用户名: 密码: 验证码:
汶川大地震区构造特征与均衡效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汶川大地震发生以后,有关青藏高原东缘龙门山地区的构造变形表现、深部结构特征、深部地球动力学过程等问题再次引起地学界的广泛关注。龙门山断裂带位于青藏高原与杨子地块挤压拼接的交汇部位,是新生带以来强烈的褶皱隆起区。研究区地势复杂,为数据的采集和处理工作带来了很大困难,先进仪器的使用保证了数据的采集质量,因此高精度的数据处理方法的开发是必要的。
     针对滤波、扩边等提高数据质量的方法进行改进,应用walsh滤波器对数据进行滤波和场分离操作,并提出三方向扩边方法实现数据的扩边处理,最大限度地保留边界信息。
     推导出基于Hartley变换的重(磁)异常频谱及一阶导数计算公式,Hartley变换比Fourier变换更加对称,且为实数域内计算,因此该方法计算速度更快,精度更高,并采用理论模型进行试验,试验结果表明该方法导数计算精度明显高于Fourier变换,与理论值相差很小。
     欧拉反褶积法和归一化总梯度法是现今重力异常反演中较常用的方法,因此本文应用这两种方法对该区震前与震后的断裂形态进行划分,并将Hartley变换的导数计算方法引入到这两种处理方法中来,提高其反演的精度,传统重力归一化总梯度法的圆滑滤波因子—正弦滤波因子下延稳定性差,针对该问题提出了余弦滤波因子来增强下延的稳定性,并在实际应用中使滤波因子具有随深度变化的性质,取得了很好的效果。
     从震前与震后断裂形态对比中可以看出,由于地震中应力的释放,从而震后断裂的逆冲、推覆作用减小,并寻找出本次地震所造成的破碎带的位置,本次测量中在都江堰—江油断裂东侧发现一新断裂。
     最后,分析了该地区震后均衡异常特征,并利用Parker—Oldenburg进行了莫霍面深度的计算。
Longmen Shan fault in the the intersection site of Qing-Zang Plateau and Yang-Zi splice.It is a strong fold uplift Since cenozoic, length of 500km, width of 30km, NE-SWdistribution,Intersection with the Daba Mountain in the north,Southwest was cut by Xianshuihe fault.The structure with a series of roughly parallel to the imbricate thrust zone structure,a typical structural features of thrust, with the development of pre-expansion mode. In this paper, the Longmen Shan region as the study area,The specific geographic coordinates28.8°N~33°N,101°E~106.5°E.In April and June period measured in the study area south-east towards a cross-section, the contrast of fault and isostatic anomaly before and after the earthquake.The Outset of profile is Longchang,pass Jianyang, Chengdu, Lixian, end at maerkang,The measured data of after eartkquake, in addition to this measured data, found no other information.
     Because the complexity of the region,in order to better complete inversion,the paper developed several new methods: walsh filter, expansion of the three direction,based on Hartley's horizontal and vertical first derivative,Euler deconvolution based on Hartley Transform ,improved normalized total gradient method.
     Walsh transform proposed byamerican mathematician Walsh in 1923 based on Square-wave function, in the early 70 century, after the release of fast Walsh transform, as in the Walsh domain provided the conditions to solve the problem. Today a lot of data filtering and field separation methods during operation does not recognize the shortcomings of mutation information, walsh transform the nature of a square wave, the boundary can be well highlighted features, this feature has been widely used in segmentation of well logs, paper to walsh transformation applied to the magnetic data processing to achieve separation filtering and field operations, Walsh power spectrum by finding the "break point" or threshold point of the filtering, and field separation, theoretical model results show that this method can better filtering and field separation completed work and for the Walsh transform step effect of the existence of the means used be resolved diplomatically.
