Soil carbon stocks and land use change: a meta analysis. Global Change Biology8:345-360
    Hall D (1991) Cooling the greenhouse with bioenergy. Nature353:11-12
    Hedenus F, Azar C (2009) Bioenergy plantations or long-term carbon sinks?-A model based analysis.Biomass and Bioenergy33:1693-1702
    Helmisaari HS, Makkonen K, Kellom ki S, et al.(2002) Below-and above-ground biomass, production andnitrogen use in Scots pine stands in eastern Finland. Forest Ecology and Management165:317-326
    Hileman B (1992) Web of interactions makes it difficult to untangle global warming data. Chemical andEngineering News70:7-19
    Houghton R, Lawrence K, Hackler J, et al.(2001) The spatial distribution of forest biomass in the BrazilianAmazon: a comparison of estimates. Global Change Biology7:731-746
    IPCC (2007) Climate change2007: The physical science basis. Agenda6:1-19
    Jactel H, Brockerhoff EG (2007) Tree diversity reduces herbivory by forest insects. Ecology Letters10:835-848
    Jakeman A, Letcher R, Norton J (2006) Ten iterative steps in development and evaluation of environmentalmodels. Environmental Modelling&Software21:602-614
    Jandl R, Lindner M, Vesterdal L, et al.(2007) How strongly can forest management influence soil carbonsequestration? Geoderma137:253-268
    Jia S, Akiyama T (2005) A precise, unified method for estimating carbon storage in cool-temperatedeciduous forest ecosystems. Agricultural and Forest Meteorology134:70-80
    Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climateand vegetation. Ecological Applications10:423-436
    Johansson T (2007) Biomass production and allometric above-and below-ground relations for young birchstands planted at four spacings on abandoned farmland. Forestry80:41-52
    Johnsen K, Samuelson L, Teskey R, et al.(2001) Process models as tools in forestry research andmanagement. Forest Science47:2-8
    Kaufmann MR, Troendle CA (1981) The relationship of leaf area and foliage biomass to sapwoodconducting area in four subalpine forest tree species. Forest Science27:477-482
    Ketterings QM, Coe R, van Noordwijk M, et al.(2001) Reducing uncertainty in the use of allometricbiomass equations for predicting above-ground tree biomass in mixed secondary forests. ForestEcology and Management146:199-209
    Ketterings QM, Tri Wibowo T, van Noordwijk M, et al.(1999) Farmers' perspectives on slash-and-burn as aland clearing method for small-scale rubber producers in Sepunggur, Jambi Province, Sumatra,Indonesia. Forest Ecology and Management120:157-169
    Kira T, Shidei T (1967) Primary production and turnover of organic matter in different forest ecosystems ofthe western Pacific. Japanese Journal of Ecology17:70-87
    Komiyama A, Ong JE, Poungparn S (2008) Allometry, biomass, and productivity of mangrove forests: Areview. Aquatic Botany89:128-137
    Kon pka B, Pajtík J, Moravcik M, et al.(2010) Biomass partitioning and growth efficiency in four naturallyregenerated forest tree species. Basic and Applied Ecology11:234-243
    Korzukhin MD, Ter-Mikaelian MT, Wagner RG (1996) Process versus empirical models: which approach forforest ecosystem management? Canadian Journal of Forest Research26:879-887
    Laclau JP, Bouillet JP, Ranger J (2000) Dynamics of biomass and nutrient accumulation in a clonalplantation of Eucalyptus in Congo. Forest Ecology and Management128:181-196
    Lal R (2005) Forest soils and carbon sequestration. Forest Ecology and Management220:242-258
    Landsberg J (2003a) Modelling forest ecosystems: state of the art, challenges, and future directions.Canadian Journal of Forest Research33:385-397
    Landsberg J (2003b) Physiology in forest models: history and the future. FBMIS1:49-63
    Landsberg J, Waring R (1997) A generalised model of forest productivity using simplified concepts ofradiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management95:209-228