     In the gravity and magnetic data processing, are often the first to expand the edge of the original data processing. Commonly used methods of expanding edge decay to zero and the cosine expansion fold edge method, these two methods are obvious boundary effect, the present exception for the measuring point measured not only by the impact of geological targets, but also by a certain range from around other geological effects, proposed a three-edge method of the direction of expansion. C direction is the principle method of expanding edge of a measuring point in three different directions at the same time expand the edge, taking the average of boundary expansion as the final result of the expansion side, this can be integrated around the geological impact, reducing the boundary effect, and the geological characteristics of different forms of the method is applicable to all. The results from the theoretical model can be found that the expansion method is not only a good side to complete the expansion of border operations, and maximize the retention of the boundary information. Hartley transform is derived based on the re-magnetic spectrum and the horizontal and vertical first derivative formula, experimental results show that the Hartley transform to calculate the derivative of the results relative to other methods and theory of numerical difference is less derivative, and the error analysis, error 5, % of the shows that this method can the completion of the derivative calculation.
     Euler deconvolution method (Euler inversion method) is an automated source location estimated market potential field inversion method. Gradient data measured in the absence of the case, the derivation of potential field anomalies during the high-frequency noise is amplified, so that divergence of the Euler inversion results. This article will be based on Hartley's horizontal and vertical first derivative applied to the Euler deconvolution method to achieve inversion, effectively improve the retrieval accuracy, and Hartley transform-based Euler deconvolution of the fault model Retrieval, experimental fracture in the inversion result in the performance of the Euler form.
     Gravity gradient of law by the Soviet scientists BM Beryozkin in the 20th century, put forward 60 to 70 years, and it is a heavy use of high-precision anomaly and magnetic anomaly data to determine the source distribution method. Normalized total gradient method because no additional conditions, calculation is simple, and can semi-quantitatively determine the location of geological bodies are widely used to study the detection of oil and gas or oil and gas structures. Be noted that the method is also applied to magnetic anomaly. Now calculate the total gradient of gravity normalized common method is to use sine series derivative, exponential function to the next extension, the stability of poor results obtained, in order to suppress oscillations under the effect of delay in the process of carrying out by the introduction of a smooth factor . However, this method is not very good to complete normalized gradient of gravity calculation, because one of its derivative methods have low accuracy; second smoothing filter can better enhance the extension process stability. To solve the above problems, this article will use Hartley transform method to obtain the first derivative of, and the development of new smoothing filter, multi-bit derivative by contrast can be seen that the accuracy of this method over traditional methods of high precision through model tests show that the method of calculation accuracy and stability are significantly improved, the final gravity normalized gradient and phase diagram of the characteristics of the study area were identified faults.
     Euler deconvolution method in the area of regional gravity data inversion, the redrawing of the fracture patterns in the region. Euler deconvolution method and the normalized total gradient method on the profile after the earthquake, gravity and magnetic anomaly data in the inversion, obtained after the earthquake faults in the area of basic distribution, and regional gravity data on the use of kriging interpolation of seismic survey lines acquired before the Bouguer gravity anomaly, and the inversion of the profile. Before and after the earthquake by earthquake rupture patterns of the contrast can be found two changes: one Dujiangyan - Jiangyou fault changes: before the earthquake the fault is a north west orientation basement fault, the upper part of the fault after the earthquake occurred four different directions of small fracture (or fracture zone), resulting in such changes may be due to the earthquake rupture process of a small production. Second, the emergence of new fault: seismic data show that in Dujiangyan - Jiangyou (F5) had a fracture of the east southeast orientation of deep faults, both in gravity and magnetic field in the display. The fault shall be buried fault, because smaller fracture width may be smaller scale before measuring, no fault was found that the existence of this need in future research attention.
     Analysis of the earthquake before and after isostatic anomaly changes,preliminary analysis of the cause。Utilizing bouguer gravity anomaly inversion to get the change of Mohuo surface.
     Finally,According to different fault patterns,changes in Moho depth and isostatic anomaly, Formation of the earthquake and the impact was described.
引文
[1]郑建屏,秦镜蓉,冯建川.四川盆地晚三叠世煤炭资源地球物理远景调查[M].北京:地质出版社,1991.
    [2]田正平.石油电法勘探四十年[J].石油物探,1989,28(3):65-84.
    [3]徐朝繁,潘纪顺,王夫运,等.龙门山及其临近地区深部地球物理探测[J].大地测量与地球动力学,2008,28(6):51-60.
    [4]滕吉文,白登海,杨辉,等.2008汶川8.0级地震发生的深层过程和动力学响应[J].地球物理学报,2008,51(5):1385-1397.
    [5]韩金良,吴树仁,何淑军,等.5.12汶川8.0级地震次生地震地质灾害的基本特征及其形成机制浅析,地学前缘(中国地质大学(北京);北京大学),2009,16(3):306-311.
    [6]滕吉文,刘财,韩立国,等.汶川—映秀MS8.0地震的介质破裂与深部物质运移的动力机制[J].吉林大学学报(地球科学版),2009,39(4):560-576.
    [7]王二七.龙门山断裂带印支期左旋走滑运动及其大地构造成因[J].地学前缘,2001,8(2):375-384.
    [8]刘树根.中国西部盆山系统的耦合关系及其动力学模式—以龙门山造山带-川西前陆盆地系统为例[J].地质学报,2003,77(2):177-186.
    [9]陈国光.龙门山断裂带晚第四纪活动性分段的初步研究[J].地震地质,2007,29(3):657-673.
    [10]贾东.龙门山褶皱冲断带构造解析与川西前陆盆地的发育[J].高校地质学报,2003,9(3):462-46.
    [11]李勇,周荣军,董顺,等.汶川地震的地表破裂与逆冲-走滑作用[J].成都理工大学学报(自然科学版),2008,35(4):404-409.
    [12]李勇,周荣军,Densmore A. L. ,等.青藏高原东缘大陆动力学过程与地质响应[M].北京:地质出版社,2006:1-134.
    [13] Li Yong,Zhou Rongjun,Densmore A L.,etal.The Geology of the Eastern Magin of the Qinghai–Tiben Plateau[M].Beijing:Geological Publishing House,2006.
    [14]周荣军,李勇,Densmore A L,等.青藏高原东缘活动构造[J].矿物岩石,2006,26(2): 40-51.
    [15] Densmore,A.L,Ellis,M.A, Li Yong,etal.Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau[J].Tectonics,2007, 80(8):113-127.
    [16]李勇,周荣军, Densmore A L,等.青藏高原东缘龙门山晚新生代走滑-逆冲作用的地貌标志[J].第四纪研究,2006,26(1):40-51.
    [17]李勇,周荣军,Densmore A L,等.青藏高原东缘龙门山晚新生代走滑挤压作用的沉积响应[J].沉积学报,2006,24(2):1-12.
    [18]刘树根.龙门山冲断带与川西前陆盆地形成演化[M].成都:成都科技大学出版社, 1993,17-117.
    [29]李勇,曾允孚,伊海生.龙门山前陆盆地沉积及构造演化[M ].成都:成都科技大学出版社,1995,1-91.
    [20]王谦身,滕吉文,张永谦,等.龙门山断裂系及邻区地壳重力均衡效应与汶川地震[J].地球物理学进展,2008,23(6):1664-167.
    [21]李勇,徐公达,周荣军,等.龙门山均衡重力异常及其对青藏高原东缘山脉地壳隆升的约束[J].地质通报,2005,24(12):1162-1169.
    [22]刘元龙.用地球物理资料研究中国深部地壳构造及矿产分布[J].长春地质学院学报,1993,23(4):430-438.
    [23]董焕成.重磁勘探教程[M].北京:地质出版社,1993:56-59
    [24]段本春,徐世浙.磁(重力)异常局部场与区域场分离处理中的扩边方法研究[J].物探化探计算技术,1997,19(4):299-301.
    [25]马国庆,孟令顺,杜晓娟等.磁法数据处理中的扩边和优化中值滤波方法的研究[J].物化探计算技术,2010,32(2):194-199.
    [26]王谦身,安玉林,张赤军等.重力学[M],北京:地质出版社,2003:255-267.
    [27] Bracewell,R.N.The Fourier transform and its applications[M]:McGraw-Hill Book Co.,1986:364-370.
    [28]郭文强,侯勇严.数字图像处理[M].西安:西安电子科技大学出版社,2009:43-46.