    Levillain J, M'Bou AT, Deleporte P, et al.(2011) Is the simple auger coring method reliable forbelow-ground standing biomass estimation in Eucalyptus forest plantations? Annals of botany108:221-230
    Li C, Aber J (2000) A process-oriented model of N2O and NOemissions from forest soils:1. Modeldevelopment. Journal of Geophysical Research105:4369-4384
    Li C, Frolking S, Frolking TA (1992) A model of nitrous oxide evolution from soil driven by rainfall events:1. Model structure and sensitivity. J. Geophys. Res97:9759-9776
    Liang W, Hu H, Liu F, et al.(2006) Research advance of biomass and carbon storage of poplar in China.Journal of Forestry Research17:75-79
    Lima A, Silva IR, Neves JCL, et al.(2006) Soil organic carbon dynamics following afforestation of degradedpastures with eucalyptus in southeastern Brazil. Forest Ecology and Management235:219-231
    Lin FJ (2008) Solving multicollinearity in the process of fitting regression model using the nested estimateprocedure. Quality&Quantity42:417-426
    Litton CM, Boone Kauffman J (2008) Allometric models for predicting aboveground biomass in twowidespread woody plants in Hawaii. Biotropica40:313-320
    Litton CM, Raich JW, Ryan MG (2007) Carbon allocation in forest ecosystems. Global Change Biology13:2089-2109
    Litton CM, Ryan MG, Tinker DB, et al.(2003) Belowground and aboveground biomass in young postfirelodgepole pine forests of contrasting tree density. Canadian Journal of Forest Research33:351-363
    Liu L, Greaver TL (2010) A global perspective on belowground carbon dynamics under nitrogen enrichment.Ecology Letters13:819-828
    Luo Y, Wang X, Zhang X, et al.(2012) Root: shoot ratios across China’s forests: Forest type and climaticeffects. Forest Ecology and Management269:19-25
    Luyssaert S, Schulze ED, B rner A, et al.(2008) Old-growth forests as global carbon sinks. Nature455:213-215
    Makela A (2003) Process-based modelling of tree and stand growth: towards a hierarchical treatment ofmultiscale processes. Canadian Journal of Forest Research33:398-409
    Mangla S, Callaway RM (2008) Exotic invasive plant accumulates native soil pathogens which inhibit nativeplants. Journal of Ecology96:58-67
    Marland G, Schlamadinger B (1997) Forests for carbon sequestration or fossil fuel substitution? A sensitivityanalysis. Biomass and Bioenergy13:389-397
    Medhurst J, Battaglia M, Cherry M, et al.(1999) Allometric relationships for Eucalyptus nitens (Deane andMaiden) Maiden plantations. Trees-Structure and Function14:91-101
    Mendham D, O'connell A, Grove T, et al.(2003) Residue management effects on soil carbon and nutrientcontents and growth of second rotation eucalypts. Forest Ecology and Management181:357-372
    Miehle P, Battaglia M, Sands PJ, et al.(2009) A comparison of four process-based models and a statisticalregression model to predict growth of Eucalyptus globulus plantations. Ecological Modelling220:734-746
    Miehle P, Livesley S, Feikema P, et al.(2006a) Assessing productivity and carbon sequestration capacity ofEucalyptus globulus plantations using the process model Forest-DNDC: Calibration and validation.Ecological Modelling192:83-94
    Miehle P, Livesley SJ, Li C, et al.(2006b) Quantifying uncertainty from large‐scale model predictions offorest carbon dynamics. Global Change Biology12:1421-1434
    Miranda I, Almeida MH, Pereira H (2001) Provenance and site variation of wood density in Eucalyptusglobulus Labill. at harvest age and its relation to a non-destructive early assessment. Forest Ecology andManagement149:235-240
    Misra R, Turnbull C, Cromer R, et al.(1998) Below-and above-ground growth of Eucalyptus nitens in ayoung plantation:: I. Biomass. Forest Ecology and Management106:283-293
    Mokany K, Raison R, Prokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes.Global Change Biology12:84-96