    [29] Spector A.Comments and errata to classic papers [J].Geophysics,1985,50(11):2278-2282
    [30]熊光楚.位变滤波及其在重磁异常解释中的应用,物探与化探,1979,5:65-69.
    [31] Jacobsen B H. A case for upward continuation as a standard separation filter for potential2field maps[J].Geophysics,1987,52(8):1138-1148.
    [32] Pawlowsk R S. Green’s equivalent2layer concept ingravity band2pass fileter design[J].Geophysics,1994,59(1):69-76.
    [33]蒋甫玉,孟令顺,张凤旭等.Chebyshev逼近滤波器在位场分离中的应用[J].物探与化探,2008,32(3):311-314.
    [34]程方道,刘东甲,姚汝信.划分重力区域场与局部场的研究[J].物探化探计算技术,1987, 9(1):1-9.
    [35]刘东甲,程方道.划分重力区域场与局部场的多次切割法[J].物探化探计算技术,1997, 19(1):31-36.
    [36]文百红,程方道.用于划分磁异常的新方法一插值切割法[J].中南冶学院学报[J]. 1990,21(3):229-235.
    [37]汪炳柱,徐世浙,刘保华,等.多次插值切割法分场的一个实例[J].石油地球物理勘探, 1997,32(3):431-439.
    [38]杨高印.位场数据处理的一项新技术—小子域滤波法[J].石油地球物理勘探,1995,30(2):240-245.
    [39] P.Gouplilaud,A.Grossman,J.morlet.Cyclc-Octave and Rclated Seismic Signal Analysis[J].Geoexploration,1984,23:91-102. 76
    [40]李宗杰.小波变换在位场数据处理中的应用[J].石油物探,1997,36(2):86-93.
    [41]羊春华.筛选—趋势分析法分离区域异常与局部异常[J].物探与化探,2005,29(2):167-170.
    [42]马涛,王铁成,王雨.一种改进的网格数据保持梯度滤波方法[J].石油地球物理勘探,2007,42(2):198-203.
    [43]宋景明.基于对应分析的重力异常分离技术及应用[J].天然气工业,2007,增刊A:318-319.
    [44]马国庆,孟令顺,杜晓娟.多环带中值滤波法实现重力区域场与局部场的划分[J].世界地质,2010,29(1):113-117.
    [45] Verduzco, B., Fairhead, J.D., Green, C.M., 2004. New insights into magnetic derivatives for structural mapping. The Leading Edge 23 (2), 116-119.
    [46] Wijns, C., Perez, C., Kowalczyk, P.. Theta map: edge detection in magnetic data[J]. Geophysics,2005,70 (4):39-43.
    [47] Miller, H.G., Singh, V.. Potential field tilt—a new concept for location of potential field sources. Journal of Applied Geophysics.1994,32:213-217.
    [48]刘保华,张维冈,孟恩.重力异常垂向一阶导数的一种简便算法[J].青岛海洋大学学报25(2),1995:253~255.
    [49]暮石敏,周云轩,孙运生.区域地球物理数据处理方法及其应用[M].1990:21-23.
    [50] G.R.J. Coopera,D.R. Cowanb. Enhancing potential field data using filters based onthe local phase[J]. Computers & Geosciences 2006(32):1585-1591.
    [51]高成.Matlab图象处理与应用[M].北京:国防工业出版社,2007:170-180.
    [52]张凤旭,孟令顺,张凤琴,等.重力位谱分析及重力异常导数换算新方法—余弦变换[J].地球物理学报,2006,49(1):1002-1009.
    [53]方东红,曾昭发,陈家林.基于小波分析的重磁数据求导方法及应用[J].吉林大学学报(地球科学版),2008,38(6):1049-1054.
    [54] Bruckshaw,J.M.Kunaratnam,K..The interpretation of magnetic anomalies due to dikes[J].Geophsical Prospecting,1963,11(4):509-522.
    [55] Thompson D.T..EULDPH:A new technique for making computer-assisted depth estimates from magnetic data[J].Geopdsics,1982,47(1):31-37.
    [56] Reid A.N.,Allsop J.M.,Granser H,etal.Magnetic interpretation in three dimensions using Euler deconvolution[J]. Geopdsics, 1990,55(1):80-91.
    [57] Fairhead J.D.,Bennett K.J.,Gordon D.R.H..Euler:beyond the“black box”[J]. SEG Expanded Abstracts,1994,64(13):422-424.
    [58] Pierre B.Keaking.Weighted Euler deconvolution of gravity data[J].Geophysics, 1998,63(5):1595-1603.
    [59]吴其斌.位场异常解释中的欧拉反演方法研究及其应用[J].博士学位论文,1999
    [60] Salem A,Ravat D.A combined analytic signal and Euler method(AN-EUL)for automatic interpretation of magnetic data[J].Geophysics ,2003,68:1952-1961.
    [61]姚长利,管志宁,吴其斌,等.欧拉反演方法分析及实用技术改进[J].物探与化探,2004,28(2):150-155.
    [62]范美宁,孙运生.频率域中的欧拉方程[J].吉林大学学报(地球科学版),2005,35(2):253-256.
    [63]史辉,刘天佑,DawiMuna Ghaboush.利用欧拉反褶积法估计二度磁性体深度与位置[J].物探与化探,2005,29(3):230-233.
    [64]B.M.Березкин.Применениегравиразведкидляпоисковместорожденийнефтиигаза.Москва:Недра,1973.
    [65] B·M·别列兹金著,陆克,刘文锦,焦恩富译.物探数据的总梯度解释法[M].北京:地质出版社,1994,59-60.
    [66]肖一鸣.重力归一化总梯度法[J].石油地球物理勘探,1981,22(3):47-57.
    [67]肖一鸣,张林详.重力归一化总梯度法在寻找油气中的应用[J].石油地球物理勘探,1984, 25(3):247-254.
    [68]候重初,施志群.实现重磁异常规格化总梯度的傅氏积分法[J].石油物探,1986,25(3) :75-86.
    [69]王宝仁,王芳.归一化总梯度法的计算新技术[J].物探与化探计算技术, 1991,13(2):139-145.
    [70]袁业培,金文丽.重力归一化总梯度法探测油气藏的新成果[J].河南石油,1994,8(4):12-18.
    [71]曾华霖,李小孟.姚长利.改进的重力归一化总梯度法及其在胜利油区油气藏探测中的应用效果[J].石油勘探与开发,1999,26(6):1-6.
    [72]丁燕云,李占奎.航磁寻找油气藏几种方法应用效果分析[J].2001,15(2):141-147.
    [73]孟平,秦瞳,吴云海.关于归一化总梯度多解性问题的研究[J].石油物探,2003,42(2):252-255.
    [74]张凤旭,孟令顺,张凤琴,等.利用Hilbert变换计算重力归一化总梯度[J].地球物理学报,2005,48(3):704-709.
    [75]张凤旭,孟令顺,张凤琴,等.波数域重力归一化梯度法中的圆滑滤波因子[J].物探与化探,2005,29(3):248-251.
    [76]肖鹏飞,李明,徐世浙.重力归一化总梯度的稳定解法[J].石油地球物理勘探,2006,41(5):598-603.
    [77]张凤琴,朱洪英,张凤旭,等.基于DCT的重力归一化总梯度及相位在识别断裂构造中的研究与应用[J].世界地质,2008,27(1):83-87.
    [78] PARKER R.L.The rapid calculation of potential anomalies[J].Geophys J R Astr Sco,1972,31:447-455.
    [79] OLDENBURG D.W.The inversion and interpretation of gravity anomalies[J]. Geophysics,1974,39(4):526-536.
    [80]刘元龙,王谦身.用压缩质面法反演重力资料以估算[J].地球物理学报,1977,20(1):59-69.
    [81]管志宁,安玉林.频率域磁性单界面反演方法[J].地球物理学报,1984,27(2):190-204.
    [82]陈善,周国藩,等,《重力勘探》[M].北京:地质出版社,1986:134-145.
    [83]陈建国,王宝仁.起伏地形上观测重力异常的界面反演—正弦级数迭代法[J].石油地球物理勘探,1987,22(4):427-434.
    [84]陈超.利用傅里叶变换反演密度截面[J].石油地球物理勘探,1987,22(6):693-698.