    Monserud RA (2003) Evaluating forest models in a sustainable forest management context. Forest Biometry,Modelling and Information Sciences1:35-47
    Montagu K, Duttmer K, Barton C, et al.(2005) Developing general allometric relationships for regionalestimates of carbon sequestration--an example using Eucalyptus pilularis from seven contrasting sites.Forest Ecology and Management204:115-129
    Morris J, Baker T, Wei R, et al.(2003a) Using a process-based forest model to estimate the potentialproductivity of Eucalyptus plantations in Southern China. In. World Scientific Publishing Co. Pte. Ltd,pp325-337
    Morris J, Baker T, Wei R, et al.(2003b) Using a processbased forest model to estimate the potentialproductivity of Eucalyptus plantations in southern China. Eucalyptus Plantations: Research,Management and Development. World Scientific, Hong Kong:325-337
    Nakicenovic N, Alcamo J, Davis G, et al.(2000) Special report on emissions scenarios: a special report ofWorking Group III of the Intergovernmental Panel on Climate Change. In. Pacific Northwest NationalLaboratory, Richland, WA (US), Environmental Molecular Sciences Laboratory (US)
    Nelson BW, Mesquita R, Pereira JLG, et al.(1999) Allometric regressions for improved estimate ofsecondary forest biomass in the central Amazon. Forest Ecology and Management117:149-167
    Niklas KJ (1994) Plant allometry: the scaling of form and process. University of Chicago Press
    Niu X, Duiker SW (2006) Carbon sequestration potential by afforestation of marginal agricultural land in theMidwestern US. Forest Ecology and Management223:415-427
    Ollinger SV, Aber JD, Federer A (1998) Estimating regional forest productivity and water yield using anecosystem model linked to a GIS. Landscape Ecology13:323-334
    Overman JPM, Witte HJL, Saldarriaga JG (1994) Evaluation of regression models for above-ground biomassdetermination in Amazon rainforest. Journal of Tropical Ecology10:207-218
    Pan Y, Birdsey RA, Fang J, et al.(2011) A large and persistent carbon sink in the world’s forests. Science333:988-993
    Peichl M, Arain MA (2007) Allometry and partitioning of above-and belowground tree biomass in anage-sequence of white pine forests. Forest Ecology and Management253:68-80
    Penman J, Gytarsky M, Hiraishi T, et al.(2003) Good practice guidance for land use, land-use change andforestry. Intergovernmental Panel on Climate Change, Kamiyamaguchi, Japan. Institute for GlobalEnvironmental Strategies
    Pereira J, Tome M, Carreiras J, et al.(1997) Leaf area estimation from tree allometrics in Eucalyptusglobulus plantations. Canadian Journal of Forest Research27:166-173
    Pilli R, Anfodillo T, Carrer M (2006) Towards a functional and simplified allometry for estimating forestbiomass. Forest Ecology and Management237:583-593
    Puri S, Singh V, Bhushan B, et al.(1994) Biomass production and distribution of roots in three stands ofPopulus deltoides. Forest Ecology and Management65:135-147
    Raymond CA, Muneri A (2001) Nondestructive sampling of Eucalyptus globulus and E. nitens for woodproperties. I. Basic density. Wood Science and Technology35:27-39
    Razakamanarivo RH, Razakavololona A, Razafindrakoto MA, et al.(2011) Below-ground biomassproduction and allometric relationships of eucalyptus coppice plantation in the central highlands ofMadagascar. Biomass and Bioenergy online:1-10
    Resh SC, Binkley D, Parrotta JA (2002) Greater soil carbon sequestration under nitrogen-fixing treescompared with Eucalyptus species. Ecosystems5:217-231
    Richter DD, Markewitz D, Trumbore SE, et al.(1999) Rapid accumulation and turnover of soil carbon in are-establishing forest. Nature400:56-58
    Ritson P, Sochacki S (2003) Measurement and prediction of biomass and carbon content of Pinus pinastertrees in farm forestry plantations, south-western Australia. Forest Ecology and Management175:103-117