    [85]杨再朝.应用FFT计算u函数的界面反演方法[J].石油物探,1989,28(2):91-96.
    [86]杨再朝.应用快速褶积计算u函数的界面反演法[J].石油地球物理勘探,1989,24(1):80-87.
    [87] OLDENBURG D W,MOGILIVRAY P R.Generalized subspace methods for large-scale inverse problems[J].Geophys J Int,1993,114:12-20.
    [88]李燕,余钦范,於庆利.重磁界面的一种快速正、反演方法[J].物探与化探,1993,17(6):441-446
    [89]刘展,潘作枢.磁性下界面的正则化反演方法[J].1995,19(6):439-448.
    [90]刘云峰,沈晓华.二维密度界面的遗传算法反演[J].物探化探计算技术,1997,19(2):138-142.
    [91]李会元,许梦杰,彭瑞仁,等.重力异常界面反演的Gauss-Newton方法及其隐式迭代实现[J].上海大学学报(自然科学版),1999,5(1):29-32.
    [92]刘沈衡,吴燕岗,李永朴.利用欧拉算法反演磁性界面[J]石油物探,2000,39(2):101-106.
    [93]张会战,方剑,张子占.小波分析在重力界面反演中的应用[J].武汉大学学报·信息科学版,2006,31(3):233-236.
    [94]肖鹏飞,陈生昌,孟令顺.高精度重力资料的密度界面反演[J].物探与化探,2007,31(1):29-33.
    [95]高尔根,宋淑云,刘升东.重力异常稳健迭代密度界面反演研究[J].中国科学技术大学学,2007,37(8):916-920.
    [96]相鹏,刘展.基于Parker算法的磁性双界面模式正反演研究[J].石油天然气学报(江汉石油学院学报),2008,30(3):78-80.
    [97]董焕成.重磁勘探教程[M].北京:地质出版社,1993年,第1版:186-187.
    [98]曾华霖.重磁资料数据处理某些方法效果的讨论[J],物探与化探,1982,23(5):257-258.
    [99]李庆谋,成秋明,刘少华.沃尔什列率域中多维分形模型与GIS环境下地球物理信号处理[J].地球物理学报,2007,50(6):1884-1885.
    [100]张志龙,李吉成,沈振康.基于局部沃尔什变换的纹理特征提取方法研究[J].信号处理, 2005,21(6):589-596.
    [101]王萍,臧玉卫,马刚,等.基于沃尔什变换的电测井曲线分层算法[J].计算机应用,2008, 28:366-370.
    [102]李雪耀,杨成,钱真,等.沃尔什变换在油田测井相识别应用中的研究[J].哈尔滨工程大学学报,2001,22(6):65-68.
    [103]冯国庆,谈德辉,夏宏泉.声波测井曲线的沃尔什反演[J].西南石油学院学报,1998, 20(4):35-38.
    [104] Beauchamp K. Applications of Walsh and Related Functions[M]. New York: Academic Press,1984:308.
    [105]成罡,金国藩,刘海松,等.基于光学沃尔什变换特征提取的图像匹配[J].光学学报, 2001,21(2):167-172.
    [106] Shanks J. Computation of the fast Walsh-Fourier transform[J].IEEE Transactions on Computers, 1969,C-18: 457-459.
    [107] Brown R. A recursive algorithm for sequence-ordered fast walshtransforms[J]. IEEE Transactions on Computers, 1977,C-26(8):819-822.
    [108] Henderson K. Comment on“computation of the fast Walsh-Fourier transform”[J]. IEEE Transactions on Computers,1970,C-19:850-851.
    [109] Rumatowski,K.沃希变化在数字滤波中的应用[J].世界地质,1987,2(6):159-161.
    [110]赵访雄,李庆扬.沃希变换及在地震数字处理中的应用[J].清华大学:9-16.
    [111]王祝文,刘菁华.沃尔什变换在测井曲线分层中的应用研究[J].地质与勘探,2003,39(4):81-83.
    [112]郑治真.信号处理中的几个重要变换[J].科学与经济,1979,12::66-68.