    Rykiel EJ (1996) Testing ecological models: the meaning of validation. Ecological Modelling90:229-244
    Saatchi SS, Harris NL, Brown S, et al.(2011) Benchmark map of forest carbon stocks in tropical regionsacross three continents. Proceedings of the National Academy of Sciences108:9899-9904
    Sabine CL, Heimann M, Artaxo P, et al.(2004) Current status and past trends of the global carbon cycle PPField C B, Raupach M R, MacKenzie S H. The global carbon cycle: integrating humans, climate andthe natural world.Washington: Island Press
    Saint-André L, M'Bou AT, Mabiala A, et al.(2005) Age-related equations for above-and below-groundbiomass of a Eucalyptus hybrid in Congo. Forest Ecology and Management205:199-214
    Sands P, Battaglia M, Mummery D (2000) Application of process-based models to forest management:experience with PROMOD, a simple plantation productivity model. Tree physiology20:383-392
    Sands P, Landsberg J (2002) Parameterisation of3-PG for plantation grown Eucalyptus globulus. ForestEcology and Management163:273-292
    Santiago L, Wright S (2007) Leaf functional traits of tropical forest plants in relation to growth form.Functional Ecology21:19-27
    Schmitt MDC, Grigal D (1981) Generalized biomass estimation equations for Betula papyrifera Marsh.Canadian Journal of Forest Research11:837-840
    Snowdon P, Eamus D, Gibbons P, et al.(2000) Synthesis of Allometrics, Review of Root Biomass, andDesign of Future Woody Biomass Sampling Strategies. National Carbon Accounting System. TechnicalReport No.17, Australian Greenhouse office, Canberra, Australia
    Sprugel D (1983) Correcting for bias in log-transformed allometric equations. Ecology64:209-210
    Stape JL, Binkley D, Ryan MG (2004) Eucalyptus production and the supply, use and efficiency of use ofwater, light and nitrogen across a geographic gradient in Brazil. Forest Ecology and Management193:17-31
    Stegen JC, Swenson NG, Valencia R, et al.(2009) Above‐ground forest biomass is not consistently relatedto wood density in tropical forests. Global Ecology and Biogeography18:617-625
    Steinbeiss S, BE LER H, Engels C, et al.(2008a) Plant diversity positively affects short‐term soil carbonstorage in experimental grasslands. Global Change Biology14:2937-2949
    Steinbeiss S, Temperton VM, Gleixner G (2008b) Mechanisms of short-term soil carbon storage inexperimental grasslands. Soil Biology and Biochemistry40:2634-2642
    Strickland MS, DeVore JL, Maerz JC, et al.(2011) Loss of faster-cycling soil carbon pools following grassinvasion across multiple forest sites. Soil Biology and Biochemistry43:452-454
    Team RDC (2010) R: A language and environment for statistical computing. R Foundation for StatisticalComputing Vienna Austria
    Ter-Mikaelian MT, Korzukhin MD (1997) Biomass equations for sixty-five North American tree species.Forest Ecology and Management97:1-24
    Trichet P, Loustau D, Lambrot C, et al.(2008) Manipulating nutrient and water availability in a maritimepine plantation: effects on growth, production, and biomass allocation at canopy closure. Annals offorest science65:814-814
    Trouve C, Mariotti A, Schwartz D, et al.(1994) Soil organic carbon dynamics under Eucalyptus and Pinusplanted on savannas in the Congo. Soil Biology and Biochemistry26:287-295
    Turner DP, Koerper GJ, Harmon ME, et al.(1995) A carbon budget for forests of the conterminous UnitedStates. Ecological Applications5:421-436
    UNFCCC (1992) United Nations Framework Convention on Climate Change.United Nations FrameworkConvention on Climate Change: Text. Geneva: UNEP/WMO.
    UNFCCC (1997) Kyoto Protocol, United Nations Framework Convention on Climate Change, InformationUnit for Conventions, UNEP, Geneva (at www.unfccc.int/resource/protintr.html).