    [113]陈天与,徐中信.沃希函数与沃希变换[J].长春地质学院报:14-16.
    [114]李雪耀,杨成,钱真等.沃尔什变换在油田相位识别应用中的研究[J].哈尔滨工程大学学报,2001,22(6):65-67.
    [115]刘鼎文,鲁家珍,王咏娟.鲜水河断裂带地震活动性的沃尔什序谱分析及其应用[J].地壳形变与地震,1996,16(3):33-34.
    [116]段本春,徐世浙.磁(重力)异常局部场与区域场分离处理中的扩边方法研究[J].物探化探计算技术,1997,19(4):299-301.
    [117] HARTLEY R.V.L.A more symmetrical Fourier analysis applied to transmission problems[J].ProcIRE.1942,30:14~150.
    [118]余品能,路凌云.离散Hartley变换的一种快速递归算法[J].石油地球物理勘探,33(5):591~593.
    [119]彭军,罗奇峰.Hartley变换在地震波研究中的应用[J].国际地震动态,360(12),2008:6~8.
    [120]余品能,蒋增荣.图像及数字信号处理中的快速算法研究进展[J].高校应用教学学报A辑,1991, 6(2):302~316.
    [121]甘利灯.哈特莱变换及其性质[J].石油地球物理勘探,1992,27(5):605~616 .
    [8]周辉,何桂登.利用Hartley变换模拟各向异性介质地震波场[J].石油地球物理勘探,1995,30(5):593~601.
    [122]孙鹤泉,沈永明,王永学等. Hartley变换在互相关分析中应用研究[J].大连理工大学学报,2004,44(2):285~286.
    [123] Bracewell R N.Discrete Hartley transform[J].Journal of the Optional Society of America,1983,73:1832~1835.
    [124] Saatcilar R etal.The use of Hartley transform in geophysical applications[J]. geophysics,1990,55(11):1488-1495.
    [125]穆石敏,申宁华,孙运生.区域地球物理数据处理方法及其应用[M].吉林科学技术出版社,1990:7~10.
    [126]孟令顺,杜晓娟.勘探重力学与地磁学[M].北京:地质出版社,2008:216-220.
    [127]江为为,刘伊克,郝天姚,等.四川盆地综合地质-地球物理研究[J].地球物理学进展,2001,16(1):11-22.
    [128]郭正吾,邓康龄,韩永辉,等.四川盆地形成与演化[M].北京:地质出版社,1996:7-11.
    [129]崔作舟.攀西地区爆炸地震测深和深部地壳结构与构造[M],北京:地质出版社,1987.
    [130]李立.攀西裂谷带及龙门山断裂带地壳上地幔大地电磁测深研究[J].物探与化探,1987,11(3):23-27.
    [131]罗志立,龙学明.龙门山造山带崛起和川西前陆盆地沉降[J].四川地质学报,1991,11(3):56-58.
    [132]张仲武,,等.四川盆地气藏形成条件及勘探前景分析[J].天然气工业,1991,11(4):78-79.
    [133]王谦身,滕吉文,张永谦,等.龙门山断裂系及邻区地壳重力均衡效应与汶川地震[J].地球物理学进展,2008,23(6):1664-1670.
    [134]王谦身,张赤军,安玉林,等.重力学[M].北京:地震出版社,2003:95-98. [135 ]刘元龙,郑建昌,焦灵秀.用地球物理资料研究中国深部地壳构造及矿产分布[J ] .长春地质学院学报,1993 ,23 (4) :430~438.
    [136]许志琴,候立玮,王宗秀,等.中国松潘-甘孜造山带的造山过程[M].北京:地质出版社,1992.
    [137]藤吉文,白登海,杨辉,等.汶川8.0级强烈地震发生的深层过程和动力学响应[J].中国地球物理2008,2008,8-10.
    [138]王椿镛,楼海,吕智勇,等.青藏高原东部上地幔S波速度结构[J ] .中国科学D辑地球科学,2008 ,38 (1) :22~32.
    [139] G.R.J. Cooper, D.R. Cowan.Enhancing potential field data using filters based on the local phase[J].Computers&Geosciences,2006,32:1585-1591.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700