    Van Oijen M, Rougier J, Smith R (2005) Bayesian calibration of process-based forest models: bridging thegap between models and data. Tree physiology25:915-927
    Vogt KA, Vogt DJ, Palmiotto PA, et al.(1995) Review of root dynamics in forest ecosystems grouped byclimate, climatic forest type and species. Plant and soil187:159-219
    Wang HF, Lencinas MV, Ross Friedman C, et al.(2011) Understory plant diversity assessment of Eucalyptusplantations over three vegetation types in Yunnan, China. New Forests42:1-16
    Wang X, Feng Z, Ouyang Z (2001) The impact of human disturbance on vegetative carbon storage in forestecosystems in China. Forest Ecology and Management148:117-123
    Wardle DA, Bardgett RD, Klironomos JN, et al.(2004) Ecological linkages between aboveground andbelowground biota. Science304:1629-1633
    Watt MS, Kirschbaum MUF (2011) Moving beyond simple linear allometric relationships between treeheight and diameter. Ecological Modelling222:3910-3916
    Werner PA, Murphy PG (2001) Size-specific biomass allocation and water content of above-andbelow-ground components of three Eucalyptus species in a northern Australian savanna. AustralianJournal of Botany49:155-167
    West G, Brown J, Enquist B (1999) A general model for the structure, function, and allometry of plantvascular systems. Nature400:664-667
    Westoby M (1981) The place of the self-thinning rule in population dynamics. The American Naturalist118:581-587
    White J (1981) The allometric interpretation of the self-thinning rule. Journal of theoretical biology89:475-500
    Williams RJ, Zerihun A, Montagu KD, et al.(2005) Allometry for estimating aboveground tree biomass intropical and subtropical eucalypt woodlands: towards general predictive equations. Australian Journalof Botany53:607-619
    Woodbury PB, Smith JE, Heath LS (2007) Carbon sequestration in the US forest sector from1990to2010.Forest Ecology and Management241:14-27
    Woodwell GM, Whitaker R, Reiners W, et al.(1978) Biota and the world carbon budget. Science199:141-146
    Xiao CW, Ceulemans R (2004) Allometric relationships for below-and aboveground biomass of young Scotspines. Forest Ecology and Management203:177-186
    Yang YS, Guo J, Chen G, et al.(2005) Carbon and nitrogen pools in Chinese fir and evergreen broadleavedforests and changes associated with felling and burning in mid-subtropical China. Forest Ecology andManagement216:216-226
    Yen TM, Lee JS (2011) Comparing aboveground carbon sequestration between moso bamboo (Phyllostachysheterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model. ForestEcology and Management261:995-1002
    YODA K (1963) Self-thinning in over-crowded pure stands under cultivated and natural conditions.(Intraspecific competition among higher plants. XI.). J Biol Osaka City Univ14:107-129
    Zeide B (1987) Analysis of the3/2power law of self-thinning. Forest Science33:517-537
    Zerihun A, Montagu KD (2004) Belowground to aboveground biomass ratio and vertical root distributionresponses of mature Pinus radiata stands to phosphorus fertilization at planting. Canadian Journal ofForest Research34:1883-1894
    Zerihun A, Montagu KD, Hoffmann MB, et al.(2006) Patterns of below-and aboveground biomass inEucalyptus populnea woodland communities of northeast Australia along a rainfall gradient.Ecosystems9:501-515
    Zewdie M, Olsson M, Verwijst T (2009) Above-ground biomass production and allometric relations ofEucalyptus globulus Labill. coppice plantations along a chronosequence in the central highlands ofEthiopia. Biomass and Bioenergy33:421-428
    Zhang J, Ge Y, Chang J, et al.(2007) Carbon storage by ecological service forests in Zhejiang Province,subtropical China. Forest Ecology and Management245:64-75
    Zhang XQ, Xu D (2003) Potential carbon sequestration in China's forests. Environmental Science&Policy6:421-432
    Zhang Y, Borders BE (2004) Using a system mixed-effects modeling method to estimate tree compartmentbiomass for intensively managed loblolly pines—an allometric approach. Forest Ecology andManagement194:145-157
    Zhao M, Xiang W, Peng C, et al.(2009) Simulating age-related changes in carbon storage and allocation in aChinese fir plantation growing in southern China using the3-PG model. Forest Ecology andManagement257:1520-1531
    Zhou G, Liu S, Li Z, et al.(2006) Old-growth forests can accumulate carbon in soils. Science314:1417
    Zianis D (2005) In: New Research on Forest Ecosystems. Ed. Burk, A.R. Nova Science Pub Inc, New York
    Zianis D, Mencuccini M (2004) On simplifying allometric analyses of forest biomass. Forest Ecology andManagement187:311-332
    Zinn YL, Resck DVS, da Silva JE (2002) Soil organic carbon as affected by afforestation with Eucalyptusand Pinus in the Cerrado region of Brazil. Forest Ecology and Management166:285-294

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700